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Abstract

144 bp dominant phenotype.

Background: Previous studies found that cell-free DNA (cfDNA) generated from tumors was shorter than that from
healthy cells, and selecting short cfDNA could enrich for tumor cfDNA and improve its usage in early cancer
diagnosis and treatment monitoring; however, the underlying mechanism of shortened tumor cfDNA was still
unknown, which potentially limits its further clinical application.

Results: Using targeted sequencing of cfDNA in a large cohort of solid tumor patient, sequencing reads harboring
tumor-specific somatic mutations were isolated to examine the exact size distribution of tumor cfDNA. For the
majority of studied cases, 166 bp remained as the peak size of tumor cfDNA, with tumor cfDNA showing an
increased proportion of short fragments (100-150 bp). Less than 1% of cfDNA samples were found to be peaked at
134/144 bp and independent of tumor cfDNA purity. Using whole-genome sequencing of cfDNA, we discovered a
positive correlation between cfDNA shortening and the magnitude of chromatin inaccessibility, as measured by
transcription, DNase | hypersensitivity, and histone modifications. Tumor cfDNA shortening occurred simultaneously
at both 5" and 3" ends of the DNA wrapped around nucleosomes.

Conclusions: Tumor cfDNA shortening exhibited two distinctive modes. Tumor cfDNA purity and chromatin
inaccessibility were contributing factors but insufficient to trigger a global transition from 166 bp dominant to 134/
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Background

Cell-free DNA (cfDNA) is the short DNA fragment
found in plasma, urine, and other body fluids, while cir-
culating tumor DNA (ctDNA) is a subset of cfDNA with
tumor origin. ¢fDNA has been increasingly used for
non-invasive cancer diagnosis, residual disease monitor-
ing, and treatment efficacy evaluation [1, 2]. Despite its
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clinical potentials, little is known about the mechanism
by which ¢fDNA is shed into the circulation. The length
of cfDNA is typically peaked at 166 bp, which is reminis-
cent of the size of DNA wrapped around a nucleosome
plus the linker [3, 4]. Further evidence showed that
cfDNA fragmentation captures the footprints of nucleo-
somes and transcription factors binding, suggesting
cfDNA as a product of apoptotic cells [5, 6].

Early studies on the fragment size of tumor-derived
cfDNA reported conflicting results [7-11]. Polymerase
chain reaction (PCR) -based approaches found increased
tumor cfDNA fragment integrity as the disease pro-
gresses [12, 13]. Over the past decade, accumulating
publications demonstrated that tumor-originated cfDNA
are enriched within the short fragments. Because tumor
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cfDNA usually represents only a small proportion of the
total cfDNA [14, 15], the greatest challenge to study the
fragment size of tumor cfDNA is to differentiate tumor
cfDNA in the presence of cfDNA shed from non-
neoplastic sources (e.g., from hematopoietic cells). Jiang
et al. reasoned that amplified tumor chromosomal re-
gions would be overrepresented in the cfDNA whereas
the deleted tumor chromosomal regions would be un-
derrepresented [7]. Under this hypothesis, they demon-
strated that short cfDNA (<150bp) preferentially
carried tumor-associated copy number variations
(CNVs) in patients with hepatocellular carcinoma (HCC)
[7]. Underhill and colleagues characterized cfDNA of
human glioblastoma (GBM) and human HCC in rat xe-
nografts and they found that tumor cfDNAs were signifi-
cantly shorter [8]. In addition, they reported that the
shortened cfDNA fragments were also observed in a lim-
ited number of patients with melanoma and lung cancer
[8]. More recently, using in vitro and in silico size selec-
tion methods, Mourliere and colleagues demonstrated
enhanced detection of tumor-specific biomarkers in the
short fragments of cfDNA [16].

Although a consensus is forming toward that tumor
cfDNA is shorter than the healthy counterpart, little ef-
fort was invested to address the exact extent of the
shortening. To our knowledge, the majority of publica-
tions reported shortened tumor cfDNA fragment, but
still retaining the peak at 166 bp within the size distribu-
tion [17]. There were only two reports of human tumor
cfDNA showing mode size at between 130 bp and 150
bp, one was based on rat xenografts [8] while the other
involves a single case of HCC patient [18]. However, it is
still generally accepted that the modal size of tumor
cfDNA is indeed between 130 bp and 150 bp, while the
overall cfDNA size distribution peaking at 166 bp is the
consequence of low tumor cfDNA purity in the abun-
dance of ¢fDNA from non-neoplastic origin [11].

Given the clinical implication of liquid biopsy and the
enrichment of tumor biomarkers within the short frag-
ments of cfDNA, we explore to better characterize and
elucidate the underlying mechanism of shortened tumor
cfDNA. In the present study, we investigated the cfDNA
size distribution in a large cohort of over 5000 patients
with solid tumors using targeted next-generation se-
quencing (NGS). Isolating sequencing reads carrying
tumor-specific somatic mutations permitted us to separ-
ate tumor cfDNA and to observe shortened but still 166
bp-peaked size distribution. We also identified a small
fraction of cases whose overall cfDNA size distribution
displayed peaks at 134/144 bp instead of 166 bp. These
cases displayed higher-than-normal tumor cfDNA pur-
ity, but tumor cfDNA purity was not a determinant for
the occurrence of the extremely short cfDNA. We fur-
ther validated chromatin structure as a contributing
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factor for tumor cfDNA shortening, but failed to estab-
lish its correlation with the occurrence of the overall
shift to 134/144 bp size distribution.

Results

Fragment size of cfDNAs with tumor-specific mutations
To characterize the fragment size of tumor cfDNA, we
performed deep (~3000X) targeted sequencing of 382
cancer-related genes from plasma DNA of 605 cancer
patients and 5 healthy controls [1]. The sequencing
reads carrying tumor somatic mutations and corre-
sponding wild-type (WT) allele were separately collected
from tumor patients and healthy individuals and pooled
together (Fig. 1). Although both mutant-carrying and
WT-carrying cfDNA peaked at 166 bp, the size distribu-
tion of cfDNA carrying tumor-specific mutations exhib-
ited a slightly shift to the left (Fig. la, p-value<0.001,
Kolmogorov-Smirnov test). We then specifically ana-
lyzed cfDNA fragments carrying well-established cancer
driver mutations (Fig. 1b - d). The BRAF p.Val600Glu
(V600E) cfDNA from cancer patients was shorter com-
pared with the corresponding BRAF WT cfDNA from
the same patients or from the healthy controls, with
additional local maxima at around 134-144bp but
retaining the peak at 166 bp (Fig. 1b). Similar patterns
were also observed for KRAS p.Glyl2Asp (G12D) and
EGFR p.Thr790Met (T790M) cfDNA (Fig. 1c, d).

Presence of 134/144 bp dominant samples was not
determined by tumor ¢fDNA purity

In order to better understand the size distribution of
tumor cfDNA, we extended our analysis to a larger co-
hort of 5608 cfDNA samples collected from patients
with various types of cancers and sequenced with tar-
geted NGS (422 cancer-associated genes, gene list avail-
able in Supplementary Table S1). Surprisingly, although
the majority of mutation-containing cfDNA were still
“166 bp dominant” as observed in Fig. 1a, a small frac-
tion of samples (n =35; 0.62%) showed principal peaks
at shorter fragment ranges (130—139 bp or 140-149 bp),
which were collectively named as “134/144 bp domin-
ant” samples (Fig. 2a).

One hypothesis for the presence of 134/144 bp domin-
ant samples was that tumor cfDNA were of 134/144 bp
in length, while these samples might contain a much
higher tumor cfDNA purity, shifting the overall size dis-
tribution from 166bp to 134/144 bp. Using maximum
somatic allelic frequency (MSAF) as an indicator of
tumor cfDNA purity, we identified the somatic mutation
with the highest variant allelic frequency (VAF) within
each sample. We then calculated the “size ratio” of each
sample, which is defined as the number of short cfDNA
fragments (100-150 bp) divided by the number of long
cfDNA fragments (163-169bp), as a quantitative
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corresponding WT cfDNA from the same patients or from the healthy controls
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description of the fragment size distribution. At first
glance, the MSAF of the 134/144bp dominant samples
were significantly higher than that of the remaining 5573
“166 bp dominant” samples (p-value <1~ '°, Wilcoxon’s
rank sum test). A closer investigation, however, revealed
a fraction of 166 bp dominant samples presenting similar
MSAF as 134/144 bp dominant samples (Fig. 2b).

To avoid bias toward either 134/144 bp dominant sam-
ples or 166 bp dominant samples, we randomly selected
35,166 bp dominant samples with matching MSAF com-
pared to the 35,134/144bp dominant samples, and
found similar gender composition, age distribution, pri-
mary tumor site, disease stage, metastatic status, muta-
tion profile, and previous treatment history (not
significant, Fisher’s exact test) (Table 1). As shown in
Fig. 2b, a size ratio threshold of 4 can be set to distin-
guish 134/144bp dominant samples from the 166 bp
dominant samples. The size ratio showed poor correl-
ation with the MSAF (Fig. 2b, Spearman correlation) as
well as the second and the third MSAF (Supplementary
Figure S1). We also estimated the tumor purity within
the 35,134/144 bp dominant samples and the randomly
selected 35,166 bp dominant samples using a publicly

available tool based on their CNV profile [19]. No statis-
tical significance was found between the estimated
tumor purity within these samples (Fig. 2c, p-value =
0.169, two-tailed t-test). Poor correlation between tumor
purity estimation based on CNV and MSAF indicated
lack of confounding between the two means of purity es-
timation (Fig. 2d). Provided with the fact that the NGS
enrichment panel interrogates only a limited fraction of
the human haploid genome, tumor purity estimation
based on VAF is prone to interference due to CNV and
loss of heterozygosity (LOH). Taken together, although
134/144 bp dominant cfDNA samples displayed signifi-
cantly higher tumor purity than most of the routine
cfDNA samples, counter examples with comparable
tumor purity are readily identifiable within the 166 bp
dominant cfDNA samples. We thus conclude that tumor
cfDNA purity is not the determinant factor for the oc-
currence of 134/144 bp dominant cfDNA samples.

Fragment size of cfDNA positively correlate with

chromatin inaccessibility in the 166 bp dominant samples
Because the tumor c¢fDNA purity poorly explained the
dominance by 134/144bp fragments, we started to
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investigate other factors that might influence the size of
cfDNA. We hypothesize chromatin accessibility being a
contributing factor due to the established correlation be-
tween nucleosome and the fragmentation of cfDNA [5,
6, 18]. Chromatin accessibility is not distributed evenly
along the human genome, and the transcription start
sites (TSS) of housekeeping genes tend to exhibit open
chromatin states across multiple different cell types [20].
Using previously published publicly available whole-
genome sequencing (WGS) of plasma cfDNA samples
from four lung or gastric cancer patients, we character-
ized fragment size patterns within the 2000 bp region
centered around the TSSs of 3717 housekeeping genes
and 325 unexpressed genes determined by FANTOMS5
across various tissue types [21]. Compared with unex-
pressed genes, the size distribution of cfDNA at the TSS
regions of housekeeping genes shifted to the left (Fig. 3a).
We validated this result using another publicly available
dataset [5], and a similar trend was observed

(Supplementary Figure S2). Next, we ranked genes into
five bins based on their expression levels determined by
the fragments per kilobase of transcript per million
mapped reads (FPKM) results from the lung adenocar-
cinoma cell line A549 [22], and we characterised the size
ratio (100-150bp reads/163—-169bp reads) in a lung
cancer patient (patient P1). As shown in Fig. 3b, the size
ratio progressively increased in TSS regions of genes
with higher expression levels. A similar trend was found
in another lung cancer patient and a healthy control
(Supplementary Figure S3).

In addition to the TSS regions, general chromatin
accessibility can be measured by DNase I hypersensi-
tivity (DHS) [23]. We ranked the DHS sites into five
bins based on their DHS scores using a DNase-seq
dataset of lung adenocarcinoma cell line A549 and
healthy lymphocyte cell line GM12878 [22]. For the
lung cancer patients, the gastric cancer patients, and
the healthy control samples that we examined, their
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Table 1 Clinical demographics of the 134/144 bp dominant and the 166 bp dominant cfDNA samples

134/144 bp Dominant (n = 35) 166 bp Dominant (n = 35) p-value
Gender Male 28 21 0.1165°
Female 7 14
Age >=60 18 26 0.0824°
<60 17 9
Median 60 65 0.0046°
Primary tumor site Lung 19 22 0.0644°
Gastrointestinal tract 5 10
Liver 4 0
Other 7 3
Stage 11l 3 1 0.6859°
[\ 21 21
Unknown 1 13
Metastasis Yes 20 18 0.8106°
No 15 17
Surgery within 30 days Yes 0 1 1.0000°
No 35 34
Radiation therapy within 30 days Yes 3 1 0.6139°
No 32 34
Chemotherapy within 30 days Yes 4 8 0.3420°
No 31 27
Targeted therapy within 30 days Yes 4 8 0.3420°
No 31 27

3significance calculated using Fisher's exact test
Bsignificance calculated using Wilcoxon rank sum test
Ssignificance calculated using Freeman-Halton extension of Fisher’s exact test

cfDNA size ratios kept increasing as the DHS cleav-
age scores getting higher, suggesting that cfDNA from
open chromatin regions tended to be shorter (Fig.
3c). Similar relationship between the DHS scores and
the cfDNA size was also observed in the validation
dataset, in which the WGS results of each cancer pa-
tient sample was compared against the DHS signal of
a cell line representing the patient’s primary tumor
site, or against that of GM12878 when the DNase-seq
results of the corresponding cell line were unavailable
(Supplementary Figure S4). The general chromatin ac-
cessibility can also be referred from different histone
modifications. Tri-methylation at lysine 9 of histone
H3 (H3K9me3) has been found to be associated with
closed chromatin, while the H3K4me3 modification is
known to be highly correlated with open chromatin
[24]. We characterized the fragment size distributions
of cfDNA from cancer patients based on their
H3K9me3 and H3K4me3 modifications (using the
ChIP-seq data of the A549 cell line [22]). Compared
with H3K9me3, the size distribution of cfDNA in the
H3K4me3 identified regions shifted slightly to the left
in patient P1 (Fig. 3d). This result was validated in

patient P2 (Supplementary Figure S5) and a healthy
control (Supplementary Figure S6).

Although the fragment size of c¢fDNA positively corre-
lated with chromatin inaccessibility, it is also realized
that none of the above tested conditions resulted in a
134/144bp dominant size distribution or a size ratio
higher than 4. Intriguingly, the publicly available WGS
result of a stage IV lung adenocarcinoma patient dis-
played 134/144 bp dominant phenotype [25]. By scan-
ning the size ratio of consecutive non-overlapping 1000
bp window across the genome and correlating the size
ratio with the copy number variation (CNV) of this sam-
ple, we found that cfDNA shortening to 134/144 bp was
ubiquitous across the whole genome rather than re-
stricted to specific genomic regions (Supplementary Fig-
ure S7). In addition, tumor genomic regions with copy
number loss were associated with larger cfDNA frag-
ments while tumor genomic regions with copy number
gain were concordant with smaller cfDNA fragments
(Supplementary Figure S7), indicating that the cfDNA
originated from the healthy cells within this patient
remained at 166 bp dominant size distribution. Taken
together, we conclude that chromatin inaccessibility, as
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measured by expression, DHS, and histone modification,
displayed positive correlation with cfDNA fragment size,
but was insufficient to produce the overall 134/144 bp
size distribution observed within a small fraction of can-
cer patients.

Fragmentation patterns of cfDNA with different sizes

We then tried to determine which part of the DNA mol-
ecule wrapped around the nucleosomes was cleaved to
produce the 134/144 bp fragments. Previous studies have
demonstrated that cfDNA displayed biased fragmentation
patterns near TSS, where nucleosome binding is highly
phased [25]. We thus examined the positions of the 5
and 3’ fragmentation endpoints of cfDNA mapped near
the first nucleosome immediately downstream of TSS for
the WGS results of both 134/144 bp dominant and 166 bp
dominant samples [25]. Sequencing reads were grouped
based on insert sizes, and the positions of break points
were separately overlaid for each size group. Despite their
dramatic differences in the fragment length compositions,

neither the nucleosome positioning nor the shortening
pattern was different between the 134/144 bp dominant
sample and the 166 bp dominant samples (Fig. 4a-d). As
the cfDNA fragment shortened, the 5’ and the 3" bound-
ary simultaneously receded towards the center of the nu-
cleosome at comparable rates for both groups of samples
(Fig. 4). It is speculated that the shortened nucleic acids in
134/144bp dominant cfDNA corresponded to histone
H1.0-protected segments. Similar pattern was also ob-
served within the validation dataset (Supplementary Fig-
ure S8) [5].

Discussion

In this study, we investigated the characteristics of
tumor cfDNA in large cohorts of cancer patients using
NGS by isolating cfDNA fragments carrying tumor-
specific somatic mutations. We demonstrated that
tumor cfDNA was indeed shorter compared to the
counter-part derived from non-neoplastic sources, but
the difference was not as profound in contrast to the
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common beliefs. We recognized that the modal fragment
size for both tumor cfDNA and healthy cfDNA was 166
bp, and less than 1% of examined 5608 cancer patient
cases displayed overall cfDNA size distribution peaked

at 134/144 bp. The 134/144bp dominant cfDNA sam-
ples exhibited higher tumor cfDNA purity and MSAF
compared to the general cfDNA samples, but tumor
cfDNA purity alone could not explain the size
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distribution shift from 166 bp dominant to 134/144 bp
dominant. No differences were found between the 134/
144 bp dominant and 166 bp dominant samples in the
clinical demographics or the mutational profiles within a
panel of 422 solid-tumor-related genes, either. With lim-
ited availability of cases, we showed that the transition
from 166 bp dominant to 134/144 bp dominant was glo-
bal across the genome instead of being limited to spe-
cific genomic regions.

Undeniable, this study is limited by the amount of
healthy cfDNA samples recruited within the cohort (n =
5). Given that the main focus of this study is to
characterize the 166 bp dominant versus the 134/144 bp
dominant phenotype within tumor cfDNA samples ra-
ther than to investigate the size difference between
tumor and healthy cfDNA, and the fact that the size dis-
tribution of the healthy cfDNA was consistent with the
literature, we decided to settle on the imbalanced cohort
as part of this study.

Although exploring the short size of ¢cfDNA and con-
sequently enriching tumor cfDNA has great clinical im-
plications, the mechanism of the shortened tumor
cfDNA was still elusive. Our results suggested that
cfDNA from regions of open chromatins were generally
shorter than those from more condensed chromatins, al-
beit chromatin inaccessibility was not the determinant
factor to trigger the global transition from 166 bp dom-
inant to 134/144 bp. Since large-scale chromatin decon-
densation is commonly observed in cancer genome, our
findings suggested that the altered chromatin accessibil-
ity might partially explain the shortened size of tumor
cfDNA in cancer patients. Following the same logic, as
tumor driver mutations are usually located at active ex-
pressing and open chromatin regions, it is not surprising
that tumor cfDNA with known driver mutations was
found to be profoundly shorter. The differential segment
between the typical 166 bp cfDNA fragments and the
144 bp cfDNA fragments could be mapped to the his-
tone H1.0-protected nucleic acid sequences. Given that
loss of histone H1.0 promotes the maintenance of self-
renewing subpopulation in tumors [26], the size of
cfDNA might reflect the histone H1.0 status and thus
potentially have further cancer diagnostic values, which
is worth to be investigated in the subsequent studies.

Albeit not immediately relevant, cfDNA derived from
the placenta and the fetus has been shown to be shorter
than the maternal cfDNA, despite of 166 bp being the
peaking size [4, 27]. On the other hand, it has been dem-
onstrated that Epstein-Barr viral DNA were processed to
134/144 bp within the plasma cfDNA of nasopharyngeal
cancer patients [28], and that human DNA were proc-
essed to 134/144 bp within the plasma cfDNA of rat
xenograft models [8]. We therefore boldly postulate that
the transition from 166 bp dominant phenotype to 134/
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144 bp dominant phenotype requires the involvement of
the host immune system recognizing foreign genetic ma-
terial. This hypothesis also explains why tumor cfDNA
is processed to 134/144 bp within only a small fraction
of cancer patients. Careful experimental design to test
this hypothesis is highly desirable but beyond the scope
of this study.

Conclusions

Overall, this large scale NGS analysis and
characterization of c¢fDNA in solid tumor patients was
the first recognition of two distinctive modes of tumor
cfDNA shortening. Sequencing reads of cfDNA carrying
tumor specific somatic variants exhibited increased frac-
tion of short fragment sizes, but the peak size was still
166 bp, identical to that of the cfDNA collected from
healthy donors. Within over 99% of the investigated
solid tumor patients, the principal size of the total
cfDNA size distribution was 166 bp with slight enrich-
ment of short fragments of less than 150 bp. For 0.62%
of the examined 5608 cases, tumor cfDNA displayed a
principal size at 134 bp or 144 bp. Tumor cfDNA purity
and chromatin inaccessibility were contributing factors
toward shorter cfDNA distribution in cancer patients,
but could not be established as the determinant for the
occurrence of 134/144 bp dominant phenotype. Further
studies on the involvement of host immune system in
processing 166 bp dominant cfDNA into 134/144 bp
dominant cfDNA may provide insights in the etiology of
cfDNA shortening.

Methods

Patients and Illumina sequencing

This study was approved by the Ethic Committee of
Xiangya Hospital of the Central South University. Writ-
ten consent regarding the additional use for research
purpose was obtained from enrolled patients before sam-
ple collection. The tests were performed in a centralized
clinical testing center (Nanjing Geneseeq Technology
Inc,, Nanjing, China) as a laboratory developed test
(LDT) in compliance with the relevant Chinese and
United State of America regulatory authorities. A sample
size of 605 cancer patients and 5 healthy controls were
used to study the size distribution of tumor cfDNA. An
additional 70 samples were used to study the shortening
of tumor cfDNA. Publicly available whole-genome se-
quencing results of 5 cancer patients and 1 pooled
healthy control were used to investigate the effect of
chromatin inaccessibility on c¢fDNA shortening. For tar-
geted sequencing, DNA extraction and library prepar-
ation were similar to the published protocol [1]. Briefly,
5-10 mL of peripheral blood sample was centrifuged at
1800 rpm for 10 min to isolate 2—4 mL of plasma. Ex-
traction of cfDNA from plasma was performed using
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NucleoSpin Plasma XS kit (Macherey Nagel, Bethlehem,
PA, USA). Extraction of genomic DNA from whole
blood was performed using DNeasy Blood & Tissue Kit
(Qiagen, Germantown, MD, USA). Library preparation
was performed using KAPA Hyper Prep kit (KAPA Bio-
systems, Wilmington, MA, USA). Target enrichment
was achieved through liquid-phase hybridization-
capture-based method. The capture probes were a
customized XxGEN Lockdown panel synthesized at Inte-
grated DNA Technologies (IDT, Skokie, IL, USA). The
sequencing was performed on Illumina (Illumina, San
Diego, CA, USA) Hiseq 4000 NGS platform using
paired-end 75 bp sequencing.

Alignment and somatic SNV calling

Paired-end sequencing data from cancer gene panel or
whole-genome sequencing were first processed through
Trimmomatics for quality control [29] and then aligned
to the reference human genome (hgl9) with the
Burrows-Wheeler Aligner (bwa-mem) [30]. All the se-
quenced and aligned results (BAM files) were further
processed using Picard (http://broadinstitute.github.io/
picard) and the Genome Analysis Toolkit, including du-
plicate marking, base quality recalibration, and indel re-
alignment prior to mutation detection [31-33]. VarScan
2 somatic was applied to call somatic SNVs for gene
panel sequencing with minimum variant allelic fre-
quency set at 1% and minimum variant supporting reads
set at 5 [34]. In addition, the following criteria were ap-
plied to obtain the final mutation list: 1) reads contain-
ing >4 mismatches were removed; 2) variant supporting
base pairs within soft-clipped region were disregarded;
3) variant supporting base pairs located at the last 2 bp
of a sequencing read were disregarded; 4) variants sup-
ported by reads displaying >90% strand bias were re-
moved; 5) variants were removed if the variant was also
detected within the sample’s matching whole blood con-
trol and was supported by >2 reads if the sequencing
depth at the position was between 50X-100X or >3
reads if the sequencing depth at the position was above
100X. The resulting vcf files were annotated with known
mutations from the public database of dbSNP v138 and
COSMIC v70 [35-37].

Size analysis in different genomic regions

We first characterized fragment size patterns at the
1000 bp region centered on the TSSs of 3717 housekeep-
ing genes and 325 unexpressed genes in all tissues ac-
cording to FANTOMS5 [21]. Positions of TSSs were
downloaded from canonical transcript for each gene
from the UCSC database. Gene expression levels as frag-
ments per kilobase of gene per million fragments
mapped (FPKM) in multiple human cell lines and tissues
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based on RNA-Seq were downloaded from the Human
Protein Atlas database [38].

DNase-Seq peaks of open chromatin and histone modi-
fications by ChIP-seq in multiple cell lines were download
from ENCODE at UCSC [22]. Fragment sizes were then
calculated for each region in the downloaded bed files and
grouped by different DNasel hypersensitivity scores.

Copy number analysis and size ratio analysis

CNV analysis of whole-genome sequencing was per-
formed as previously described [25]. Briefly, the read
count mapped to each consecutive non-overlapping 100 k
bp window was normalized to the number of non-N bp
within the window and to GC content using LOWESS.
The log2 fold change ratio of each 100 k bp window was
calculated by dividing normalized read count of the tumor
sample by that of its matched whole blood control.

CNV analysis of targeted sequencing was performed
through a customized algorithm, which is a part of the
LDT. Briefly, the read count mapped to each capture
target interval was tallied and normalized to the overall
depth of coverage and the GC content using LOWESS.
The log2 fold change ratio of each target interval was
calculated by dividing normalized read count of the
cfDNA sample by that of its matched whole blood con-
trol. Resulted log2 fold change ratio was compared
against a pool-of-normal (PoN) samples to determine
CNV gain or loss, and was segmented using circular bin-
ary segmentation (CBS) [39, 40].

The size ratio of a genomic region was calculated by div-
iding the number of 100 to 150 bp fragments by the num-
ber of 163 to 169 bp fragments. The 134/144 bp dominant
cfDNA sample generally display a size ratio larger than 4.

Estimation of tumor cfDNA purity using ABSOLUTE
Segmentation information of the CNV profiles from the
copy number analysis was processed by ABSOLUTE to
estimate the fraction of tumor cfDNA within each sam-
ple [19]. Somatic variant information was not provided
as the ABSOLUTE input.

Analysis of fragmentation endpoints

Each sequencing read mapped within the +1000 bp of
TSS was grouped based on the insert size into bins
(51-60 bp, 61-70bp, 71-80bp, 81-90bp, 91-100 bp,
101-130 bp, 131-140 bp, 141-150 bp, 151-160 bp, and
163-169 bp). The orientation of each read was ad-
justed according to the orientation of the transcript.
The position of 5' and 3’ endpoint of each read was
calculated relative to the TSS, and the result was tal-
lied into 5bp consecutive non-overlapping windows.
Read pair count in each 5bp window was normalized
to the total number of reads within the 2000bp re-
gion of TSS analyzed.
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Additional file 1: Table S1. List of the gene symbols of the 422 genes
targetable by the enrichment panel. Figure S1. The presence of 134/144
bp dominant samples was independent of the tumor cfDNA purity. (A)
cfDNA size ratios (100-150 bp/163-169 bp) showed poor correlation with
the second high MSAF within the 35,134/144 bp dominant and the
35,166 bp dominant cfDNA samples. (B) cfDNA size ratios (100-150 bp/
163-169 bp) showed poor correlation with the third high MSAF within
the 35,134/144 bp dominant and the 35,166 bp dominant cfDNA
samples. Spearman correlation p was labeled on the top right corner of
each figure. Figure S2. Fragment size distribution of cfDNA at the TSS of
unexpressed genes and house-keeping genes. The insert size distribution
of cfDNA whole genome sequencing results was obtained using a pub-
licly available dataset [1]. The 2000 bp region centered around the TSS of
3717 house-keeping genes and 325 unexpressed genes (as determined
by the FANTOMS project) were examined. All samples were combined.
Figure S3. The size ratio of cfDNA at the TSS of genes classified based
on their FPKM values. The left panel showed the boxplot of the size ratio
(100-150 bp reads/163-169 bp reads) of cfDNA (lung cancer patient P2,
SRX1921680) mapped to the 2000 bp region centered at the TSSs of
genes with different expression levels according to lung cancer cell line
A549. The right panel showed the boxplot of the size ratio of cfDNA (a
healthy control, SRX1120814 [1]) mapped to the 2000 bp region centered
on the TSSs of genes with different expression levels according to bone
marrow tissue (downloaded from http://www.proteinatlas.org/about/
download). Figure S4. The size ratio of cfDNA mapped to DHS sites with
different DHS score. This graph shows a boxplot of the size ratio of
cfDNA based on WGS data obtained from a publicly available dataset [1].
The size ratio of each DHS site was grouped based on DHS signal inten-
sity (as determined by the ENCODE project). DHS sites with a log2 trans-
formed signal score less than 5 were excluded from this analysis. Each
patient sample was matched to a cell line derived from the tissue type
same as the patient’s primary tumor site, or to GM12878 when DNase-
Seq result of such cell line is not available. cfDNAs extracted from healthy
controls were matched to the DHS signal intensity of GM12878. Figure
S5. Fragment size distribution of cfDNA from patient P2 mapped to
H3K4me3 and H3K9me3 CHIP sites of A549. CHIP-seq data of H3K4me3
and H3K9me3 modification of lung cancer cell line A549 was obtained
from the ENCODE project. This graph demonstrates the WGS result of
cfDNA extracted from lung cancer patient P2 (SRX1921680) in our data-
set. Figure S6. Fragment size distribution of cfDNA mapped to H3K4me3
and H3K9me3 CHIP sites of GM18535. CHIP-seq data of H3K4me3 and
H3K9me3 modification of normal lymphocyte cell line GM18535 was ob-
tained from the ENCODE project. This graph demonstrates the whole
genome sequencing result of cfDNA extracted from a healthy control
(SRX1120814 [1]). Figure S7. cfDNA shortening to the 134/144 bp domin-
ant state was a global event. (A) CNV profile of a 134/144 bp dominant
cfDNA sample (SRX1921679). The log2 fold change in each 100 k bp con-
secutive non-overlapping window was plotted. The sample was collected
from a female patient with stage IV lung cancer. The grey horizontal
dashed line (log2 fold change = 0) labeled the normal copy number state.
(B) Size ratio profile of the 134/144 bp dominant cfDNA sample
(SRX1921679). The size ratio in each 1000 bp consecutive non-
overlapping window was calculated and plotted. Red data points
highlighted the regions of the top 100 highest size ratios. Blue data
points highlighted the regions of 100 lowest size ratios. The grey horizon-
tal dashed line marked size ratio =4, which is a threshold to separate the
134/144 bp dominant samples from 166 bp dominant samples. Figure
$8. Endpoints of short fragment ¢fDNA around the TSS regions. (A) Fre-
quencies of 5" endpoint of the fragments (51-60 bp, 61-70 bp, 71-80 bp,
81-90 bp, and 91-100 bp) in consecutive non-overlapping 5 bp windows
within — 300 to 500 bp of the TSS. (B) Frequencies of 3" endpoint of the
fragments (51-60 bp, 61-70 bp, 71-80 bp, 81-90 bp, and 91-100 bp) in
consecutive non-overlapping 5 bp windows within — 300 to 500 bp of
the TSS. In each graph, vertical dashed lines marked the positions of the
first peak downstream of TSS of the curves as fitted using locally
weighted scatterplot smoothing (LOWESS).
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