
Shahryary et al. BMC Genomics (2020) 21:479
https://doi.org/10.1186/s12864-020-06886-3

SOFTWARE Open Access

MethylStar: A fast and robust
pre-processing pipeline for bulk or single-cell
whole-genome bisulfite sequencing data
Yadollah Shahryary1,2, Rashmi R. Hazarika1,2 and Frank Johannes1,2*

Abstract

Background: Whole-Genome Bisulfite Sequencing (WGBS) is a Next Generation Sequencing (NGS) technique for
measuring DNA methylation at base resolution. Continuing drops in sequencing costs are beginning to enable
high-throughput surveys of DNA methylation in large samples of individuals and/or single cells. These surveys can
easily generate hundreds or even thousands of WGBS datasets in a single study. The efficient pre-processing of these
large amounts of data poses major computational challenges and creates unnecessary bottlenecks for downstream
analysis and biological interpretation.

Results: To offer an efficient analysis solution, we present MethylStar, a fast, stable and flexible pre-processing pipeline
for WGBS data. MethylStar integrates well-established tools for read trimming, alignment and methylation state calling
in a highly parallelized environment, manages computational resources and performs automatic error detection.
MethylStar offers easy installation through a dockerized container with all preloaded dependencies and also features a
user-friendly interface designed for experts/non-experts. Application of MethylStar to WGBS from Human, Maize and A.
thaliana shows favorable performance in terms of speed and memory requirements compared with existing pipelines.

Conclusions: MethylStar is a fast, stable and flexible pipeline for high-throughput pre-processing of bulk or
single-cell WGBS data. Its easy installation and user-friendly interface should make it a useful resource for the wider
epigenomics community. MethylStar is distributed under GPL-3.0 license and source code is publicly available for
download from github https://github.com/jlab-code/MethylStar. Installation through a docker image is available from
http://jlabdata.org/methylstar.tar.gz

Keywords: DNA methylation, Whole genome bisulfite sequencing, NGS, Pipeline, Single cell

Background
Whole-Genome Bisulfite Sequencing (WGBS) is a Next
Generation Sequencing (NGS) technique for measur-
ing DNA methylation at base resolution. As a result
of continuing drops in sequencing costs, an increas-
ing number of laboratories and international consor-
tia (e.g. IHEC, SYSCID, BLUEPRINT, EpiDiverse, NIH

*Correspondence: frank@johanneslab.org
1Technical University of Munich, Institute for Advanced Study (IAS),
Lichtenbergstr. 2a, 85748 Garching, Germany
2Technical University of Munich, Department of Plant Sciences,
Liesel-Beckmann-Str. 2, 85354 Freising, Germany

ROADMAP, Arabidopsis 1001 Epigenomes, Genomes and
physical Maps) are adopting WGBS as the method of
choice to survey DNA methylation in large population
samples or in collections of cell lines and tissue types,
either in bulk or at the single-cell level [1, 2]. Such sur-
veys can easily generate hundreds or even thousands of
WGBS datasets in a single study. A broad array of soft-
ware solutions for the downstream analysis of bulk and
single-cell WGBS data have been developed in recent
years. These include tools for data normalization (e.g.
RnBeads [3], SWAN [4], ChAMP [5]), detection of dif-
ferentially methylated regions (DMRs) (e.g. Methylkit [6],
DMRcaller [7], Methylpy [8], metilene [9]), imputation

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-06886-3&domain=pdf
https://github.com/jlab-code/MethylStar
http://jlabdata.org/methylstar.tar.gz
mailto: frank@johanneslab.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Shahryary et al. BMC Genomics (2020) 21:479 Page 2 of 8

of methylomes from bulk WGBS data (e.g. METHimpute
[10]), imputation of single-cell methylomes (e.g. Melissa
[11], deepCpG [12]) and dropouts in single-cell data (e.g.
SCRABBLE [13]).
However, these downstream analysis tools are depen-

dent on the output of a number of data pre-processing
steps, such as quality control (e.g. FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc), Qual-
iMap [14], NGS QC toolkit [15]), de-multiplexing of
sequence reads, adapter trimming (e.g. Trimmomatic
[16], TrimGalore (https://github.com/FelixKrueger/
TrimGalore) , Cutadapt [17]), alignment of reads to a
reference genome and generation of methylation calls
(e.g. BSseeker2 [18], BSseeker3 [19], Bismark [20],
BSMap [21], bwa-meth (https://github.com/brentp/bwa-
meth/) , BRAT-nova [22], BiSpark [23], WALT [24],
segemehl [25]). From a computational standpoint, data
pre-processing is by far the most time-consuming step
in the entire bulk or single-cell WGBS analysis workflow
(Fig.1). In an effort to help streamline the pre-processing
of WGBS data several pipelines have been published
in recent years. These include nf-core/methylseq [26],
gemBS [27], Bicycle [28] and Methylpy, some of which
are currently employed by several epigenetic con-
sortia. gemBS, Bicycle and Methylpy integrate data
pre-processing and analysis steps using their own cus-
tom trimming and/or alignment tools (see Table 1). By
contrast, nf-core/methylseq implements well-established
NGS tools, such as TrimGalore for read trimming and
Bismark and bwa-meth/MethylDackel for alignment. The
nf-core/methylseq framework is built using Nextflow
[29], and aims to provide reproducible pipeline templates
that can be easily adapted by both developers as well as
experimentalists. Despite these efforts, the installation
and execution of these pipelines is not trivial and often
require substantial bioinformatic support. Moreover,
managing the run times of these pipelines for large
numbers of WGBS datasets (i.e. in the order of hundreds
or thousands) relies on substantial manual input, such
as launching of parallel jobs on a compute cluster and
collecting output files from temporary folders.
In an attempt to address these issues, we have devel-

oped MethylStar, a fast, stable and flexible pre-processing
pipeline for WGBS data. MethylStar integrates well-
established NGS tools for read trimming, alignment and
methylation state calling in a highly parallelized environ-
ment, manages computational resources and performs
automatic error detection. MethylStar offers easy instal-
lation through a dockerized container with all preloaded
dependencies and also features a user-friendly interface
designed for experts/non-experts. Application of Methyl-
Star toWGBS from Human, Maize and A. thaliana shows
favorable performance in terms of speed and memory
requirements compared with existing pipelines.

Implementation
Core pipeline NGS components
In its current implementation, MethylStar integrates pro-
cessing of raw fastq reads for both single- and paired-
end data with options for adapter trimming, quality
control (fastQC) and removal of PCR duplicates (Bis-
mark software suite). Read alignment and cytosine con-
text extraction is performed with the Bismark software
suite. Alignments can be performed for WGBS and Post-
bisulfite adaptor tagging (PBAT) approaches for single-
cell libraries. Bismark was chosen because it features
one of the most sensitive aligners, resulting in compara-
tively highmapping efficiency, lowmapping bias and good
genomic coverage [30, 31]. Finally, cytosine-level methy-
lation calls are (optionally) obtained with METHimpute,
a Hidden Markov Model for inferring the methylation
status/level of individual cytosines, even in the presence
of low sequencing depth and/or missing data. All the
different data processing steps have been optimized for
speed and performance (see below), and can run on local
machines as well as on larger compute nodes.

User interface
MethylStar features a lightweight python-based user
interface, which is particularly useful for bench-scientists
who are not familiar with command-line scripting. The
aim of the interface is to improve useability and to reduce
human error arising from typing mistakes or from the
misspecification of parameter settings during pipeline
configuration. The interface offers configuration tem-
plates that can be easily re-used for subsequent sam-
ples/projects, thus ensuring consistency and repeatabil-
ity of data analysis projects. Unlike many web-based or
graphical-based interfaces, the MethylStar interface does
not require additional resources and/or dependencies.
Users navigate through an index menu and run selected
pipeline components by typing the menu index of choice.
We designed the interface for both experts and non-
experts. Non-experts are able to execute all pipeline com-
mands without having to edit a single bash script, while
advanced users can easily configure additional parameters
and install software/tools (e.g. most recent/legacy version
of a software) to integrate withMethylStar by simply spec-
ifying path variables. Finally, users can configure email
addresses to receive automatic notifications when a job
completed or failed. A video demonstrating the use of the
interface can be found at https://github.com/jlab-code/
MethylStar#MethylStar_tutorial_on_YouTube.

Pipeline architecture, optimization of parallel processes
andmemory usage
The pipeline architecture comprises three main layers
(Fig. 1). The first layer is the interactive command-line
user interface implemented in Python to simplify the

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/brentp/bwa-meth/
https://github.com/brentp/bwa-meth/
https://github.com/jlab-code/MethylStar#MethylStar_tutorial_on_YouTube
https://github.com/jlab-code/MethylStar#MethylStar_tutorial_on_YouTube

Shahryary et al. BMC Genomics (2020) 21:479 Page 3 of 8

Fig. 1 Basic workflow of MethylStar showing the pipeline architecture. The left panel shows a standard BS-Seq workflow and on the right are the
different components of the MethylStar pipeline integrated as 3 different layers viz. Python, Shell and R. All steps of the pipeline have been
parallelized using GNU parallel. MethylStar offers the option for “Quick run” (indicated in red) which runs all steps sequentially in one go or each
component can be executed separately. MethylStar incorporates all pre-processing steps of a standard BS-Seq workflow and generates standard
outputs that can be used for input into several downstream analysis tools

process of configuring software settings and running
MethylStar. The second layer consists of shell scripts, and
handles low-level processes, efficiently coordinates the
major software components and manages computational
resources. The final layer is implemented in R, and is
used to call METHimpute and to generate output files that
are compatible with a number of publicly available DMR-
callers such as Methylkit, DMRcaller and bigWig files for
visualization in Genome Browsers such as JBrowse [32].
All outputs are provided in standard data formats for
downstream analysis.
All components/steps of the pipeline have been

parallelized using GNU Parallel (https://www.gnu.org/

software/parallel/) (Fig. 1). The user can either set the
number of parallel jobs manually for each pipeline com-
ponent, or can opt to use the inbuilt parallel option from
the “configuration” option of the menu. The inbuilt paral-
lel implementation is also available under the “Quick Run”
option. This latter option detects the number of parallel
processes/jobs automatically for each pipeline component
based on available system cores/threads andmemory, thus
allowing the user to run the entire steps of the pipeline in
one go.
In the parallel implementation of all pipeline steps, we

use genome size (in base pairs) as an additional fac-
tor in the optimization of computational resources. For

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

Shahryary et al. BMC Genomics (2020) 21:479 Page 4 of 8

Table 1 Table showing different features of MethylStar as compared to other BS-seq pipelines

Methylpy MethylStar methylseq gemBS Bicycle

Pipeline Features

Multi-threading
√ √ √ √

language Python Python, shell, R Java C, Python Java

distribution github, PyPI GitHub Github GitHub Github

(Apache license) (GNU GPL3) (MIT license) (GNU GPL3) (GNU GPL3)

Installation & pip install, install Docker, install Docker, Docker, Docker

configuration dependencies dependencies Singularity, Singularity

Conda

User-interface -
√

- - -

Single/paired-end
√ √ √ √ √

Input data Single-cell, WGBS, WGBS, Single-cell WGBS RRBS, WGBS, WGBS

singlecell NOMe-seq, PBAT (PBAT) PBAT

Pipe steps

adapter trimming Cutadapt Trimmomatic TrimGalore - bicycle analyzemethylation

alignment bowtie/bowtie2 Bismark Bismark, gem3 bicycle align/

bwa-meth bowtie/bowtie2

remove PCR Picard Bismark Bismark, Picard Bscall bicycle analyzemethylation

duplicates

methylation
√

ProcessBismarAln, Bismark, Bscall bicycle

calling Bismark MethylDackel analyzemethylation, GATK

imputation of - METHimpute - - -

missing cytosines

DMR calling
√

- - - bicycle analyze

differential

methylation

SNP calling - - - Bscall -

Alignment QC - Bismark Qualimap
√ √

summary reports
√

FastQC Bismark,
√ √

MultiQC, Preseq

Methylation BigWig BigWig, bedGraph - BigWig, BigWig

visualization bedGraph

example, in the analysis of A. thaliana samples (genome
size ∼135 mega base pairs), our parallel implementation
of Trimmomatic (a java tool) sets the optimal number of
jobs to 12 on a system with 88 cores and 386 GB RAM.
This setting allocates (12 jobs ×8 threads) =96 threads
for trimming (java threads) and (12 jobs ×1 threads)
=12 threads to the gzip tools (default no. of threads
fixed to 8 in the pipeline). By contrast, for read trim-
ming in Maize (genome size ∼2500 mega base pairs),
the optimal number of jobs is set to 5. In the paral-
lel implementation of Bismark alignment step under a
similar system configuration, while running paired-end
reads from A. thaliana, we optimally set the number of

jobs to 4. This setting allocates (4 jobs ×8 files/threads)
=32 threads to Bowtie2 and (4 jobs ×8 files/threads ×2)
=64 threads to the bismark alignment tool (default no. of
threads fixed to 8 in the internal bismark parallel argu-
ment). In a similar way, for deduplicate_bismark, the opti-
mal number of jobs is set to (1/4th of total 88 cores) =22.
For bismark_methylation_extractor it is set as 4, which
allocates (4 jobs×8 threads) =32 threads each to itself and
to Bowtie tools as well as a few additional cores to gzip and
samtools streams. In this way, the maximum number of
threads never exceeds the total number of available cores,
which in turn allows other jobs such as file compression,
I/O operations to be performed simultaneously. Under the

Shahryary et al. BMC Genomics (2020) 21:479 Page 5 of 8

“Quick Run” option we have parallelized R processes such
as the extraction of methylation calls from BAM files (post
PCR duplicates removal) by bypassing the Bismarkmethy-
lation extractor step and by passing these calls directly
onto METHimpute for imputation of missing cytosines
(Fig. 1).

Automatic error handling and detection
MethylStar issues user-friendly messages related to
configuration errors such as non-existing paths to
input/output folders, low disk space, incorrect file exten-
sions, non-empty folders. In addition, we have introduced
checkpoints for each individual component of the pipeline
so that a job can be resumed easily from the nearest
checkpoint in the unlikely event of system failure (e.g.
disk issues, file corruption, user interruption). MethylStar
accepts intermediate files such as BAM files, CX-reports
etc., and is able to process these new files together with
pre-existing files in the folder. MethylStar issues user-
friendly warnings before resuming each run. For instance,
if a given folder is non-empty it will ask for user per-
mission to continue, and issues a message that files with
pre-existing names will be overwritten.

Running MethylStar
The user can choose to run each pipeline component
individually, and customize software settings at each step
by editing the configuration file, which is available as an
option through the interactive command-line user inter-
face. The user interface displays the available options as
an index menu, and users can execute specific pipeline
steps. Some of the key configuration parameters include
setting file paths to input and output data, options for
handling large batches of samples, file format conver-
sions, as well as options for deleting auxiliary files that
are generated during intermediate analysis steps. Our
interactive user interface aids in the fast execution of
complex commands and will be particularly effective for
users who are less familiar with command line script-
ing. As an alternative, MethylStar also features a “Quick
Run option”, which allows the user to run all pipeline
steps in one go using default configuration settings
(Fig. 1).

Installation and documentation
MethylStar can be easily installed via a Docker image. This
includes all the softwares, libraries and packages within
the container, and thus solves any dependency issues.
Advanced users can edit the existing docker container and
build their own image.
Detailed description about installation and running

the pipeline is available at https://github.com/jlab-code/
MethylStar.

Results and discussion
Benchmarking of speed
To demonstrate MethylStar’s performance we analyzed
bulk WGBS data from a selection of 200 A. thaliana
ecotypes (paired-end, 295 GB, ∼ 8.63× depth, 85.66%
genome coverage, GSE54292), 75 Maize strains (paired-
end, 209 GB, ∼ 0.36× depth, ∼22.12% genome cov-
erage, GSE39232) and 88 Human H1 cell lines (single-
end, 82 GB, ∼ 0.12× depth, ∼10.62% genome coverage,
GSM429321). MethylStar was compared with Methylpy,
nf-core/methylseq and gemBS. All pipelines were runwith
default parameters on a computing cluster with a total of
88 cores (CPU 2.2 GHz with 378 GB RAM). Speed perfor-
mance was assessed for a series of batch sizes (A. thaliana:
50, 100, 150, 200 samples; Human H1 cell line: 22, 44,
66, 88 samples; Maize: 15, 30, 45, 60, 75 samples) and
was restricted to a fixed number of jobs (=32), (Fig. 2a-c
and Additional file 1: Table S2). Although gemBS achieved
the fastest processing times for the A. thaliana sam-
ples, MethylStar clearly outperformed the other pipelines
when applied to the more complex genomes of Maize
and Human, which are computationally more expansive
and resource-demanding (Fig. 2b-c). For instance, for
88 Human WGBS samples (82 GB of data), MethylStar
showed a 75.61% reduction in processing time relative to
gemBS, the second fastest pipeline (∼909 mins vs. ∼3727
mins). Extrapolating from these numbers, we expect that
for 1000 Human WGBS samples, MethylStar could save
about ∼22.24 days of run time (4× faster). To show that
MethylStar can also be applied to single-cell WGBS data,
we analyzed DNA methylation of 200 single cells from
Human early embryo tissue (paired-end, 845 GB,∼ 0.38×
depth, ∼9.97% genome coverage, GSE81233) split into
batches of 100 and 200 (Fig. 2d and Additional file 1:
Table S2). MethylStar’s processing times were compared
to Methylpy which also supports single-cell data. For 100
cells, MethylStar required only ∼2225 mins as compared
to ∼5518 mins required by Methylpy. Hence, MethylStar
presents an efficient analysis solution for deep single-cell
WGBS experiments.
To demonstrate that MethylStar’s processing speed

does not come at the expense of poor read alignments,
we analysed the read mapping statistics of 50 sam-
ples each of A. thaliana, Maize, Human H1 cell line
and single-cell Human data using MethylStar, Methylpy,
nf-core/methylseq and gemBS. Our results show that
MethylStar and nf-core/methylseq, both of which employ
the Bismark alignment tool, provide the most accurate
and sensitive alignments. This observation that is consis-
tent with recent benchmarking results [30, 31]. By con-
trast, Methylpy and gemBS use their own inbuilt aligners
and generally display poorer alignment statistics. Interest-
ingly, although gemBS was the fastest pipeline for the A.

https://github.com/jlab-code/MethylStar
https://github.com/jlab-code/MethylStar

Shahryary et al. BMC Genomics (2020) 21:479 Page 6 of 8

Fig. 2 Performance of MethylStar as compared with other BS-Seq analysis pipelines viz. Methylpy, nf-core/methylseq and gemBS in (a) A. thaliana (b)
Maize (c) H1 cell line and (d) scBS-Seq samples. CPU processing time taken by METHimpute was not included in the current benchmarking process as
there is no equivalent method in the other pipelines to compare with. Because of the very long run times observed for the A. thaliana data, Methylpy
and Methylseq were no longer considered for benchmarking of speed in Maize and H1 cell line samples. All pipelines were run using 32 jobs. (e) Peak
memory usage as a function of time for 10 random A. thaliana samples. (f) Time taken by each component of MethylStar. X-axis shows the individual
components of MethylStar where the dot with lighter shade of orange indicates -without parallel and darker shade of orange indicates - with parallel
implementation of MethylStar. On the y-axis is the time in mins. The size of the dot indicates the peak memory usage in MB by each component

thaliana samples, the percentage of ambiguously mapped
reads was considerably higher than that of MethylStar,
thus demonstrating a trade-off between speed and map-
ping performance. We also noticed that the percentage of
ambiguously mapped reads by gemBS was even further
increased in the case of the Maize samples (Additional
file 1: Fig. S1 and Table S1). This could indicate that
gemBS’s alignment performance is particularly challenged

in complex plant genomes, although this hypothesis
should be explored in more detail.

Memory usage statistics
Along with benchmarking of speed, we also evaluated
the performance of the MethylStar, gemBS, nf-
core/methylseq andMethylpy pipelines in terms of system
memory utilization using the MemoryProfiler (https://

https://github.com/pythonprofilers/memory_profiler

Shahryary et al. BMC Genomics (2020) 21:479 Page 7 of 8

github.com/pythonprofilers/memory_profiler) python
module (Fig. 2e). We assessed the CPU time versus
peak/max memory of all the 4 pipelines (default set-
tings) on a computing cluster (specifications above).
For 10 random samples from the above A. thaliana
benchmarking dataset (paired-end, 16 GB, GSE54292)
MethylStar and Methylpy showed the best balance
between peak memory usage (∼12000 MB and ∼15000
MB, respectively) and total run time (∼177 mins and
∼333 mins, respectively). In contrast, nf-core/methylseq
and gemBS exhibited strong trade-offs between memory
usage and speed, with nf-core/methylseq showing the
lowest peak memory usage (∼700 MB) but the longest
CPU time (∼697 mins), and gemBS the highest peak
memory usage (∼21000 MB) but the shortest run time
(∼42 mins) (Fig. 2e and Additional file 1: Table S5).
Furthermore, we inspected the run times of Methyl-

Star’s individual pipeline components, both with and
without parallel implementation (Fig. 2f and Additional
file 1: Table S3). Our results clearly show that the parallel
implementation is considerably faster for all components;
however, it is accompanied by a higher peak memory
usage. For instance, the implementation of the Bismark
alignment step required∼141mins (with parallel) as com-
pared to ∼210 mins (without parallel), a ∼33% reduction
in processing time. However, in exchange, peak mem-
ory usage was increased by ∼65%. Thus, with sufficient
computational resources, MethylStar’s parallel implemen-
tation of Bismark alignment can be very effective in han-
dling large numbers of read alignments in considerably
less amount of time (Fig. 2f).
We further benchmarked memory usage using 10 ran-

dom samples from the above Maize dataset (paired-end,
23 GB, GSE39232). For this analysis, we focused on gemBS
and MethylStar due to their shorter processing times
for these datasets as compared to nf-core/methylseq and
Methylpy. For these Maize dataset, gemBS’s peak mem-
ory usage was ∼110000 MB as compared to ∼81000 MB
for MethylStar (∼1.3 times less memory), (Additional file
1: Table S4) with a total run time of ∼667 mins and
∼508 mins, respectively. We observed a 76% reduction
in processing times of Maize samples using the parallel
implementation of MethylStar pipeline (Additional file 1:
Table S4) as compared to the without parallel implemen-
tation. Taken together, these benchmarking results clearly
show that MethylStar exhibits favorable performance in
terms of processing time and memory, and that it is there-
fore an efficient solution for the pre-processing of large
numbers of samples even on a computing cluster with
limited resources.

Conclusion
MethylStar is a fast, stable and flexible pipeline for the
high-throughput analysis of bulk or single-cell WGBS

data. Its easy installation and user-friendly interface
shouldmake it a useful resource for the wider epigenomics
community.

Availability and requirements
Project name: MethylStar
Project home page: https://github.com/jlab-code/
MethylStar
Operating system(s): Cross-platform
Programming language: Python, Shell, R
License: GPL-3.0

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-06886-3.

Additional file 1: Supplementary figures and data tables (pdf format)
showing mapping statistics, processing times and memory usage of
different pipelines benchmarked.

Abbreviations
WGBS: Whole-genome bisulfite sequencing; NGS: Next generation
sequencing; DMRs: Differentially methylated regions; QC: Quality control; PCR:
Polymerase chain reaction; PBAT: Post-bisulfite adaptor tagging; CX-reports:
Cytosine context (CG, CHG, CHH) report for all cytosines; BAM: Binary
alignment map; RAM: Random-access memory; CPU: Central processing unit;
MB: Mega bytes; GB: Giga bytes; I/O: Input/output

Acknowledgements
We thank Markus List for his suggestion to use a docker container for version
control.

Authors’ contributions
FJ, RRH and YS conceptualized the method. YS and RRH developed,
implemented and tested the pipeline. RRH, FJ and YS wrote the paper. FJ
supervised the project. All authors have read and approved the manuscript.

Funding
FJ, YS, RRH acknowledge support from the Technical University of
Munich-Institute for Advanced Study funded by the German Excellent
Initiative and the European Seventh Framework Programme under grant
agreement no. 291763. FJ and YS were also supported by the SFB
Sonderforschungsbereich924 of the Deutsche Forschungsgemeinschaft(DFG).

Availability of data andmaterials
Not applicable

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 13 March 2020 Accepted: 6 July 2020

References
1. Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, Castanon R, Lucero J,

Nery JR, Sandoval JP, Bui B, Sejnowski TJ, Harkins TT, Mukamel EA,
Behrens MM, Ecker JR. Single-cell methylomes identify neuronal
subtypes and regulatory elements in mammalian cortex. Science.
2017;357(6351):600–4.

https://github.com/pythonprofilers/memory_profiler
https://github.com/jlab-code/MethylStar
https://github.com/jlab-code/MethylStar
https://doi.org/10.1186/s12864-020-06886-3

Shahryary et al. BMC Genomics (2020) 21:479 Page 8 of 8

2. Zhu P, Guo H, Ren Y, Hou Y, Dong J, Li R, Lian Y, Fan X, Hu B, Gao Y,
Wang X, Wei Y, Liu P, Yan J, Ren X, Yuan P, Yuan Y, Yan Z, Wen L, Yan
L, Qiao J, Tang F. Single-cell DNA methylome sequencing of human
preimplantation embryos. Nat Genet. 2018;50(1):12–9.

3. Müller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lengauer T, Bock C.
Rnbeads 2.0: comprehensive analysis of DNA methylation data. Genome
Biol. 2019;20(1):1–2.

4. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within array
normalization for illumina infinium HumanMethylation450 BeadChips.
Genome Biol. 2012;13(6):44.

5. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, Teschendorff AE.
ChAMP: updated methylation analysis pipeline for Illumina BeadChips.
Bioinformatics. 2017;33(24):3982–4.

6. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick
A, Mason CE. methylKit: a comprehensive R package for the analysis of
genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):1–9.

7. Catoni M, Tsang JM, Greco AP, Zabet NR. DMRcaller: a versatile
R/Bioconductor package for detection and visualization of differentially
methylated regions in CpG and non-CpG contexts. Nucleic Acids Res.
2018;46(19):114.

8. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D,
Rajagopal N, Nery JR, Urich MA, Chen H, Lin S, Lin Y, Jung I, Schmitt
AD, Selvaraj S, Ren B, Sejnowski TJ, Wang W, Ecker JR. Human body
epigenome maps reveal noncanonical DNA methylation variation.
Nature. 2015;523(7559):212–6.

9. Jühling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S.
metilene: Fast and sensitive calling of differentially methylated regions
from bisulfite sequencing data. Genome Res. 2016;26(2):256–62.

10. Taudt A, Roquis D, Vidalis A, Wardenaar R, Johannes F, Colomé-Tatché
M. METHimpute: imputation-guided construction of complete
methylomes from WGBS data. BMC Genomics. 2018;19(1):1–4.

11. Kapourani C-A, Sanguinetti G. Melissa: Bayesian clustering and
imputation of single-cell methylomes. Genome Biol. 2019;20(1):1–15.

12. Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction
of single-cell DNA methylation states using deep learning. Genome Biol.
2017;18(1):1–13.

13. Peng T, Zhu Q, Yin P, Tan K. SCRABBLE: single-cell RNA-seq imputation
constrained by bulk RNA-seq data. Genome Biol. 2019;20(1):88.

14. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced
multi-sample quality control for high-throughput sequencing data.
Bioinformatics. 2016;32(2):292–4.

15. Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next
generation sequencing data. PLOS ONE. 2012;7(2):30619. https://doi.org/
10.1371/journal.pone.0030619.

16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for
illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

17. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet. journal. 2011;17(1):10–2.

18. Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, Chen P-Y,
Pellegrini M. BS-Seeker2: a versatile aligning pipeline for bisulfite
sequencing data. BMC Genomics. 2013;14(1):774.

19. Huang KYY, Huang Y-J, Chen P-Y. Bs-Seeker3: ultrafast pipeline for
bisulfite sequencing. BMC Bioinformatics. 2018;19(1):111.

20. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller
for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.

21. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program.
BMC Bioinformatics. 2009;10(1):1–9.

22. Harris EY, Ounit R, Lonardi S. BRAT-nova: fast and accurate mapping of
bisulfite-treated reads. Bioinformatics. 2016;32(17):2696–8.

23. Soe S, Park Y, Chae H. BiSpark: a Spark-based highly scalable aligner for
bisulfite sequencing data. BMC Bioinformatics. 2018;19(1):1–9.

24. Chen H, Smith AD, Chen T. WALT: fast and accurate read mapping for
bisulfite sequencing. Bioinformatics. 2016;32(22):3507–9.

25. Otto C, Stadler PF, Hoffmann S. Lacking alignments? the next-generation
sequencing mapper segemehl revisited. Bioinformatics. 2014;30(13):
1837–43.

26. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU,
Di Tommaso P, Nahnsen S. The nf-core framework for
community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):
276–8.

27. Merkel A, Fernández-Callejo M, Casals E, Marco-Sola S, Schuyler R, Gut
IG, Heath SC. gemBS: high throughput processing for DNA methylation
data from bisulfite sequencing. Bioinformatics. 2018;35(5):737–42. https://
doi.org/10.1093/bioinformatics/bty690, https://doi.org/oup.prod.sis.lan/
bioinformatics/article-pdf/35/5/737/27994742/bty690.pdf.

28. Graña O, López-Fernández H, Fdez-Riverola F, González Pisano D,
Glez-Peña D. Bicycle: a bioinformatics pipeline to analyze bisulfite
sequencing data. Bioinformatics. 2017;34(8):1414–5. https://doi.org/10.
1093/bioinformatics/btx778, https://doi.org/oup.prod.sis.lan/
bioinformatics/article-pdf/34/8/1414/25119980/btx778.pdf.

29. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E,
Notredame C. Nextflow enables reproducible computational workflows.
Nature Biotechnol. 2017;35(4):316–9.

30. Chatterjee A, Stockwell PA, Rodger EJ, Morison IM. Comparison of
alignment software for genome-wide bisulphite sequence data. Nucleic
Acids Res. 2012;40(10):79. https://doi.org/10.1093/nar/gks150.

31. Omony J, Nussbaumer T, Gutzat R. DNA methylation analysis in plants:
review of computational tools and future perspectives. Brief Bioinform.
2020;21(3):906–18.

32. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. Jbrowse: a
next-generation genome browser. Genome Res. 2009;19(9):1630–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1371/journal.pone.0030619
https://doi.org/10.1093/bioinformatics/bty690
https://doi.org/10.1093/bioinformatics/bty690
https://doi.org/oup.prod.sis.lan/bioinformatics/article-pdf/35/5/737/27994742/bty690.pdf
https://doi.org/oup.prod.sis.lan/bioinformatics/article-pdf/35/5/737/27994742/bty690.pdf
https://doi.org/10.1093/bioinformatics/btx778
https://doi.org/10.1093/bioinformatics/btx778
https://doi.org/oup.prod.sis.lan/bioinformatics/article-pdf/34/8/1414/25119980/btx778.pdf
https://doi.org/oup.prod.sis.lan/bioinformatics/article-pdf/34/8/1414/25119980/btx778.pdf
https://doi.org/10.1093/nar/gks150

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Core pipeline NGS components
	User interface
	Pipeline architecture, optimization of parallel processes and memory usage
	Automatic error handling and detection
	Running MethylStar
	Installation and documentation

	Results and discussion
	Benchmarking of speed
	Memory usage statistics

	Conclusion
	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12864-020-06886-3.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

