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samples

Huamei Li1, Amit Sharma2, Wenglong Ming1, Xiao Sun1* and Hongde Liu1*
Abstract

Background: The identification of cell type-specific genes (markers) is an essential step for the deconvolution of
the cellular fractions, primarily, from the gene expression data of a bulk sample. However, the genes with significant
changes identified by pair-wise comparisons cannot indeed represent the specificity of gene expression across
multiple conditions. In addition, the knowledge about the identification of gene expression markers across multiple
conditions is still paucity.

Results: Herein, we developed a hybrid tool, LinDeconSeq, which consists of 1) identifying marker genes using
specificity scoring and mutual linearity strategies across any number of cell types, and 2) predicting cellular fractions
of bulk samples using weighted robust linear regression with the marker genes identified in the first stage. On
multiple publicly available datasets, the marker genes identified by LinDeconSeq demonstrated better accuracy and
reproducibility compared to MGFM and RNentropy. Among deconvolution methods, LinDeconSeq showed low
average deviations (≤0.0958) and high average Pearson correlations (≥0.8792) between the predicted and actual
fractions on the benchmark datasets. Importantly, the cellular fractions predicted by LinDeconSeq appear to be
relevant in the diagnosis of acute myeloid leukemia (AML). The distinct cellular fractions in granulocyte-monocyte
progenitor (GMP), lymphoid-primed multipotent progenitor (LMPP) and monocytes (MONO) were found to be
closely associated with AML compared to the healthy samples. Moreover, the heterogeneity of cellular fractions in
AML patients divided these patients into two subgroups, differing in both prognosis and mutation patterns. GMP
fraction was the most pronounced between these two subgroups, particularly, in SubgroupA, which was strongly
associated with the better AML prognosis and the younger population. Totally, the identification of marker genes
by LinDeconSeq represents the improved feature for deconvolution. The data processing strategy with regard to
the cellular fractions used in this study also showed potential for the diagnosis and prognosis of diseases.
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Conclusions: Taken together, we developed a freely-available and open-source tool LinDeconSeq (https://github.
com/lihuamei/LinDeconSeq), which includes marker identification and deconvolution procedures. LinDeconSeq is
comparable to other current methods in terms of accuracy when applied to benchmark datasets and has broad
application in clinical outcome and disease-specific molecular mechanisms.

Keywords: Marker genes, Cellular fractions, Deconvolution, Acute myeloid leukemia, Subgroups, Diagnosis,
Prognostic
Background
The orchestration of gene expression in appropriate spa-
tiotemporal coordination helps to understand cellular
function and differentiation, and how these processes
are disrupted during the occurrence and development of
diseases [1, 2]. In general, gene expression profiles are
highly regulated and specific in different tissue/cell
types, developmental stages, physiological conditions, ex-
ternal stimulations, and pathological conditions [2].
These specific genes, also termed as marker genes, can
be used to determine the cell identity and help to under-
stand the molecular mechanisms behind the diseases [3].
Especially for gene expression data of bulk samples, the
marker genes act as a key to the accurate prediction of
cellular fractions by the deconvolution algorithms. In re-
cent years, a number of deconvolution methods (refer-
ence-based and reference-free) have been proposed to
estimate the cellular fractions within the tissue samples
[4–6], primarily, to gain better insight into the associ-
ation between changes in cellular composition, disease
situation and/or cellular development [7]. In most of the
reference-based deconvolution approaches, the under-
lying marker genes of each cell type must be known in
advance, and these marker genes are usually identified
from the gene expression data of purified cell types. As
Vallania et al. emphasize, the marker genes are the
major determinant of deconvolution accuracy [8]. There-
fore, a rational and effective approach to identify defined
markers is crucial for the development of these deconvo-
lution methods.
The marker genes basically are a subset of differen-

tially expressed genes that provide unique information
about individual cells. To date, most of the differential
gene expression analysis methods including, DESeq2 [9],
edgeR [10], limma [11] are based on the comparison of
two conditions (cancer and control samples) with
multiple biological repetitive experiments [2]. These
approaches lack the possibility of obtaining cell type-
specific marker genes that are expressed exclusively in
one or two cell types and require comparison under
multiple conditions. Although, few approaches such as
RNentropy [2] and MGFM [3] were proposed to identify
such markers across multiple conditions. RNentropy is
an entropy-based tool that can detect markers of gene
expression across multiple conditions using the log-
likelihood ratio test [2]. While, MGFM selects markers
based on the ratio of the second and first top expression
value of a gene, and then assigns the markers to the cell
type [3]. Nevertheless, as above mentioned, these exist-
ing methods have restrictions towards: (1), identifying a
large number of low-expression markers as the marker
genes; and (2), the membership (allocation) between the
markers and cell types is rarely discussed.
Herein, we proposed a novel method to identify

markers across multiple conditions on the basis of gene
specificity score and mutual linearity strategies. The ra-
tionale behind using specificity scoring was mainly to se-
lect candidate marker genes, while the mutual linearity
strategy was employed to allocate the selective candidate
markers to cell types and to filter out the ones with low-
confidence. Furthermore, the weighted robust linear re-
gression (w-RLM) combined with the identified markers
was applied to construct a reference-based deconvolu-
tion model. All these procedures mentioned above are
packaged in our new tool, LinDeconSeq. Using this tool,
we predicted the cellular fractions in patients of acute
myeloid leukemia (AML) and then explored the possibil-
ity of clinical diagnosis.

Results
LinDeconSeq method
In LinDeconSeq (Fig. 1, stage 1), the marker genes for
each cell type were identified by integrating gene-
specific scoring and mutual linearity strategy, mainly on
the dataset of the purified cell populations. In this step,
gene-specific scoring across heterogeneous cell types
was a prerequisite for the subsequent marker screening.
To measure gene specificity across different cell types in
a robust and accurate manner, we first applied a method
similar to Martı’nez et al. [12], which define the gene
specificity and incorporate the weights of the genes
transformed by the activation function (tanh) to ensure
that the highly expressed genes are selected with greater
probability (Methods section: Specificity scoring for each
gene across all cell types). To avoid the condition where
the candidate markers are arbitrary selected according to
the rank of gene specificity scores, we generated the
random specific scores by sampling and fitted the

https://github.com/lihuamei/LinDeconSeq
https://github.com/lihuamei/LinDeconSeq


Fig. 1 Flowchart of LinDeconSeq in identifying marker genes and predicting cellular fractions for bulk samples. The procedure has two stages. In
stage 1, a set of marker genes are identified and allocated to the cell types. In stage 2, a weighted RLM with the signature matrix is derived from
high confidence marker genes (identified in stage 1) and is used to predict the cellular fractions for bulk samples
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distribution with a normal distribution (Fig. S1A), which
was further used to calculate the P-values and to deter-
mine the significance cutoff of candidate markers
(Methods section: Selection of candidate marker genes
by z-test). Secondly, since the marker genes of the same
cell type were found to be highly correlated or mutual
linearity (Fig. S1B), they were allocated to cell types
using mutual linearity strategy (Methods section:
Selection of seed markers and calculation of mutual
linearity), in which the empirical P-values were produced
by Monte Carlo sampling. The unassigned markers (P-
values > 0.05) were considered unreliable and were re-
moved out from the candidate marker gene set, the
remaining ones were used as identification markers
(Methods section: P-value estimation and allocation of
candidate markers to cell types).
Since, the deconvolution of bulk samples is an import-

ant application scenario for the identification of marker
genes, these deconvolution algorithms explicitly model
the expression of a gene in a mixture as a linear combin-
ation of the expression within each cell type. Therefore,
using previously identified high confidence marker genes
(Methods section: Signature gene selection), weighted
robust linear modeling (w-RLM) was integrated to pre-
dict cellular fractions for the bulk samples (Fig. 1, stage
2). To ensure that deconvolution remains accurate,
robust and comprehensive, two major steps were consid-
ered: 1), only overexpressed marker genes of each cell
type were chosen into the signature matrix (Methods
section: Signature gene selection, Figs. S1C-E), and 2)
used a weighted least squares approach [7] in combin-
ation with RLM to deconvolute bulk samples, which was
more resilient to noise and eliminate the estimated frac-
tions bias against each cell types (Methods section:
Deconvolution).
Briefly, LinDeconSeq comprises procedures for both

the identification of marker genes and deconvolution.

Marker gene identification and deconvolution
performance evaluation of LinDeconSeq on multiple
datasets
In the dataset GSE74246 [13], which contains 49
fluorescence-activated cell sorting (FACS) purified RNA-
Seq samples covering 13 primary human blood cell
types, we identified 4558 out of 25,498 genes as marker
genes using LinDeconSeq. Properly allocating candidate
marker genes to cell types is an important issue for the
cell identity and deconvolution (Methods section: Selec-
tion of candidate marker genes by z-test). Intuitively, if
the cell types in the lineage are biologically close to each
other, more of the marker genes would be shared by the
cell types. In this work, we proposed a mutual linearity
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strategy to allocate the marker genes to cell types (Fig. 1,
stage 1; Methods section: Selection of seed markers and
calculation of mutual linearity). As expected, the higher
Pearson correlation coefficient (PCC) between cell types,
the more marker genes they share, such as between
hematopoietic stem cell (HSC) and multipotent
progenitor (MPP), and between CD4+ T and CD8+ T
cells (Fig. S2A and B). For instance, gene CD34, which is
a common marker for HSC, MPP and Lymphoid-primed
multipotent progenitor (LMPP) in the CellMarker data-
base (http://biocc.hrbmu.edu.cn/CellMarker/) [14], was
correctly identified and allocated by LinDeconSeq. Like-
wise, few other genes such as CD3D, CD2, CD5 and
CD7 were also correctly identified and allocated to
CD4+ T and CD8+ T cells. These suggest that LinDecon-
Seq can accurately and reasonably find markers that are
shared by different cell types.
To illustrate that the marker genes are also able to ac-

curately characterize the functional identity of the cell,
an enrichment analysis was performed with GO terms.
The enriched GO terms exactly represent the functional
phenotype of each cell type (Fig. 2a, Table S1). For in-
stance, the terms “natural killer cell (NK) mediated im-
munity and cytotoxicity” were enriched in NK cell type;
“B cell activation” was enriched for B cell type; and the
marker genes for CD4+ T and CD8+ T cells were
enriched in “T cell and lymphocyte differentiation”.
Hence, these results support the interpretability of the
identification by LinDeconSeq.
To further test the reliability and accuracy of the

marker genes by LinDeconSeq, we introduced RNen-
tropy [2] and MGFM [3] for comparison. RNentropy is a
recently proposed entropy-based method for the marker
detection [2], while MGFM selects markers based on the
ratio of second and first top expression value of the
gene, which is incorporated into the CellFinder platform
[3]. On the GSE74246 data set, the markers of LinDe-
conSeq were included in the maker gene list by RNen-
tropy, while the markers of MGFM showed less overlap
with those of LinDeconSeq (Fig. 2b). We noticed that a
large number of genes (11713) were identified as the
markers by RNentropy, perhaps by introducing some
genes with lower expression levels. Figure 2c shows the
gene expression distribution of the marker genes identi-
fied by three tools in the given cell types. LinDeconSeq
has a higher median and a higher quartile (Fig. 2c), indi-
cating that it has the potential to prevent false-positive
markers of low-expression genes. We also compared the
marker genes identified from the datasets GSE74246,
GSE60424 [15] and E-MTAB-1733 [16] with the gold-
standard marker list (Table S2). Briefly, for the
GSE74246 dataset, we collected a total of 2060 markers
from the CellMarker database as the gold-standard
markers for 13 human primary blood cell types.
Similarly, the GSE60424 dataset contains six immune
cell types with 71 gold-standard markers, which were
provided by the attachment of Amrani et al. [17]. While
in case of E-MTAB-1733, similar information was de-
scribed for ten human tissues and 2500 markers in the
TiGER database [18] (Table S2). Since the number of
markers identified by these tools varies widely (Figs. 2b,
S2C and D), hence, to make the fair comparison, we ap-
plied non-replacement sampling to randomly select 1000
genes from the identified markers by each tool, and
compared them with the corresponding gold-standard
markers, this process was repeated for 100 iterations.
Number of the overlapping genes are shown in Fig. 2d.
LinDeconSeq also showed the highest median and high-
est average for the number of overlapping genes in each
dataset, indicating lower false-positive detections and
good performance (Fig. 2d). Here again, we randomly se-
lected 60% of the markers from each gold-standard gene
set and identified them using the three methods, and
this step was repeated for 100 times. The comparisons
showed that RNentropy has the highest median and
highest average for the number of real markers, while
the LinDeconSeq performs slightly worse (Fig. S2E). This
can be explained as the P-values of genes calculated by
RNentropy are over-significant, hence, the genes with
low specificity in expression could not be filtered at this
adjusted P-value threshold of 0.01.
As mentioned above, an important application sce-

nario of the identified markers is for deconvolution, in
which we first used the marker genes identified in the
first stage to derive the signature matrix by minimizing
the condition number (Methods section: Signature gene
selection). Then the signature matrix and the w-RLM
model were combined to predict the cellular fractions
for bulk samples (Methods section: Deconvolution), and
these processes were integrated into the LinDeconSeq.
We compared LinDeconSeq with the other known three
deconvolution methods: ls-fit [6], dtangle [5] and
CIBERSORT [4]. Root-mean-square error (RMSD),
Mean absolute deviation (mAD) and PCC was used to
evaluate the performance of deconvolution on the pub-
lished datasets from Liu’s [19], Shen-Orr’s [20] and
Newman’s [4]. Briefly, Liu’s data set is an experimental
data for a mixture of RNA-seq, (including HCC827 and
NCI-H1975 cell types), Shen-Orr’s data consists of
microarray analysis of rat liver, brain, and lung, while
Newman’s data is based on blood samples from twenty
adults of which the proportions of nine leukocytes types
determined by flow cytometry (Table S0). All these data-
sets contain FACS-purified cell samples and bulk sam-
ples with known mixing proportions. Since with all these
methods the preprocessing of the signature genes is re-
quired in advance, we first identified marker genes on
these three datasets using LinDeconSeq and then

http://biocc.hrbmu.edu.cn/CellMarker/


Fig. 2 Evaluation of the reasonability of the identified marker genes. a Heatmap of expression of the marker genes. The expression was row-
normalized (normalize each expression value by the sum over the row) across different cell types. The marker genes with the expression ≥0.6 are
in red. Only the most biologically relevant two GO terms are shown for each module (Table S1). Hematopoietic stem cell (HSC), Multipotent
progenitor (MPP), Lymphoid-primed multipotent progenitor (LMPP), Common Myeloid Progenitor (CMP), Granulocyte-monocyte progenitor
(GMP), Megakaryocyte-erythrocyte progenitor (MEP), Monocytes (MONO), Erythroid progenitor (Ery), Common Lymphoid Progenitor (CLP), Natural
killer cell (NK). b Venn diagram shows the overlapping of the marker genes by LinDeconSeq, MGFM and RNentropy on GSE74246 data set. c The
distribution of the maximum expression of the identified marker genes among the given cell types. The thick line in the box represents the
median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the
interquartile range. d The distribution of the number of gold-standard marker genes in randomly chosen marker genes on the three datasets. The
thick line in the box represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). The
whiskers encompass 1.5 times the interquartile range. The statistical difference of the two groups was compared through the Wilcox test. *, P <
0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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extracted the overexpressed markers as signature genes.
As shown in (Figs. S3A-C), the extracted signature genes
were exclusively highly expressed in one cell type and
weakly expressed in the others, indicating good specificity.
As next, the selected signature genes were used to decon-
volute the bulk samples with LinDeconSeq, ls-fit, dtangle
and CIBERSORT, respectively. In the prediction of cell
type fractions, LinDeconSeq showed lower RMSD and
mAD between the predicted and real cellular fractions on
the three data sets, indicating good robustness (Figs. S3D-
G). Moreover, other deconvolution tools based on our
identified signature genes also showed good prediction ac-
curacy, which confirms the reliability of the marker genes
identified by LinDeconSeq (Fig. S3G).
In summary, LinDeconSeq performed well in the com-

parisons in regard to marker genes identification and
deconvolution.

Cellular fractions have the potential to diagnose acute
myeloid leukemia (AML)
Following the deconvolution results, we investigated the
differences in cellular fractions between AML samples
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and healthy samples. For this, we first used the marker
genes of dataset GSE74246 [13] mentioned above to
generate the signature matrix with LinDeconSeq for
subsequent deconvolution (Table S3). The signature
gene exhibited over-expression in specific cell type, while
it was low or unexpressed in others, indicating good
specificity (Fig. 3a). Moreover, we used t-distribution
Fig. 3 Deconvolution of TCGA-AML and healthy samples using LinDeconS
normalized. The upper bound of the color bar is 1. b-c t-SNE for all genes
represents a FACS-purified cell sample. d Circular bar plot of the cellular fra
and each color represents a specific cell type. The meanings of the colors a
predicted by LinDeconSeq and CIBERSORT on the TCGA-AML patients. Eac
correlation coefficient (PCC, r) was calculated between the cellular fractions
cell types in AML and healthy samples. Within each group, each scatter rep
represents the median value. The bottom and top of the boxes are the 25t
1.5 times the interquartile range. The statistical difference of the two group
P < 0.001; ****, P < 0.0001. g ROC curve measuring the predictive based on
areas under (AUC) of ROC curve are 0.911, 0.985 and 0.984 for SVM, Random
stochastic neighbor embedding (t-SNE) [21] to visualize
the samples with all the genes and the signature genes,
respectively. The samples were better clustered with the
signature genes than with all genes or with equivalent
number (975) of the markers identified by RNentropy or
MGFM, indicating good discrimination of cell types of
the selected signature genes by LinDeconSeq, and thus
eq. a Expression of the signature matrix. The expression was row-
(b) and t-SNE for the signature genes (c), respectively. Each scatter
ctions for the 179 TCGA-AML patients. Each bar represents a sample
re same as that in the legend of Fig. 2a. e The cellular fractions
h point represents a specific cell type in the sample. Pearson
by LinDeconSeq and CIBERSORT. f The fractions of 13 primary blood
resents the fraction of a specific cell type. The thick line in the box
h and 75th percentiles (interquartile range). The whiskers encompass
s was compared through the Wilcox test. *, P < 0.05; **, P < 0.01; ***,
the different cellular fractions between AML and healthy samples. The
Forest and Logistic Regression, respectively
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providing a good basis for accurate deconvolution
(Figs. 3b and c, S4A and B).
Secondly, we used LinDeconSeq with the signature

matrix to estimate the cellular fractions for 179 AML
samples from the TCGA project (abbreviation: TCGA-
AML) (Fig. 3d, Table S4) and 100 healthy samples
(RNA-seq data of blood sample, GEO ID: GSE134080)
(Fig. S5A and Table S5). In AML, the cell types GMP,
LMPP and MONO dominated the components (Fig. 3d),
but in healthy samples, the cellular fractions among
these samples were quite similar (Fig. S5A), indicating
that the cellular fractions differ between AML and
healthy samples. In addition, AML is more heteroge-
neous in different individuals, while the components of
different cell types in normal individuals show a favor-
able balance. We also compared LinDeconSeq to CIBER-
SORT, a tool that applies a two-sided unequal variance
t-test by minimizing the condition number to obtain sig-
nature matrices, and then estimates the cell fractions
using nu support vector regression (ν-SVR). We used
the JAVA plugin of CIBERSORT [4] to generate a signa-
ture matrix and applied it to predict the cellular frac-
tions on two datasets (179 TCGA-AML and 100
healthy). The results showed a high PCC and good con-
cordance between LinDeconSeq and CIBERSORT when
using the signature matrix derived from LinDeconSeq
(Figs. 3e and S5B). When using their own signature
matrices, both tools still show a good concordance (r >
0.87), but a lower PCC (Figs. 3e and S5B). These indicate
that the cellular fractions predicted by LinDeconSeq are
reliable. From a biological point of view, the four cell
types (HSC, LMPP, MPP and GMP) dominated in
TCGA-AML samples (Figs. 3d and f). This can be ex-
plained by the fact that these four cell types are closely
related to three distinct stages of AML evolution, as also
discussed previously [13]. For instance, the pre-leukemia
HSC stage was most closely related to HSCs. Likewise,
the leukemia stem cells stage exhibited strong similarity
to GMPs and LMPPs, and leukemia blasts stage showed
strong association with GMPs and MONOs. These re-
sults further show that the estimates of LinDeconSeq’s
marker cell types of AML are consistent with the previ-
ous findings and the deconvolution of LinDeconSeq is
reliable.
To further investigate the diagnostic value of cellular

fractions for AML, we compared the cellular fractions of
the healthy and AML samples in 13 cell types and found
significant differences in most of them (Fig. 3f). Mainly,
the cell types HSC, LMPP and Granulocyte-monocyte
progenitor (GMP) showed significantly higher average
fractions in AML, while the average fraction of MONO
was significantly lower in AML. Importantly, HSC,
LMPP and MONO remained closely related to the pro-
gression of AML and often serve as important markers
in diagnosis, which is consistent with the previous find-
ings [13]. In addition, we also compared the cellular
fractions of male and female in TCGA-AML patients
and observed no significant difference (Fig. S5C). We
then used the median age of TCGA-AML patients to
classify them into two categories, one above the median
(older) and the other below or equal to the median
(young). The results showed that GMP and NK cell
types differ significantly between these two categories,
with younger patients showing a higher GMP fraction
(Fig. S5D). Overall, the cellular fractions can well
characterize the differences between healthy and AML
in comparison to gender, and can therefore be proposed
as an early diagnostic marker of AML. Notably, the cel-
lular fractions for specific cell types (GMP and NK) also
showed significant differences in young and old patients.
Clinically, AML diagnosis is mainly based on chromo-

somal abnormalities [22]. However, in accordance with
our analysis, the cellular fractions may provide a new
perspective for the diagnosis. To this end, we con-
structed three diagnostic models to classify AML and
healthy samples using the cellular fractions estimated
by LinDeconSeq (Methods section: Cellular fractions
estimation and classification for AML status). Accord-
ing to the predictions on the independent test data-
sets, these models include support vector machine
(SVM), random forest and logistic regression with ac-
curacy, precision, recall and F-score, all greater than
0.9. Importantly, the prediction performance of SVM
was slightly lower than the other two (Fig. S5E). We
further plotted the receiver operating characteristic
(ROC) curves, the areas under curve (AUC) are 0.911
(SVM), 0.985 (Random Forest) and 0.984 (Logistic Re-
gression), respectively (Fig. 3g). These indicate that
the three classifiers constructed using the cell frac-
tions are highly accurate in the diagnosis of AML dis-
eases. The detailed predictions on the testing set
(2138 samples) are shown in Table S6. To note, we
trained the models with fewer samples (238 healthy
and 583 AML samples) and tested them with add-
itional samples (477 healthy and 1661 AML samples,
Table S6). With an AUC of more than 0.90 on a data
set of more than 2000 samples, our diagnostic model
approach is reliable. Briefly, we demonstrated that the
cellular fraction predicted by LinDeconSeq has the
potential for early diagnosis of AML.

Two biologically distinct subgroups of AML revealed on
the basis of estimated cellular fractions
Using the estimated cellular fractions of the TCGA-
AML samples, we calculated pairwise PCC of the cell
type fraction between 13 cell types among the samples.
The total number of pairs of cell types was 78 (13 × 12/
2 = 78) and the PCCs of 28 pairs of these cell types were



Li et al. BMC Genomics          (2020) 21:652 Page 8 of 15
significant (t-test, P-value < 0.01) (Fig. S6A). The cell
type GMP showed a negative correlation with MONO,
LMPP, CD4T, B, CD8T, NK, MPP, and megakaryocyte-
erythrocyte progenitor (MEP). The anti-correlation was
also observed between MONO and LMPP, while GMP
cellular fraction was positively correlated to HSC. Be-
sides, LMPP, CD4T, B, CD8T, NK, MPP, and MEP
showed mainly positive correlations with each other.
These correlations depict a comprehensive landscape of
cell lineages in AML progress, and suggest the potential
value of AML subtyping.
Given the complex of associations between different

cell types, we performed PAM clustering based on the
estimated cellular fractions to further define the sub-
groups (Methods section: Clustering for cellular frac-
tions of TCGA-AML patients). We derived two clusters
(SubgroupA and SubgroupB), which showed markedly
different in the fractions of four cell types GMP, LMPP
and MONO (Figs. 4a and S6B). The high fraction of
GMP was the most striking feature of SubgroupA. The
survival analysis also showed that SubgroupA has signifi-
cantly better prognosis than SubgroupB (Fig. 4b, Table
S7), which is consistent with the previously found that
AML patients with higher GMP-like signals achieved
significantly better outcomes [23]. In particular, it was
found that the median age of SubgroupB was higher
than that of SubgroupA with a significant difference (P-
value < 0.01) (Fig. S6C). From a gender perspective, the
percentage of males and females in SubgroupB was al-
most equal, while the proportion of females in Sub-
goupA was lower (Fig. S6D). To explore the underlying
biological characteristics of the subgroups, enrichment
analysis was performed on 967 differentially expressed
genes (DEGs) (Table S8) between the two subgroups
(Figs. S7A and B, Table S9). SubgroupA, which with a
good prognosis, showed overexpression of the genes in-
volved in extracellular matrix organization (ECM) and
angiogenesis, while SubgroupB showed association with
immune processes and correlation with poor prognosis
(Figs. 4b and S7B).
Next, we investigated the PCCs between the cellular

fractions and the expression profiles of the DEGs across
the TCGA-AML patients. The results showed that the
expression of the GMP’s marker genes such as MPO,
CALR, CST7, ELANE, HGF, EPX, MS4A3, CPA3, IGLL1,
PRTN3, RNASE3, TPSAB1 and CTSG were highly corre-
lated to the cell type fractions of GMP. Interestingly, the
ECM-relevant transcripts of LAMC3, COL27A1,
COL2A1, FBLN1, ADAMTSL2, LOXL1, FOXF2, AGRN
and ITGB6 were also highly correlated to the cellular
fractions of GMP. In addition, immune-activated-related
transcripts were highly correlated with the fractions of
the immune cell types, including NK, B, CD8+ T and
CD4+ T cells (Fig. 4c). The results suggest that the
expression of the DEGs determines the phenotypic dif-
ference between the two subgroups, and this difference
can be used to classify AML subgroups. To further verify
this, we selected 214 genes from the DEGs by setting
PCC ≥ 0.5 (between the expression and the cellular frac-
tion) as features (Table S11) and performed a random
forest classifier for the two subgroups on the TCGA-
AML samples (accurate: 1, specificity: 1) (see Methods),
which later on was tested on 187 TARGET-AML pa-
tients (Tables S0 and S12). The result again showed a
significant difference in overall survival between these
two subgroups, consistently to the observation in
TCGA-AML samples (Figs. 4b and d). Furthermore, the
cell type fractions in the two subgroups for the TARG
ET-AML samples also showed similar patterns with that
of TCGA-AML samples (Figs. 4a and e, Fig. S6B, and
Table S10), hence, GMP fraction appeared as the main
difference between the two subgroups. Hence, the re-
sults indicate that the cell type fraction of GMP in blood
can be considered as an important marker to classify the
two subgroups and for the clinical prognosis (Notably,
high GMP fraction indicates a good prognosis).

Distinct mutations are associated with AML subgroups
We further investigated the mutations scenario for these
two subgroups in TCGA-AML patients (Figs. 5a-c) and
found that KIT, CEBPA and NRAS genes were frequently
mutated in SubgroupA, while the mutations in RUNX1,
DNMT3A and PTPN11 genes were predominant in Sub-
groupB (P ≤ 0.01, Fisher’s exact test). RUNX1 encodes a
sequence-specific transcription factor that is essential for
HSC formation and for the differentiation of cells of
lymphoid, myeloid and megakaryocytic lineages. Import-
antly, the mutations of RUNX1 are known to be associ-
ated with the poorer prognosis of AML patients [24, 25].
Likewise, DNMT3A mutations are also highly recurrent
in AML patients with an intermediate-risk cytogenetic
profile, and are independently associated with a poor
prognosis [26]. The protein encoded by PTPN11 is an
important signaling molecule that regulates a variety of
cellular processes including cell growth, differentiation,
mitotic cycle, and oncogenic transformation, and the
mutations in this gene are also relevant towards AML
[27, 28]. Hence, the presence of these mutated genes in
our AML based analysis confirms the rationality of
SubgroupB.
Next, we performed multivariate analysis that included

age, established clinical risk (subgroup), gender and mis-
sense mutations of RUNX1, DNMT3A and PTPN11. The
results show that the gender variable has a minor impact
on the overall survival, established clinical risk (sub-
group), age, while the missense mutations of DNMT3A
play a major role in the progression and aggressiveness
of AML (Fig. 5d). We further calculated the correlations



Fig. 4 Two new AML subgroups revealed with the cell type fractions in the TCGA-AML data. Heatmap of the cell type fractions in the
subgroups in TCGA-AML samples. a The subgroups are derived using PAM clustering method with the cell type fractions. Row represents
TCGA-AML sample and column is cell type. b Kaplan–Meier curves for overall survival of the AML two subgroups for 179 TCGA-AML samples.
P-value was from log-rank test. c PCCs between the cellular fraction and the expression of DEG across the 179 TCGA-AML samples. The
subgroups show that the DEGs are associated with a particular function. d Kaplan–Meier curves for overall survival for the two subgroups that
are predicted Random Forest classifier on the TARGET-AML data. The classifier is trained with the cell type fractions in TCGA-AML data. e The
fractions of 13 primary blood cell types in the predicted subgroups for TARGET-AML samples. Within each subgroup, each scatter represents
the fraction of a specific cell type. The statistical difference of the two groups was compared through the Wilcox test. *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001
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between the cellular fractions and the mutation load
across TCGA-AML samples. The analysis showed a
negative correlation for the cell types HSC, GMP and
MONO, while others/remaining cell types showed a
positive correlation with the mutation load (Fig. S7C).
Interestingly, the presence of GMP and HSC as the
major cellular components in SubgroupA suggests that
fewer mutations in these genes may be linked to a good
prognosis, on the contrary, more/frequent mutation in
LMPP are likely to be associated with a poor prognosis.

Discussion
We presented here a hybrid tool, LinDecoSeq, which in-
cludes gene-specific scoring combined with mutual lin-
earity strategy to identify marker genes across any
number of cell types or other conditions. Besides, w-



Fig. 5 Mutation profile between the two subgroups derived from TCGA-AML data. a-b Mutation profile in the SubgroupA (a) and SubgroupB (b),
respectively. Only top 15 genes are shown. c Forest plot of the differentially mutated genes between the two subgroups. Only genes with more
than 4 mutations in the samples in one subgroup are included in analysis. The statistical difference of the two groups was compared through the
Fisher exact test. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. d Hazard ratios for overall survival associated with age (< 57 vs ≥57, median
age = 57), subgroup (SubtypeA vs SubtypeB), gender and the number of missense mutations of RUNX1, DNMT3A and PTPN11 in 179 TCGA-AML
patients by multivariate Cox regression analysis. The length of the horizontal line represents the 95% confidence interval for each group. OS,
Overall survival
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RLM approach is integrated by means of signature genes
(overexpressed markers) derived from the first stage to
predict cell type fractions of bulk samples. As compared
to other available methods on multiple benchmark data-
sets, LinDeconSeq not only provides a quick and effect-
ive overview for the transcriptional variation among
multiple cell types or other conditions, but also decon-
volutes the cellular fractions in bulk samples to investi-
gate the fundamental changes in cell state.
LinDeconSeq tries to catch the highly expressed and

highly specific gene as marker gene. For this purpose, a
factor was introduced which is transformed by activation
function (tanh, Eq. 2) to balance the specificity and ex-
pression. LinDeconSeq also use mutual linearity strategy
to map the candidate markers to the cell types and to
further filter out the low confidence candidates. Given
that our criteria is based on selecting the marker genes
in highly expressed genes with filtered (twice cutoff) P-
value, the number of identified marker genes in one or
two cell types may be limited to few especially if the ref-
erence data contain many cell types.
Moreover, we used the cellular fractions predicted by

LinDeconSeq to investigate the clinical diagnosis, sub-
groups and prognosis of AML. When comparing the cel-
lular fractions between AML and healthy samples, we
found AML associated distinct fractions in GMP, LMPP
and MONO (Fig. 3f), which are known to be closely re-
lated to the onset and progression of AML [13, 29–31].
The differences in the fractions of human primary blood
cell types between healthy and disease also showed po-
tential application values for the early diagnosis of AML
(Fig. 3g). Compared with the early diagnosis of AML
based on gene expression profile [22], diagnosis based
on cellular fractions provides a new perspective. Besides,
the detailed analysis of differences in the cellular frac-
tions in TCGA-AML patients revealed two distinct
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subgroups (SubgroupA and SubgroupB) for AML (Figs.
4a). GMP fraction was most pronounced between these
two subgroups, particularly, in SubgroupA, which was
also found to be strongly associated with the better
prognosis. This conclusion was confirmed in TARGET-
AML datasets (Figs. 4b and d), and was also consistent
with the previous study that AML patients with higher
GMP-like signals achieved significantly better outcomes
[23]. The age distribution of TCGA-AML patients in
these two subgroups exhibited significant differences,
with the mean age of SubgroupB being higher and asso-
ciated with a worse prognosis. This may be explained by
the fact that AML is an aggressive hematological dis-
order that mainly affects elderly people [32]. The differ-
entially expressed genes also showed a distinct and
significant enrichment for the biological processes
between SubgroupA and SubgroupB (Fig. S7B). While
SubgroupA found to be closely associated with the
extracellular matrix organization (ECM) and angiogen-
esis, for SubgroupB relates more to immune processes.
The mutation analysis also showed differences between
these two subgroups, as the frequent mutations in
RUNX1, DNMT3A and PTPN11 in SubgroupB were
closely associated with a poor prognosis (Fig. 5c), which
was consistent with previous studies [24–28]. It can
therefore be speculated that the two subgroups of AML
differ not only in clinical outcome but also in molecular
mechanisms, which require further attention.
It is important to mention that the diagnosis analysis

was purely based on the cellular fractions evaluated by
LinDeconSeq. Whether the changes in cellular fractions
can arise mainly caused by cancer or other intrinsic-
extrinsic factors (virus infection or cell normal differenti-
ation, development, medication/treatment response)
remains to be investigated. In future studies, it will be
equally important to define whether AML has any
unique cellular fraction pattern. Besides, it is important
to mention that clustering by t-SNE depends on some
random initialization, thereby lack replicability of clus-
tering results and include some artifacts, thus t-SNE data
sets (Figs. 3b and c, S4A and B) requires additional steps
of validation. Also, the estimation for the cellular
fraction depends on the specificity of gene expression in
reference samples, which can potentially vary since dif-
ferent construction strategies of the signature matrices.
Conclusions
Taken together, we developed tool LinDeconSeq, which
is freely-available and open-source, and includes proce-
dures for the marker identification and deconvolution.
When examining AML samples, we found that the cell
type fractions evaluated by this tool can be used for the
clinical diagnosis. Besides, we inferred the two new
subgroups of AML which differ in both prognosis and
mutation patterns.

Methods
Data normalization for gene expression datasets
For microarray datasets, the Robust Multiarray Aver-
aging [33] (RMA) procedure was used for background
correction and quantile normalization. For RNA-Seq
datasets, gene expression profiles were normalized as the
transcripts per million (TPM) quantification.

Matrix of gene expression profiles of FACS-purified cell
samples
The matrix was derived from the data of FACS-purified
cell samples (Fig. 1, stage 1). The expression value was
represented with TPM for RNA-Seq and with quantile
normalization for the microarray data. The expression of
replicated FACS-purified samples was averaged for each
cell type, resulting in a g × k matrix X, where g is the
number of genes and k the number of cell types.

Specificity scoring for each gene across all cell types
The specificity score was calculated across k cell types
for each gene in X using Eq. 1, which is similar to the
gene specificity formula proposed by Martı’nez et al.
[12].

S
0
i ¼

1
k
�
Xk
j¼1

Xij

Xi:
� log2

Xij

Xi:

� �� �
ð1Þ

Where Si' is the specificity score, Xij indicates the gene
expression of the ith gene in jth cell type; Xi. Xi. is the
expression of ith gene in each cell type, and Xi: is the
average value of Xi.; Notably, Si' is near to zero when the
expression of a gene is comparable in all cell types; and
when the gene is exclusively expressed in a specific cell
type, Si' will be greater.
To ensure that the highly expressed genes are more

likely to be chosen when the specificity scores are com-
parable, we added a tanh-transformed weight to the spe-
cificity score Si' (Eq. 2).

Si ¼ tanh λWið Þ � S0
i ð2Þ

Wi ¼ max Xi:ð Þ
median max Xt:ð Þjt ¼ 1; 2;…; gf g ð3Þ

Where Si is the final specificity score for the ith gene;
λ (0.1 as default) is a tuning parameter; and Wi is the
weight for the ith gene. Since the gene expression is
row-normalized based on the row-averaged expression
in Eq. 1, the expression level of each gene is eliminated.
Wi ensures that a gene with a higher expression can ob-
tain a higher specificity score. For λ, since Wi ≥ 3,
tanh(Wi) barely changes and gradually converges to 1.
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This may lead to a smaller number of genes on which
“tanh” has effects. Hence, the role of λ is to adjust the
scope of “tanh” to the genes. The tanh(λWi) balances
the expression level and specificity score by preventing a
linear increase when the expression of a gene is incred-
ibly high. For weakly expressed genes, the function
(tanh) gives a low factor (the limit is 0), thus reducing
the possibility that the gene is selected as a marker. For
highly expressed genes, the tanh-transformed value is
close to 1 so that the expression does not interfere with
the contribution of specificity.

Selection of candidate marker genes by z-test
To quantitatively determine the cutoff of P-value in the
selection of candidate marker genes, we introduced a
background distribution of the specific score by random
sampling. Considering, the majority of genes from differ-
ent cell types did not deviate much, we generated 100
random gene expression profiles for matrix X by sam-
pling from a uniform distribution in the interval
[min(X), max(X)] and then calculated the random speci-
ficity scores S* for each gene using Eq. 2. According to
the example of Fig. S1A, the distribution of S* was close
to a normal distribution and a large number of genes
had specificity scores within or below the S*, it was con-
sistent with our a priori hypothesis that most genes are
not cell type-specific. Hence, in determining a cutoff for
selecting markers, a normal distribution was fitted by
using S*. As the model might be influenced by random
outlier specificity scores, we first used the kernel density
to find the center of the normal distribution by the
“density” function (R, density(S*, method = gaussian)),
and then fitted normal distribution under the center
point using the “fitdistr” function (R package “fitdistr-
plus”) with the parameter “densfun = normal”. A P-value
of each gene specificity score in S was determined by z-
test based on the fitted normal distribution. The testing
hypothesis of specificity score of gene i is Eq. 4.

H0 ¼ Si≤μS� versus H1 ¼ Si > μS� ð4Þ

Where μS� is the mean of the fitted normal distribu-
tion and the genes with Benjamini–Hochberg [34] ad-
justed P-value ≤ 0.01 were considered as candidate
marker genes.

Selection of seed markers and calculation of mutual
linearity
Ideally, the expression of cell type-specific gene is re-
stricted to one cell type with robust expression across
different biological replicates of the same cell type [35].
Thus, theoretically, if a candidate marker gene is exclu-
sively expressed in an individual cell type, it is likely to
be a marker of that particular cell type. Based on this
fact, we employed π-value to measure the difference in
gene expression of a specific cell type relative to the
average expression of other cell types, and the π-value is
defined by Eq. 5,

πi ¼ log2
max Xi:ð Þ

Xk
j¼1

Xij − max Xi:ð Þ
� k − 1ð Þ

2
66664

3
77775

ð5Þ

The π i will have a high value if a gene is exclusively
expressed in a specific cell type, otherwise, it will be
close to 0. Therefore, the candidate marker gene
exclusively expressed in the jth cell type with the highest
π-value was used as a seed marker gene for cell type j.
This was performed for each cell type.
Due to the complexity of gene expression and close

relationship between the cell lineages, it is difficult to
allocate a candidate marker gene to specific cell types.
For example, the marker gene of one cell type may be
also overexpressed in some other cell types, which
makes it obscure when mapping the gene to the cell
type. Since marker genes belonging to the same cell type
have similar expression patterns, they can be highly cor-
related or mutual linear (Fig. S1B). Therefore, we pro-
posed a method based on the mutual linearity strategy
combined with Monte Carlo sampling to map candidate
markers to the cell types. And the linearity (ρij) between
other marker gene and the seed marker gene was calcu-
lated for each cell type using Eq. 6,

ρij ¼ r2ij �
1

1þ exp − πið Þ � sgn rij
� � ð6Þ

Where ρij is the degree of co-linearity between the ith
gene and jth seed gene, rij is the Pearson Correlation co-
efficient (PCC) between the ith marker gene and the
seed gene of cell type j. sgn(⋅) is a signum function.
Since, the PCC between genes is affected by the degree
of fluctuation (variance) of the expression data, the
markers that may not be specific enough in themselves
can also be highly correlated with the seed gene. To
avoid this situation, the π value was introduced and inte-
grated into Eq. 6.

P-value estimation and allocation of candidate markers to
cell types
To estimate the empirical P-value for each ρij mentioned
above, the Monte Carlo sampling was used, which allows
us to test the null hypothesis, i.e. a candidate marker is
indistinguishable from background genes. We first de-
rived a null distribution (ρ�j ) for each cell type by calcu-

lating the linearity of the non-candidate marker genes
and the seed marker genes using Eq. 6. And then ρ�j was
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sorted in ascending order. Finally, the empirical P-value
for each ρij was estimated with Eq. 7.

Pij ¼ 1 −
min which ρ�j ≥ρi j

� 	� 	
þ 1

number of background markers þ 1

ð7Þ

Where Pij is a matrix, which row is for candidate
marker gene and column is for cell type, each entry is
the estimated P-value of ρij. As long as Pi� j≤0:05
(default), we allocated the candidate marker gene i to
the jth cell type. Otherwise, there is no difference be-
tween candidate marker gene i and background gene
set and it was filtered out. The candidate markers were
successfully allocated to the cell types as markers for
the final identification of LinDeconSeq’s. These markers
were stored in a list and recorded as M for sub-
sequent selection of signature genes whenever decon-
volution was required.

Signature gene selection
Signature gene set is a subset of the marker gene sets
(M). We sorted the markers of each cell type in M by
descending order of π π-value, and then iteratively se-
lected the top k marker genes (default range of k is from
50 to 200) of each cell type to generate signature matri-
ces. The signature matrix (B) with the lowest condition
number was retained (Fig. S1C). Notably, the condition
number is an inherent matrix property, and the signa-
ture matrix with minimum value means that the linear
system is more stable and can make deconvolution more
accurate and robust (Figs. S1D and E) [6].

Deconvolution
The gene expression profile of a bulk sample was con-
sidered as the convolution of the gene expression of the
various cell types involved in the sample. Since, the main
goal of deconvolution is to estimate the unknown cell
type fractions based on the signature matrix [36], it can
also be described with a linear regression, m= f × B,
where m is the expression of bulk samples, B is the sig-
nature matrix and f is the coefficient indicating the
changes in m with respect to B. Here, we performed the
deconvolution using a robust linear model (RLM) that is
more resilient to the noise. To further eliminate the esti-
mated fractions bias against the cell types, we incorpo-
rated a weighted least squares approach previously
described by Tsoucas et al. [7] into the RLM (w-RLM).
The weighted least squares approach is capable to adjust
the contribution of each gene in the optimal solution to
mitigate bias due to the imbalances in gene expression
levels. In other words, the contribution of a gene can be
minimal if its average expression level is low. Hence, the
approach has a positive effect on the elimination of pre-
diction bias. When the deconvolution model converged,
regression coefficients were extracted and negative re-
gression coefficients were set to 0, then the remaining
coefficients were normalized to sum to 1, yielding a vec-
tor representing the estimated cellular fractions.
When using LinDeconSeq to resolve the bulk sam-

ples, only three parameters need to be determined:
bulks, signature matrix and weight (if weight is
TRUE, w-RLM; Otherwise, RLM). For more details
about the possible use, please visit: https://github.
com/lihuamei/LinDeconSeq.
Evaluation metrics
Given the actual cell type fractions f and the estimated

fractions f̂ , the deconvolution performance was evalu-
ated by the following three metrics:

a) Pearson correlation, PCC(r) = Corð f ; f̂Þ;
b) Root mean squared error, RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
avgð f − f̂Þ2

q
;

c) Mean absolute deviation, mAD = avgðj f − f̂ jÞ.
Cellular fractions estimation and classification for AML
status
We retrieved 49 FACS-purified RNA-Seq samples from
GSE74246 [13], covering 13 primary blood cell types to
derive signature matrix (Ɓ) (Supplementary Table S3),
and further used them with the provided deconvolution
tools to estimate the cellular fractions of bulk samples.
To verify whether the cellular fractions can be used to

classify AML healthy status, we collected data of bone
marrow and peripheral blood from 2959 individual sam-
ples (Tables S6). The cellular fractions of each sample
were estimated with LinDeconSeq. To predict AML or
healthy, 821 samples with estimated cellular fractions
(including 238 healthy and 583 AML) were used to train
Support vector machine (SVM) [37], Random Forest
[38] and Logistic regression classification [39] models.
The remaining 2138 samples with estimated cellular
fractions (including 477 healthy and 1661 AML) were
used as an independent test sets to validate the perform-
ance of the classifiers (Table S6).
Clustering for cellular fractions of TCGA-AML patients
TCGA-AML samples with qualitatively different cellular
fractions were prepared in advance. A partitioning
around medoids (PAM) clustering was carried out for
the prepared data using the “fpc” package with “asw” cri-
terion using a Euclidean distance metric by the function
“pamk”. The most robust number of clusters was then
selected.

https://github.com/lihuamei/LinDeconSeq
https://github.com/lihuamei/LinDeconSeq
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Differentially expressed genes (DEGs) associating with the
AML subgroups
DEGs between the AML subgroups were determined
using the R package DESeq2 [9], and were further de-
fined at the threshold of 2-fold change and Benjamini–
Hochberg adjusted P-value ≤ 0.01.

Functional enrichment analysis
Gene annotation enrichment analysis for the marker genes
and DEGs was performed using the online tool DAVID
(v6.8, https://david.ncifcrf.gov/) [40, 41]. Gene Ontology
(GO) terms were considered statistically significant based
on the Benjamini-Hochberg adjusted P-value < 0.05.

Validation of the two prognosis-different subgroups
using TARGET-AML patients
To validate the prognostic differences between the sub-
groups derived from TCGA-AML patients, we first cal-
culated the PCCs between cellular fractions and the
expression profiles of DEGs in 179 TCGA-AML pa-
tients. Genes with PCCs ≥0.5 were retained as features
and their expression profiles were extracted to form a
training set (Table S11). This training set with the sub-
groups derived from TCGA-AML patients was used to
build a random forest classifier, which is based on de-
fault parameters provided by the R package randomFor-
est [38]. Finally, we used the trained model to predict
subgroups for TARGET-AML samples.

Dataset
The data analyzed in this study are available from the
Gene Expression Omnibus (accession numbers:
GSE74246, GSE134080, GSE15061, GSE2842, GSE10258,
GSE10358, GSE11375, GSE12417, GSE14468, GSE14479,
GSE15434, GSE15932, GSE16028, GSE17114, GSE18123,
GSE18781, GSE19743, GSE23025, GSE25414, GSE29883,
GSE37642, GSE39088, GSE39363, GSE46449, GSE46819,
GSE68833, GSE69565, GSE71226, GSE84334, GSE84844,
GSE98793, GSE99039, GSE64098, GSE19830, GSE65133).
The Cancer Genome Atlas Project and GDC Xena Hub
(TARGET-AML gene expression and phenotype data sets
were retrieved from https://xenabrowser.net/datapages/
?cohort=GDC%20TARGET-AML&removeHub=https%3
A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). The details
about these data sets are summarized in supplementary
Table S0.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06888-1.
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marker genes. Table S3. Signature matrix of 13 cell types revealed by
LinDeconSeq in AML and Healthy samples. Table S4. The estimated cel-
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The estimated cellular fractions for the 100 transcriptomic data of the
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