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Abstract

Background: Greying of the hair is an obvious sign of human aging. In addition to age, sex- and ancestry-specific
patterns of hair greying are also observed and the progression of greying may be affected by environmental
factors. However, little is known about the genetic control of this process. This study aimed to assess the potential
of genetic data to predict hair greying in a population of nearly 1000 individuals from Poland.

Results: The study involved whole-exome sequencing followed by targeted analysis of 378 exome-wide and
literature-based selected SNPs. For the selection of predictors, the minimum redundancy maximum relevance
(mRMRe) method was used, and then two prediction models were developed. The models included age, sex and
13 unique SNPs. Two SNPs of the highest mRMRe score included whole-exome identified KIF1A rs59733750 and
previously linked with hair loss FGF5 rs7680591. The model for greying vs. no greying prediction achieved accuracy
of cross-validated AUC = 0.873. In the 3-grade classification cross-validated AUC equalled 0.864 for no greying, 0.791
for mild greying and 0.875 for severe greying. Although these values present fairly accurate prediction, most of the
prediction information was brought by age alone. Genetic variants explained < 10% of hair greying variation and
the impact of particular SNPs on prediction accuracy was found to be small.

Conclusions: The rate of changes in human progressive traits shows inter-individual variation, therefore they are
perceived as biomarkers of the biological age of the organism. The knowledge on the mechanisms underlying
phenotypic aging can be of special interest to the medicine, cosmetics industry and forensics. Our study improves
the knowledge on the genetics underlying hair greying processes, presents prototype models for prediction and
proves hair greying being genetically a very complex trait. Finally, we propose a four-step approach based on
genetic and epigenetic data analysis allowing for i) sex determination; ii) genetic ancestry inference; iii) greying-
associated SNPs assignment and iv) epigenetic age estimation, all needed for a final prediction of greying.
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Background
Aging is inherently connected with changes in human
appearance. Progressive physical traits include skin aging
signs, greying of hair and hair loss and are perceived as
biomarkers of individual’s aging rate and general health
[1–3]. Therefore, there is an increasing interest in un-
derstanding the mechanisms underlying the differences
in the pace of changes in human appearance and thus
the mechanisms of aging processes. This knowledge
could find practical application in medicine by boosting
the accuracy of assessment of the risk of age-related dis-
eases and in cosmetic industry in order to develop prod-
ucts that could prevent or slow down the clinical signs
of phenotypic aging [1, 4, 5]. The studies on age-related
physical traits are also useful in forensics and anthropol-
ogy. Genetic prediction of human appearance based on
DNA left at the crime scene or extracted from human
remains may speed up the process of human identifi-
cation [6].
Hair greying is an age-dependent trait and is under-

stood as a progressive loss of pigment from the growing
hair shaft. According to the 50–50-50 rule about 50% of
the population experiences about 50% of grey hair at the
age of 50 years [7]. Under healthy aging conditions, the
onset of hair greying in Europeans occurs at the age of
~ 35 years, while greying observed under the age of 30
years is usually termed as premature hair greying [8, 9].
However, the progression of hair greying varies between
populations with Africans and Asians showing less grey
hair with the onset of hair greying occurring ~ 10 years
later when comparing to Europeans [10, 11]. Although
the cause of hair greying has been extensively studied, it
is still poorly understood, appears to be very complex
and may involve many different mechanisms [5, 9].
These mechanisms include dysfunction of the follicular
melanocytes and thus pigmentary machinery malfunc-
tion and defective self-maintenance of the melanocyte
stem cells (MSCs) present in the hair bulge [8, 12].
MSCs are activated during hair regeneration, migrate
out from the bulge to the hair matrix region and differ-
entiate into pigment producing melanocytes. Therefore,
numerous factors involved in a proper regulation of the
MSCs maintenance can be involved in the development
of hair greying. A factor that seems to contribute to all
of the mechanisms leading to hair greying is oxidative
stress [5, 9, 13]. Such oxidative toxicity in the hair
follicle can be induced by both intrinsic (melano-
genesis itself, genetics, hormones, active hair growth)
and extrinsic (UV exposure, inflammation, drugs,
smoking, obesity, emotional stress, poor nutrition)
factors [5, 14–16].
Little is known about genetic predispositions to the

development of early greying. Recent analyses conducted
by Adhikari and colleagues have shown that hair greying

exhibits only 27% heritability [17] in contrast to previous
studies that pointed out the key contribution of genetic
factors in hair greying susceptibility (90% heritability) [2,
16]. However, it has been revealed that different
methods used for heritability measurement in genome-
wide association studies (GWAS) studies have different
accuracies. In particular, the method used by Adhikari
et al. (REML implemented in GCTA method) has been
shown to consistently underestimate the trait heritability
level [18]. The abovementioned group has conducted
GWAS on Latin Americans that revealed only one gene,
IRF4, being significantly associated with hair greying
[17]. IRF4 has been previously associated with various
appearance traits including hair colour, freckles and hair
loss e.g. [19–22]. IRF4 encodes interferon regulatory fac-
tor that interacts with the MITF transcription factor.
MITF activates expression of the TYR gene encoding
tyrosinase, a key enzyme in melanin synthesis [23]. Im-
portantly, MITF has been also suggested to be engaged
in MSCs maintenance through induction of the expres-
sion of the BCL2 gene, a key factor in protection against
oxidative stress in melanocytes [12, 24]. However, IRF4
rs12203592 was found to explain only a small proportion
of the total variation observed in head hair greying [17].
The goal of the current study was to assess the poten-

tial of genetic variants to predict head hair greying status
in individuals of European descent. The study included a
discovery stage which involved the exome-wide associ-
ation analysis. Additionally, an expanded list of DNA
variants previously associated with pigmentation, head
hair shape/thickness and head hair loss was also evalu-
ated for their association with head hair greying and
their impact on prediction accuracy. Finally, the mini-
mum redundancy maximum relevance (mRMRe)
method was used for predictors selection and a set of
carefully selected SNPs combined with the information
on age and sex was next used to develop the prototype
models for head hair greying prediction.

Results
Characteristics of the study population
Hair greying was investigated in a set of 998 individuals
from Poland aged ≥18 years. Study population included
673 males (67.4%) and 325 (32.6%) females. The mean
age of the participants was 30.5 ± 8.8. Participants were
assessed for grey hair using 6-stage classification (Fig. 1).
For 26 samples only binary classification of hair greying
was available (greying vs. no greying). Since information
on the age of onset of hair greying was not available for
all samples or was given only approximately, we did not
use this information in the final statistical calculations.
As expected, age was found to be significantly correlated
with hair greying (Pearson’s r = 0.637, P-value = 2.183 ×
10− 114). Hair greying was recorded in 14.3% of
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individuals aged 18–30 and the prevalence of grey
hair was noted to be significantly higher in young
males when comparing to young females (17.8 and
9.2%, respectively; χ2 P-value = 0.004). The incidence
of grey hair increased to 29.5% in the group of people
aged 18–40 years and was 84.2% when people aged
≥40 years were considered. Analysis of head hair fea-
ture correlations showed significant and positive cor-
relation of grey hair with dark hair colour (Pearson’s
r = 0.152, P-value = 1.432 × 10− 6) and with hair loss in
men (Pearson’s r = 0.297, P-value = 4.400 × 10− 15) but not
with hair shape (Pearson’s r = − 0.044, P-value = 0.169).
Straight hair was weakly and negatively correlated with grey
hair but only when 6 hair greying categories were consid-
ered (Pearson’s r = − 0.084, P-value = 0.009).
A set of carefully selected (maintaining an appro-

priate age distribution and representativeness of par-
ticular hair greying categories) 149 samples was used
as the discovery cohort for whole-exome sequencing
(WES). The remaining 849 samples were used as a
replication and prediction modelling cohort for the
purpose of i) validation of DNA variants disclosed
by WES; ii) validation of literature-based selected
SNPs; iii) subsequent prediction model development.
The characteristics of the sample cohorts under
study are summarized in Supplementary Table 1.

Exome-wide SNP association testing
WES enriched by regulome sequencing was con-
ducted for 149 individuals with the defined degree
of hair greying. After bioinformatic analysis and
quality control filtering steps over 77 K common
SNPs (MAF ≥ 5%) located within targeted regions
and meeting the established criteria were extracted
and subjected to exome-wide association testing. Re-
gression analyses have revealed association with P-
value < 5 × 10− 4 for 50 SNPs. LD-pruning (r2 ≤ 0.7)
reduced the list of SNPs to 34 independent signals
(Supplementary Tables 2–3). Two SNPs from this
list showed nominal association (P-value < 0.05) in
an independent cohort of 849 individuals (Table 1
and Supplementary Table 4). KIF1A rs59733750
(chr2:240780193) was found to be significantly asso-
ciated with hair greying in all regression analyses
with the highest significance achieved in multi-
nomial ordinal logistic regression for 6 hair greying
categories (MLR6) (P-value = 5.473 × 10− 4). NSMCE1
rs1127228 (chr16:27226789) was found to be signifi-
cantly associated with 3-stage and 6-stage hair grey-
ing classifications with the highest significance
obtained in multinomial ordinal logistic regression
for 3 hair greying categories (MLR3) (P-value = 0.015)
(Table 1).

Fig. 1 Hair greying 6-stage classification and examples
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Association testing for literature-based selected candidate
hair greying SNPs
IRF4 rs12203592 (chr6:396321) was the only SNP dis-
covered by Adhikari and colleagues of genome-wide sig-
nificance in the only one genome-wide association study
conducted so far for hair greying [17]. In the current
study we replicated the effect of IRF4 rs12203592 and
showed it to be significantly associated with heir greying
in a cohort of 849 samples (Table 2). In an univariate bi-
nomial regression analysis conducted for greying vs. no
greying the minor T allele (fMA = 0.08) was found to in-
crease the odds of grey hair by a factor of 2.0 (95% CI =
1.3–3.2, age and sex adjusted P-value = 0.003). From the
Nagelkerke R2 statistic, this SNP explains 0.9% of the
total variation observed in hair greying. To visualize the
effect of IRF4 rs12203592 on hair greying development
CHAID tree analysis was conducted. As expected, age
was at the top of the tree emphasizing its dominant role
in hair greying formation (Fig. 2). Individuals ≤30 years
old have only 14.9% probability of grey hair. IRF4
rs12203592 T allele was found to impact grey hair

occurrence in this youngest group of individuals increas-
ing the probability of grey hair in CT/TT-rs12203592 in-
dividuals by ~ 15 p.p. (to a final probability of 27.3%)
when comparing to CC-rs12203592 carriers.
Although IRF4 rs12203592 was the only SNP that

reached genome-wide significance in a study conducted
by Adhikari et al., several suggestive associations have
been also revealed for additional 7 loci. Besides IRF4
rs12203592 we replicated the effect of MROH2A
rs2361506 (chr2:233830694) (OR = 1.4, 95% CI = 1.1–1.9,
age and sex adjusted P-value = 0.008) (Table 2). Age,
IRF4 rs12203592 and MROH2A rs2361506 altogether
were found to explain 49.1% of variation observed in
hair greying with 47.5% of variation explained by age
and the remaining 1.6% explained by IRF4 and
MROH2A.
Because there are indications that the genetics under-

lying the various head characteristics may overlap to
some extent, we evaluated the relationship to hair grey-
ing for additional list of 336 SNPs previously associated
with hair colour / pigmentation, hair loss, shape and

Table 1 Selection of exome-wide significant (P-value < 5 × 10− 4) and replicated (P-value < 0.05) SNPs associated with hair greying in
a discovery and replication cohorts of 149 and 849 individuals from Poland, respectively

SNP_ID Chr position
GRCh38

Gene fMA BLR MLR3 MLR6

beta P-valuea beta P-valuea beta P-valuea

Discovery cohort (N = 149); P-value < 5 × 10− 4

rs59733750 2:240780193 KIF1A G 0.144 −1.782 0.013 −1.787 0.002 −1.861 2.798 × 10−4

rs1127228 16:27226789 NSMCE1 T 0.362 −1.360 0.005 −1.452 4.312 × 10−4 −1.404 1.227 × 10− 4

Replication cohort (N = 849); P-value < 0.05

rs59733750 2:240780193 KIF1A G 0.163 −0.484 0.007 −0.541 0.002 −0.569 5.473 × 10−4

rs1127228 16:27226789 NSMCE1 T 0.347 −0.241 0.079 −0.314 0.015 −0.283 0.022

BLR, binomial logistic regression; MLR3, multinomial ordinal logistic regression for 3 hair greying categories; MLR6, multinomial ordinal logistic regression for 6
hair greying categories; MA, minor allele; fMA, frequency of minor allele
aResults adjusted for age, sex and hair colour

Table 2 Validation of SNPs associated with hair greying by Adhikari et al. (2016) in a replication cohort of 849 individuals from
Poland

SNP_ID Chr position
GRCh38

Gene fMA BLR MLR3 MLR6

beta P-valuea beta P-valuea beta P-value*

rs12203592 chr6:396321 IRF4 T 0.08 0.700 0.003 0.669 0.002 0.780 1.121 × 10−4

rs2361506 chr2:233830694 MROH2A T 0.37 0.360 0.008 0.220 0.077 0.156 0.183

rs2085601 chr4:88974793 FAM13A C 0.31 −0.068 0.630 −0.099 0.460 −0.056 0.658

rs7009516 chr8:24351334 ADAM28 G 0.46 0.036 0.785 −0.099 0.420 −0.107 0.361

rs1912702 chr11:79462038 MIR708; TENM4 T 0.37 0.029 0.823 −0.022 0.854 −0.012 0.917

rs11621135 chr14:71192892 PCNX; LOC145474; SNORD56B A 0.44 0.028 0.829 0.065 0.588 0.031 0.786

rs281229 chr15:47426258 SEMA6D T 0.00 -b -b -b -b -** -**

rs1005241 chr22:47291868 LOC101927722; TBC1D22A C 0.45 −0.153 0.252 −0.097 0.441 − 0.075 0.530

Significant results (P-value < 0.05) are marked with bold
BLR, binomial logistic regression; MLR3, multinomial ordinal logistic regression for 3 hair greying categories; MLR6, multinomial ordinal logistic regression for 6
hair greying categories; MA, minor allele; fMA, frequency of minor allele
aResults adjusted for age and sex
bMonomorphic SNP
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thickness. Out of these SNPs, positive signal of asso-
ciation, considering P-value < 0.05 as statistically
significant and achieved in at least one of regression
tests, was observed for 35 SNPs from 24 loci; ERRFI1/
SLC45A1, TCHH/RPTN, TEX41, HOXD-AS2/HOXD3,
LOC391485, FGF5, EBF1, IRF4, SNX13, BRINP1, 10p14,
GATA3, GRID1, 11q24.2, KRT71, P2RY5, OCA2, HERC2,
16q24.1, DPEP1, DEF8, APCDD1, PTK6 and RUNX1. Of
the above, 8 loci (9 SNPs) were previously associated
with hair loss, 8 loci (15 SNPs) were previously associ-
ated with pigmentation and the remaining 8 (11 SNPs)
were linked to head hair shape (Supplementary Table 5).
The highest significance (P-value < 0.01) was noted for
FGF5 rs7680591 (chr4:80276795) with P-value = 0.003
and P-value = 0.004 in MLR3 and MLR6 analyses, re-
spectively and DPEP1 rs164741 (chr16:89625890) with

P-value = 0.004 and P-value = 0.007 in binomial logistic
regression (BLR) and MLR3 analyses, respectively. These
two SNPs were previously associated with hair loss and
pigmentation, respectively, both explaining less than 1%
of the total variation observed in hair greying in the
studied population.

Prediction modelling analyses
To increase the rate of success in selection of the most
relevant set of SNP predictors we applied the mRMRe
model selection method allowing simultaneous analysis
of large sets of SNPs. SNPs were analysed in a 849-
sample cohort, ranked according to the mRMRe score
and the top 30 variants were extracted for both hair
greying classifications (Supplementary Fig. 1 and Supple-
mentary Table 6) and pruned based on analysis of scree

Fig. 2 CHAID classification tree generated for greying vs. no greying classification in a replication cohort of 849 individuals from Poland using the
data for age and IRF4 rs12203592 only. The tree has 7 nodes with 5 terminal nodes. One sample was discarded from analysis due to the lack of
information on age
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plots (Supplementary Fig. 2). This analysis allowed pre-
selection of 13 predictors for binomial hair greying clas-
sification (age + sex + 11 SNPs) and 16 for 3-stage classi-
fication (age + sex + 14 SNPs). Pre-selected variables
were then assessed for their impact on prediction accur-
acy based on AUC values. This analysis led to a final list
of 12 (age + sex + 10 SNPs) and 14 (age + sex + 12 SNPs)
predictors included in the final binary neural network
(BNN) and multi-class neural network (MNN) predic-
tion models, respectively (Table 3). The workflow for the
final selection of predictors is summarized on Supple-
mentary Fig. 1. For both hair greying classifications, the
highest mRMRe score was attributed to age. Age itself
was found to explain Nagelkerke R2 47.5% of the total
variation observed in hair greying defined in a binary
way (45.5% for hair 3-stage classification) and ensures
the accuracy of head hair greying prediction at the level
of AUC = 0.863 for greying vs. no greying and AUC =
0.859 for no greying, AUC = 0.788 for mild greying,
AUC = 0.892 for severe greying in 3-stage classification
(Table 3). Sex was ranked at the third position in BNN
and at the second position in MNN but in contrast to
age, sex explains significantly smaller proportion of the
total variance observed in hair greying (5.5% for BNN
and 7.3% for MNN) and its impact on prediction accur-
acy was also found to be lower. Thirteen unique SNPs
were included in BNN and/or MNN models with 9
SNPs overlapping between both sets of predictors. These
13 DNA variants included 4 exome-wide identified SNPs
(KIF1A rs59733750, NSMCE1 rs1127228, SEMA4D
rs45483393, TMEM132C rs1683723), 3 SNPs associated
with hair greying in Adhikari et al. (IRF4 rs12203592,
MROH2A rs2361506, TBC1D22A rs1005241), 5 SNPs
previously associated with hair loss (FGF5 rs7680591,
TEX41 rs10928235, RUNX1 rs68088846, BRINP1
rs2416699, GRID1 rs2814331) and 1 SNP previously
linked with pigmentation (DPEP1 rs164741). Ten out of
13 SNPs were found to achieve nominally significant as-
sociation in regression tests (Tables 1 and 2, Supplemen-
tary Table 5), the remaining 3 SNPs included two SNPs
(SEMA4D rs45483393 and TMEM132C rs1683723)
identified with exome sequencing but not replicated in a
set of 849 samples and one SNP (TBC1D22A rs1005241)
with suggestive association in Adhikari et al. [17].
Among all the SNPs included in the models the highest

mRMRe score was attributed to exome-wide identified
KIF1 rs59733750 (2nd place in BNN and 4rd place in
MNN) and previously linked with hair loss FGF5
rs7680591 (3rd place in MNN model and 6th place in
BNN). Genetic variants were found to explain only a
very small percentage of total variance in head hair grey-
ing. Altogether, 10 SNPs from BNN model and 12 SNPs
from MNN explains 7.3% (total variance explained by
age + sex + SNPs = 52.7%) and 9% (total variance ex-
plained by age + sex + SNPs = 52.4%), respectively.
Therefore, their impact on prediction accuracy was
found to be small with AUC change < 0.02 for individual
SNPs (Table 3). Final models built on 849-sample set
and including information on age, sex and DNA vari-
ation were found to predict hair greying status with ac-
curacy of AUC = 0.900 for greying vs. no greying
(increase by 0.037 when comparing to age-based model)
and AUC = 0.894 for no greying (increase by 0.035 com-
paring to age-based model), AUC = 0.836 for mild grey-
ing (increase by 0.048) and AUC = 0.904 (increase by
0.012) for severe greying in 3-stage classification.
The accuracy of prediction of the final BNN and

MNN hair greying models was further assessed by 10-
fold cross-validation (CV). The cross-validated AUC
values obtained were 0.873 for BNN and 0.864, 0.791
and 0.875 for no greying, mild greying and severe grey-
ing categories in MNN, respectively (Table 4). Sensitivity
achieved for BNN equalled 0.734; out of 331 individuals
with hair greying symptoms for 243 of them prediction
was correct. Specificity was higher and reached 0.854;
442 individuals out of 518 individuals without any signs
of hair greying were correctly assigned to no greying
category. PPV value reached 0.762 which means that in
319 cases in which hair were classified as greying, for
243 of them prediction result was correct. NPV value at
the level of 0.834 means that out of 530 no hair greying
classifications in 83.4% of them prediction was correct
and individuals indeed did not show any signs of hair
greying. In case of MNN model, the highest sensitivity at
the level of 0.886 was achieved for no greying category,
the sensitivity for mild greying was 0.589 while the low-
est value was gained for severe greying with only 7.7% of
severe greying cases correctly predicted. However, for
severe greying category the highest specificity was ob-
tained at the level of 0.997. The specificity for no greying

Table 4 Final accuracy estimates of the BNN and MNN models for hair greying prediction designated in a 849-sample cohort using
10-fold cross-validation procedure

Model AUC Sensitivity Specificity PPV NPV

12-variable BNN greying vs. no greying 0.873 0.734 (243/331) 0.853 (442/518) 0.762 (243/319) 0.834 (442/530)

14-variable MNN no greying 0.864 0.886 (459/518) 0.643 (196/305) 0.808 (459/568) 0.769 (196/255)

mild greying 0.791 0.589 (149/253) 0.821 (468/570) 0.594 (149/251) 0.818 (468/572)

severe greying 0.875 0.077 (4/52) 0.997 (769/771) 0.667 (2/6) 0.941 (769/817)
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and mild greying equalled 0.643 and 0.821, respectively
(Table 4).
Low value of sensitivity observed for severe greying

category means that most of the samples of severe grey-
ing (42/52) were classified as mild greying which indi-
cates problems with differentiation between mild and
severe greying categories. This is reflected by high prob-
abilities for mild greying category generated for samples
in severe greying category (Fig. 3). However, at the same
time, an analysis of the distribution of probabilities gen-
erated with MNN model shows expected increase in the
probability of severe greying when moving from no grey-
ing to severe greying category. The mean probability for
severe greying category in mild greying category equalled
11.4 ± 10.5% while for individuals in severe greying cat-
egory increased to 20.7 ± 13.6% (P-value = 9.62 × 10− 8).
The total number of correct predictions achieved with

BNN model equalled 684/848 (80.7%) and was higher

when comparing to the model built using information
on age only (677/848) (Table 5). As the goal of the study
was to evaluate if information on SNPs can improve ac-
curacy of hair greying predictions, we focused on indi-
viduals i) young ((≤30 years old) and greying, N = 71 and
ii) older (≥40 years old) and non-greying, N = 29 where
age itself is non-informative (0% of correct predictions
based on sole information from age, Table 5). This ana-
lysis showed that information on SNPs included in the
models allowed proper recognition of 6 (8.5%) (BNN) or 3
(4.4%) (MNN) young and greying individuals and 2 (6.9%)
old and no greying individuals when using MNN model.

Discussion
The etiology of hair greying
Hair greying occurs as people age, but its progression is
influenced by many different factors including sex,

Fig. 3 The distribution of hair greying predicted probabilities generated with MNN model

Table 5 Success rate in prediction of hair greying status in a total 849-sample set and in two extreme phenotypic groups; i) ≤30
years old and greying, ii) ≥40 years old and no greying

Correct predictions Total N Young (≤30 y.o.) and greying Old (≥40 y.o.) and no greying

Age-based BNN model 677/848a (79.8%) 0/71 (0.0%) 0/29 (0.0%)

12-variable BNN model 684/848a (80.7%) 6/71 (8.5%) 0/29 (0.0%)

Age-based MNN model 609/822b (74.1%) 0/68 (0.0%) 0/29 (0.0%)

14-variable MNN model 611/822b (74.3%) 3/68 (4.4%) 2/29 (6.9%)
aOne sample was discarded from BNN analyses due to the lack of information on age
bOne sample was discarded from MNN analyses due to the lack of information on age and 26 additional samples were omitted due to the availability of
information on binary status of hair greying only
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biogeographic ancestry, genetic predispositions and the
impact of environment/lifestyle [5, 10, 16]. The average
time before a first grey hair appears was estimated at
age ~ 35 years in Europeans [11]. In our study ~ 14% of
people at age below 30 years had grey hair and therefore
were diagnosed with premature hair greying. The inci-
dence of grey hair was found to be higher in males than
females which is concordant with previous reports [11].
Furthermore, our study showed that dark-haired individ-
uals harbor significantly more grey hair than the light-
haired individuals which is in line with previous report
[11]. Although the etiology of hair greying has been
widely studied, it is still not fully understood. The image
that arises from the current research indicates multifac-
torial background of hair greying with a wide range of
different factors, different mechanisms and molecular
pathways included [5, 9]. Hair greying comes along with
many diseases including among others Waardenburg
syndrome, spastic paraplegia, pernicious anemia and
progeria (Hutchinson–Gilford and Werner syndrome)
[25–28]. The genetic predisposition to the development
of premature greying of hair has been recognized only to
a very limited extent. Hair greying appears to be a poly-
genic trait, with a large number of genes involved with
small or medium effect sizes. In a GWA study con-
ducted in 2016 on a large sample of admixed Latin
Americans, a single IRF4 gene reached genome-wide
significance. rs12203592 in IRF4 was shown to explain
merely ~ 8% of the total hair greying variation [17]. In
the current research we have confirmed the effect of
association of IRF4 gene with hair greying in a Polish
population and to the best of our knowledge this is the
first study replicating the association disclosed by Adhi-
kari et al. [17]. However, the proportion of the variation
explained by IRF4 rs12203592 in our study was found to
be even smaller (~ 1%). IRF4 rs12203592 was included in
both models developed in our study but surprisingly was
ranked low by mRMRe, at 8th and 9th positions in
BNN and MNN models, respectively. Although IRF4
rs12203592 was the only SNP that achieved GWA-
significance, Adhikari et al. also reported suggestive
associations for other 7 SNPs [17]. In univariate tests we
replicated association of MROH2A rs2361506. This SNP
was included in both models (ranked at 7th position).

Prediction modelling strategy
Although the human genome project provided impres-
sive insights into the genetic architecture of many com-
plex traits, large proportion of heritability of these
phenotypes still remains unexplained [29]. Recent stud-
ies have demonstrated that accurate prediction of hu-
man complex traits may require a change in prediction
modelling strategy and inclusion of large number of
SNPs selected excluding the association criterion [30,

31]. This strategy gives the chance to reduce the prob-
lem of missing heritability that affects genetic prediction
[29, 31, 32]. It has been shown that SNPs that show no
signs of association in single tests can still improve pre-
diction accuracy (e.g. [33]). Therefore, to increase the
rate of success in identification of the relevant predictors
for head hair greying: i) the significance threshold was
lowered and considered P-value of 5 × 10− 4 as significant
in exome-wide association study; ii) the list of candidate
DNA variants was expanded by analysis of SNPs previ-
ously linked with different head hair features; iii)
mRMRe method known to outperform classical ap-
proaches in terms of predictors selection was employed
(mRMRe does not require SNPs to show significance in
single tests). This approach allowed us to develop proto-
type models for head hair greying prediction that
consider information on age, sex and DNA variation.

Genetic component in the hair greying prediction models
The genetic component was found to explain merely
< 10% of hair greying variation in the studied population
which is substantially lower than the variation explained
by age itself (> 45%). Consequently, the impact of particu-
lar SNPs on prediction accuracy was small. The list of
genes implicated in hair greying phenotype include loci
previously linked with smoking status (KIF1A, RUNX1,
IRF4, BRINP1, TEX41, GRID1), BMI/obesity (GRID1,
TEX41, SEMA4D, TBC1D22A, RUNX1), bone mineral
density (RUNX1, TBC1D22A, TEX41), cardiovascular
diseases (FGF5, MROH2A, DPEP1, GRID1) and immu-
nology (RUNX1, TBC1D22A, IRF4, TMEM132C, GRID1).
Importantly, all the above mentioned factors (particularly
smoking) were linked with hair greying syndrome in pre-
vious research and therefore the link between these genes
and greying seems to be justified [16, 33–36]. Three genes
have been previously linked with ageing effects, that is
longevity (TBC1D22A), skin aging (IRF4) and DNA
methylation aging (RUNX1) [37–39]. Importantly, age-
related changes in DNA methylation can stop melanocyte
stem cells growth and thus potentially affect hair greying
development [40]. It is also clear that variation in non-
protein coding regions contributes to the phenotype.
Of the 13 predictor SNPs in our final hair greying
models, only two (rs1683723, rs1127228) affect pro-
tein sequence, whereas four (rs12203592, rs68088846,
rs45483393, rs1127228) are located in known regulatory
regions (enhancer, promoters, a CTCF binding site) [41].

Novel genes associated with hair greying
Exome-wide association analysis and replication identi-
fied two novel DNA variants rs59733750 in KIF1A and
rs1127228 in NSMCE1 to be associated with hair grey-
ing. Of all SNPs included in the BNN model,
rs59733750 in KIF1A received the highest mRMRe score
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(2nd position in the model). KIF1A (2q37.3) encodes a
member of the kinesin family proteins that are respon-
sible for the anterograde transport of synaptic-vesicle
precursors along axons [42]. Mutations in KIF1A have
been previously associated with disorders like spastic
paraplegia 30 and hereditary neuropathy [42, 43]. Inter-
estingly, specific types of spastic paraplegia disorders
have been shown to be linked with pigmentary abnor-
malities, including premature hair greying and also asso-
ciated with prematurely aged facial appearance [26, 44].
Noteworthy, neuropathy is the most common complica-
tion of diabetes which has been shown to alter expres-
sion of KIF1A and can lead to hair follicle damage [45–
47]. It will be interesting to elucidate the role of KIF1A
in molecular etiology behind hair greying. The analysis
of genetic variation associated with various diseases can
be controversial in forensic genetics for bioethical rea-
sons. However, because pleiotropy is so common, it
would be impossible to predict natural phenotypes
avoiding genes involved in determination of pathological
phenotypes. The penetrance of individual SNP variants
is usually low and they altogether can only explain a
small fraction of the predisposition to the disease [48]
but the inclusion of disease-related genes in models for
the genetic prediction of human appearance traits seems
inevitable. This topic is currently widely discussed by
forensic geneticists and bioethicians.
The second exome-wide identified locus, NSMCE1

(16p12.1), was found to improve the accuracy of hair
greying prediction in MNN model (ranked 14th). The
NSMCE1 protein is a RING-type zinc finger-containing
E3 ubiquitin ligase which belongs to the structural main-
tenance of chromosomes (SMC) proteins and is involved
in the maintenance of genome integrity, DNA damage
response and DNA repair [49]. Hair follicles are exposed
to high levels of oxidative stress and the resulting DNA
damage. Therefore, defects in DNA repair systems are
considered as the important contributors to hair greying
development [5, 9, 13]. The final models for hair greying
included two additional exome-wide selected loci,
SEMA4D rs45483393 and TMEM132C rs1683723 that
were among the top mRMRe scored variables and were
found to positively affect the accuracy of prediction even
though these loci did not achieve statistical significance
in single tests conducted in a replication cohort.
SEMA4D (9q22.2) encodes semaphoring 4D protein that
is a cell surface receptor for PLXNB1 and PLXNB2 and
plays a role in axon guidance, immune response, tissue
development, cell migration, cell-cell signaling and skin
healing process [50]. It is noteworthy that rs281229 in
SEMA6D (15q21.1), which is another member of the
semaphoring family, has shown a suggestive association
with hair greying in a study conducted by Adhikari et al.
[17] but this DNA variant was monomorphic in our

population. TMEM132C (12q24.32) encodes transmem-
brane protein 132C. Transmembrane proteins (TMEM)
are components of various cell membranes and play im-
portant physiological functions although the biological
meaning of particular proteins remains mostly unknown
[51]. TMEM proteins were previously implicated in hair
shape determination [52].

Pleiotropic effects in head hair features
Aging of hair follicle is manifested by greying of the
hair and hair loss, with both phenotypes being linked
to each other [13, 17]. This correlation was also
observed in our study. Out of 13 SNPs included in
our predictive models for hair greying, 6 (FGF5
rs7680591, RUNX1 rs68088846, IRF4 rs12203592,
BRINP1 rs2416699, TEX41 rs10928235, GRID1
rs2814331) were previously associated with male
pattern baldness (MPB) [17, 21, 53, 54]. All 6 SNPs
showed association with hair greying in our popula-
tion. The highest significance was noted for IRF4
rs12203592 and FGF5 rs7680591. The FGF5 gene
(4q21.21) encodes Fibroblast Growth Factor 5. FGF
proteins possess important functions in the regulation
of cell growth and are engaged in a broad range of
biological processes. FGF proteins have been sug-
gested to be crucial regulators of hair growth [e.g.
15]. Mutations in FGF5 have been linked with tricho-
megaly, a pathological condition involving abnormally
long eyelashes [55]. The role of FGF5 polymorphism
in the development of MPB has recently been dis-
covered in two large GWAS studies [21, 54]. Its
importance for hair greying also seems possible because
active hair growth, which leads to oxidative stress, has
been proposed as one of the possible hypotheses for hair
greying [15]. Indeed, gene expression of FGF5 was
downregulated in grey hair compared to black hair [15].
In our study, rs7680591 in FGF5 was the highest-ranked
DNA variant in the MNN model thus highlighting its role
in hair greying prediction.

Prediction of hair greying in practice
Prediction of hair greying status may have a practical
value. In forensics, information about hair greying can
be used for intelligence purposes [6]. As of yet, first pre-
dictive models for hair colour, hair loss and hair shape
have been reported [56–60] but there are no studies
examining the capabilities of head hair greying predic-
tion. Although the prototype models that have been de-
veloped in the current research predicted hair greying
status with very high accuracies of CV AUC = 0.873 for
greying vs. no greying and CV AUC = 0.864 for no grey-
ing, CV AUC = 0.791 for mild greying and CV AUC =
0.875 for severe greying, the contribution of genetic pre-
dictor was very small. Due to the small effects sizes
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attributed to particular DNA variants only 2 or 3 hair
greying categories were considered in the final statistical
analyses. Larger studies should identify additional pre-
dictors that will allow better resolution in the future. It
is worth noting that in forensics, the greatest practical
significance will be predicting hair greying in extreme
age categories. We have shown that the genetic compo-
nent could correctly predict hair greying status in up to
~ 9% of individuals included in extreme phenotype
groups. In addition to information about the age of a
person, the prediction of hair greying also depends on
additional factors, e.g. ancestry and environment. Recent
years have proved that aging is associated with widespread
changes in genome-wide DNA methylation [61, 62]. The
observed differences in aging rates are in ∼30–40% herit-
able [63] but can be also influenced by the environment. It
might be therefore anticipated that DNA methylation
plays a mediating role between the environment and hair
greying and that epigenetic age reflecting biological age of
a person will be a significant predictor of grey hair, re-
placing chronological age in the models and at the same
time accounting for environmental effects on hair greying.
This hypothesis should be evaluated in the future.
Because our predictive models were developed using

data for a Polish cohort, further research is needed to
confirm their usefulness in other European and world-
wide populations. The analysis of the 1000 Genomes

data shows significant differences in minor allele fre-
quencies for substantial number of SNPs (Supplemen-
tary Fig. 3 A-M). As both the age of onset and the rate
of hair greying are linked to ancestry, with generally
lower incidence of grey hair observed in African and
Asian subjects [10, 11], it seems possible that genetic
background will also differ to some degree. This is the
case with hair loss for which inter-population differences
are well described with the lowest incidence observed in
Africans and later onset in Asians [57, 64]. To initially
evaluate the performance of our SNPs in different popu-
lations we have applied our BNN model to 1000 Gen-
ome samples (extracted from ensembl.org) and analysed
the distribution of hair greying probabilities. Although
the phenotypes are not available for 1000 Genome sam-
ples we have generally observed significantly lower pre-
diction probability values for grey hair in Africans
(Fig. 4). The mean probability for grey hair in Europeans
was estimated at 0.38 ± 0.19 while for Africans it
amounted to 0.23 ± 0.17 (P-value = 5.092 × 10− 40). This
outcome may result from substantial differences in allele
frequencies between these two populations for a signifi-
cant number of SNPs, including the highly rated in
our models FGF5 rs7680591 and KIF1A rs59733750
(Supplementary Fig. 3H and 3L).
Prediction of hair greying status solely based on gen-

etic information is currently impossible and, as with

Fig. 4 The distribution of the predicted grey hair probabilities in 2504 subjects from 19 worldwide countries extracted from The 1000 Genomes
Project data. Prediction analysis was conducted using BNN model. Analysis included samples from Europeans (EUR), Africans (AFR), admixed
Americans (AMR), South Asians (SAS), and East Asians (EAS)
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other progressive human traits, should be accompanied
by the estimation of a person’s age. It seems that a pre-
dictive algorithm based on genetic and epigenetic data
may be practical in forensic investigations. Systematic
approach that we propose should include: i) sex deter-
mination (typically done during standard STR profiling
in forensic investigations via analysis of STR markers of
Amelogenin gene on chromosomes X/Y); ii) genetic
ancestry inference (through analysis of Ancestry Inform-
ative Markers (AIM-SNPs and/or AIM-Indels); iii)
determination of genetic predispositions to develop hair
greying through analysis of greying associated SNPs and
iv) epigenetic age estimation (Fig. 5). Analogical solution
was proposed to predict facial features. Information
about genomic ancestry and sex was used to create a
base-face which is next supplemented by genetic
information on 24 facial variation associated SNPs [65].
Information on biogeographic ancestry (BGA) can still
help predicting various appearance traits. This can com-
plicate the implementation of predictive methods in
forensics in those countries where DNA-based BGA
inference is restricted by law [66], but cannot change
until we fully understand the genetics of the traits, we
do not identify all genes and functional variants and
their interactions. In case of hair greying, there are clear
indications in the literature that the age of onset and the
rate of hair greying vary between populations. Future
research will show if this is due to differences in allele
frequency, different genetic basis and/or epistasis.

Conclusions
To improve our understanding on the role of DNA vari-
ation in hair greying development we have conducted a
novel study that enrolled 998 individuals from Poland
that were carefully phenotyped for various head hair
phenotypes. We have disclosed two novel DNA variants
that were selected in a whole-exome analysis conducted
in a discovery cohort and successfully validated in a rep-
lication cohort, namely KIF1A rs59733750 and NSMCE1
rs1127228. Moreover, we have replicated the association
of IRF4 rs12203592 and MROH2A rs2361506 disclosed
previously in a GWA study of Adhikari et al. (2016). We
have also showed positive signal of association for 35
SNPs from 24 loci previously linked with pigmentation,
hair loss and hair shape thus providing another evidence
supporting hypothesis that the genetics underlying these
characteristics is to some degree overlapping. The proto-
type models developed for 2- or 3-grade hair greying
classification include information on age, sex and DNA
variation within 13 unique SNPs, of which 3 variants
showed no association in univariate regression tests. The
developed models provided fairly accurate prediction of
hair greying but most of the prediction information was
fulfilled by age itself. DNA variants were found to ex-
plain < 10% of hair greying variation and have small im-
pact on prediction parameters thus confirming hair
greying as being genetically a very complex trait.
Although our study is a step forward in better under-
standing of greying processes, further studies, including

Fig. 5 Proposed workflow for hair greying prediction based on genetic data and DNA methylation
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genetic and molecular analyses are certainly needed.
More statistical power is needed to identify additional
markers of hair greying and to facilitate prediction of
this trait especially in extreme age groups. The role of
DNA methylation aging in hair greying development
and its impact on prediction should also be evaluated.
Finally, we propose a complex predictor that should
include sex determination, genomic ancestry inference,
analysis of DNA variation and epigenetic age estimation
for a final prediction of hair greying status. The validity of
this approach should be evaluated in the future studies.

Methods
Sample collection and phenotypic classification
Blood samples were collected from 998 unrelated indi-
viduals from Poland at age ≥ 18 years (age range 19–62;
Supplementary Table 1). Research participants were re-
cruited at the Police Academy in Szczytno with financial
support of the National Centre for Research and Devel-
opment within the framework of the project NEXT
(DOB-BIO7/17/01/2015). This research was approved by
the Ethics Committee of the Jagiellonian University in
Krakow (decision no. KBET/122/6120/11/2016). All par-
ticipants provided written informed consent. With the
help of the person conducting examination, participants
completed a questionnaire including basic demographic
data and phenotypic characteristics including hair grey-
ing status. Participants were asked to provide informa-
tion on the occurrence of grey hair and the age at onset
of hair greying. Additionally, high-quality photographs
of the front part and the temporal part of the head were
taken and evaluated for the progression of grey hair. 6-
stage classification of grey hair has been applied as the
adaptation of the 5-stage classification system used by
Adhikari and co-workers [17]. The following categories
were distinguished: 1 – no greying; 2 – predominantly
no greying, low number of single grey hair; 3 - higher
number of single grey hair (all over the head); 4 – sig-
nificant greying with patches of grey hair; 5 – predomin-
ant greying; 6 – totally white hair (Fig. 1). For the
purpose of statistical calculations, a simplified 3-stage
classification was used, where categories 2 and 3 were
merged and accounted for ‘mild greying’ while categories
4, 5 and 6 were combined into a category ‘severe grey-
ing’. Categories ‘mild greying’ and ‘severe greying’ were
pooled for some analyses classifying hair greying as the
binary outcome (greying vs. no greying). Participants
were surveyed for hair dyeing, and if hair dyeing was
found, detailed information on the condition and
number of grey hair was collected.

DNA extraction and quantification
Whole blood samples collected from all volunteers were
subjected to DNA extraction using PrepFiler™ Forensic

DNA Extraction Kit (ThermoFisher Scientific) according to
the manufacturer’s protocol. DNA concentration was
measured using Qubit dsDNA High-Sensitivity Assay Kit
(Thermo Fisher Scientific) and Plexor® HY System (Promega).

Whole-exome sequencing
WES analysis was conducted in a carefully selected co-
hort of 149 individuals maintaining adequate representa-
tiveness of particular phenotypic categories. Exonic
regions (66 Mbp) have been enriched by regulatory se-
quences for > 160 loci previously associated with human
appearance traits (including pigmentation, hair loss, hair
shape/thickness) (1.5 Mbp) extracted from Nencki Gen-
omics Database and FANTOM [67–69]. Libraries were
prepared using SeqCap EZ MedExome Target Enrich-
ment Kit (Roche NimbleGen, Wisconsin, USA). Sequen-
cing was conducted on HiSeq1500 Illumina machine
offering economical and high-throughput sequencing.
HiSeq SBS v4 chemistry and paired-end reads protocol
were applied (Illumina, San Diego, CA USA). Raw data
generated with WES were subjected to the bioinformatic
pipeline aimed at analysis of SNP variation. First, read
quality control was performed with FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). Next,
reads were mapped to the GRCh38 human genome with
Bowtie 2 [70]. To avoid allele amplification bias in vari-
ant calling the Picard MarkDuplicates command was
used for duplicate reads removal (http://broadinstitute.
github.io/picard/). To detect and correct systematic er-
rors in base quality scores recalibration was performed
with Genome Analysis Toolkit (GATK) BaseRecalibrator
[71, 72]. Dbsnp138 available from GATK resource bun-
dle was used as known sites database. Default parameter
values were used. Regions which required realignment
were selected by GATK RealignerTargetCreator, and
local realignment was performed with GATK IndelRea-
ligner [71, 72]. Variant calling restricted to the target re-
gion was performed with GATK Unified Genotyper.
Filtering was performed with GATK VariantFiltration.
To put the variant confidence QUAL score into perspec-
tive of the amount of coverage available variants with
QD < 2.0 were filtered out. Also variants in which reads
supporting the alternate allele had significantly lower
mapping quality scores (MQRankSum < − 12.5) than
those supporting the reference allele were filtered out.
Genotypes with genotype quality < 20 and depth < 12
were treated as missing. For the downstream statistical
analyses we have selected variants with less than 20% of
missing data and global minor allele frequency (MAF) ≥ 5%.

Candidate hair greying SNPs selection using exome-wide
association testing
Exome-wide data (over 77 K SNPs) generated for 149
discovery samples was subjected to association testing to
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select candidate DNA variants for hair greying. As test-
ing single variables is still the most common method in
association studies (mainly due to computational bur-
den) [73], such approach was also applied in the current
study. Exome-wide association analyses were conducted
using logistic regression methods for hair greying status
defined as greying vs. no greying (binomial logistic re-
gression; BLR) or using 3-stage or 6-stage classifications
(multinomial ordinal logistic regression; MLR3 and
MLR6). Analyses were conducted with R v3.5.2 using
‘ordinal’ package. Analyses were adjusted for age, sex
and hair colour (dark vs. light) and additive allele effect
was assumed. SNPs with P-values smaller than 5 × 10− 4

were considered as significant. Exome-wide association
testing results were visualized using Manhattan and Q-
Q graphs (Supplementary Figs. 4–5) plotted using R
v3.5.2 and ‘qqman’ library. SNPs with P-values < 5 ×
10− 4 were subjected to LD pruning which was con-
ducted using PLINK 1.07. SNPs with independent effects
(r2 ≤ 0.7) were retained in each region reducing the ini-
tial list of 50 candidate hair greying SNPs to 34 DNA
variants.

Candidate hair greying SNPs selection using literature
data
It is anticipated that the genetics and biochemical path-
ways underlying different hair characteristics may be to
some degree overlapping [17, 57, 58]. Adhikari et al.
have shown correlations between different head hair fea-
tures [17]. At least several genes (e.g. EDAR, WNT10A,
IRF4, SUCNR5) have been proposed to influence more
than one hair feature. Therefore, in the current study
SNPs previously linked with hair loss, hair shape/thick-
ness and pigmentation were evaluated for their
association with hair greying. A detailed review of the
literature allowed the selection of 344 SNPs (including 8
SNPs associated with hair greying, 90 SNPs associated
with hair shape, 12 SNPs associated with hair thickness,
128 SNPs associated with hair loss (with 2 SNPs overlap-
ping between hair shape and hair loss) and 108 SNPs
associated with pigmentation) (Table 2 and Supplementary
Table 5).

Multiplex SNP genotyping using Ion Torrent S5
The final set of 378 candidate SNPs (including 34 WES-
selected variants and 344 literature based-selected vari-
ants) was genotyped in a replication cohort of 849 Polish
samples. Targeted NGS implemented in Ion AmpliSeq™
technology (ThermoFisher) which is offering efficient,
sensitive and high-multiplexing solution was used to col-
lect SNP genotypes. Data for the selected SNPs were
generated within two Ion AmpliSeq™ panels covering a
total of 828 SNPs, including 378 candidate SNPs for
head hair greying and 450 candidate SNPs for other

human appearance traits studied in the project NEXT.
Primer pools were designed using an Ion AmpliSeq™
Designer tool (https://www.ampliseq.com) with a sup-
port of Thermo Fisher Scientific. Due to technical
difficulties 3 SNPs: TRPC3 rs1396082, FBN3 rs56243829
and DMKN rs79338830 were replaced by SNPs in LD
(TRPC3 rs34306906, FBN3 rs72993531 and DMKN
rs77995042). DNA libraries were prepared using the Ion
AmpliSeq™ Library Kit 2.0 according to the manufac-
turer’s protocol with a slight modification of PCR step
(5–10 ng of DNA in 5 or 10 μL of total reaction volume).
DNA libraries were quantified using Agilent High Sensi-
tivity DNA Kit (Agilent Technologies, Santa Clara, USA)
or Qubit dsDNA High-Sensitivity Assay Kit (Thermo
Fisher Scientific), and then normalized to 40 pM. DNA
libraries were combined in equal proportions and then
template preparation was conducted using the Ion 520™
& Ion 530™ Kit-Chef and the Ion Chef System. Sequen-
cing was performed with the Ion S5™ platform using Ion
530™ Chips. Raw data were analysed using Torrent Ser-
ver and SNPs were called using Torrent Variant Caller
v5.6.0.4 or alternatively HID SNP Genotyper plugin
v5.2.2. Missing SNP-data were at 0.1%. The variable se-
lection algorithms used in our research do not work on
a set of data with missing values. Given the presence of
missing data in neural network models, this would also
result in poorer model quality. Therefore, the missing
data were filled using ‘missForest’ method in R v3.5.2
(with a total number of trees equal to 500) and analyses
were conducted on a more numerous data set.

Association testing in a replication cohort
The whole set of genotyped SNPs was subjected to asso-
ciation testing in a replication cohort of 849 samples.
Single-SNP association analyses were carried out with
BLR and MLR3/MLR6 using libraries under R v3.5.2. All
the results were adjusted for age and sex (in case of
pigmentation-linked SNPs adjustment for hair colour
was also applied) and additive allele effect was assumed.
Results with P-values < 0.05 were considered as statis-
tically significant. To visualize the effect of IRF4
rs12203592 on hair greying development CHAID (Chi-
squared Automatic Interaction Detection) analysis was
conducted which is a classification method used to gen-
erate decision trees by using chi-square statistics. CHAI
D tree was generated with PS IMAGO PRO 5.0 (IBM
SPSS Statistics 25) for a 849-sample cohort using the
data for IRF4 rs12203592 and age only.

Pre-selection of SNPs for prediction model
Methods allowing simultaneous analysis of all the tested
SNPs are assumed to outperform single SNP-tests in a
selection of a final set of predictors [32]. As traditional
methods like regression may not be efficient when
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working with a large number of SNPs we used mRMRe fea-
ture selection approach (https://www.rdocumentation.org/
packages/mRMRe/versions/2.0.5) [74, 75]. mRMRe method
is a fast framework for finding a set of the most relevant
variables, based on a series of measures of relevance to the
analysed trait and redundancy between the tested variables,
thus outperforming classical approaches in terms of
prediction accuracy [75]. mRMRe approach was applied
to the genotypic data generated for all 378 candidate
SNPs in a replication cohort, including information on
age and sex. Analyses were conducted for hair greying
defined in a binary way and using 3-stage classification.
Classic mRMRe was applied and the top 30 variables in
the output were generated. A set of 30 variables was
analysed in terms of scoring and pruned based on ana-
lysis of scree plots (Supplementary Fig. 2). The result-
ing pre-selected set of predictors was further evaluated
for the impact of particular markers on prediction ac-
curacy measured by the area under the ROC curve
(AUC) value as described in Section Prediction model-
ling using artificial NN and model validation.

Prediction modelling using artificial NN and model validation
Prediction modelling was conducted using artificial
neural network (NN) approach and a set of 849 samples.
We decided not to divide samples into separate groups
used for markers pre-selection and model building in
order not to reduce the size of the samples. Thus, the se-
lection of final markers was treated as a part of the
model training, as in the wraper approach. Two predic-
tion models were developed allowing prediction of hair
greying at the binary level; greying vs. no greying (BNN;
binary neural network) and assuming three states of hair
greying; no greying, mild greying and severe greying
(MNN; multi-class neural network). Multilayer percep-
tron with one hidden layer and an automatically selected
number of neurons was used. Details of the parameters
of the method used can be found in our previous study
[76]. The impact of particular markers included in the
mRMRe-based pre-selected set of predictors on predic-
tion accuracy was evaluated by determining the value of
the AUC parameter each time next variable with the
highest mRMRe score was incorporated into the model.
The analysis was stopped and the list of predictors was
pruned after no clear increase in AUC value was
observed (Supplementary Fig. 1). Prediction performance
of the final models was verified using 10-fold cross-
validation procedure , as described in detail in our previous
work [76]. Then final prediction accuracy parameters
including AUC, sensitivity, specificity, negative prediction
value (NPV) and positive prediction value (PPV) [77] were
calculated on the excluded kth parts of the data using
the pooling strategy [78]. Analyses were carried out using
PS IMAGO PRO 5.0 (IBM SPSS Statistics 25).

Population analyses
Allele frequencies for the 13 SNPs included in the devel-
oped BNN and MNN models were plotted on the world
map using allele frequency data extracted from “The
1000 Genomes Project” (https://www.ensembl.org/index.
html) and using ArcMap 10.7 under ArcGIS Desktop
software (Esri, Redlands, California). This data comes
from 2504 subjects (19 worldwide countries) assigned to
one of the following biogeographic ancestries: Europeans
(EUR), Africans (AFR), admixed Americans (AMR),
South Asians (SAS) and East Asians (EAS). In the next
step the genotypes for these samples were extracted from
http://grch37.ensembl.org/Homo_sapiens/Info/Index and
analysed using BNN model. However, due to the lack
of age and sex data for the samples, BNN model was
rebuilt using DNA variants as the predictors only prior to
analysis. Generated prediction probabilities for grey hair
were then compared between populations.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06926-y.

Additional file 1: Supplementary Fig. 1. The applied workflow for the
final selection of predictors for head hair greying. Supplementary
Fig. 2. Scree plots generated for the top predictors selected with
mRMRe method for A binary hair greying classification and B 3-stage hair
greying classification. The mRMRe score values were plotted against their
rank in the selected set of predictors. The suggestive cutoff point is indi-
cated by the black horizontal line. In order to increase the transparency
of the graphs and to improve determination of the cut-off point age (for
binary hair greying classification) and age + sex (for 3-stage classification)
were excluded when plotting graphs because of their significantly higher
mRMRe scores. The order of the remaining predictors is in accordance
with Supplementary Table 6. Supplementary Fig. 3. Global allele fre-
quency distribution for 13 SNPs included in hair greying prediction
models (A rs164741; B rs1005241; C rs1127228; D rs1683723; E rs2361506;
F rs2416699; G rs2814331; H rs7680591; I rs10928235; J rs12203592; K
rs45483393; L rs59733750; M rs68088846). Allele frequencies for the se-
lected SNPs were plotted on the world map using data from “The 1000
Genomes Project” (http://grch37.ensembl.org/Homo_sapiens/Info/Index)
and ArcMap 10.7 under ArcGIS Desktop software (Esri, Redlands, Califor-
nia). Supplementary Fig. 4. Manhattan plot of three EWAS analyses
conducted in a 149 sample set for human head hair greying defined as A
greying vs. no greying (BLR analysis); B no greying vs. mild greying vs. se-
vere greying (MLR3 analysis); C 6-stage hair greying classification (MLR6
analysis). The -log10 (P-values) were plotted for each SNP under study ac-
cording to its chromosomal position (GRCh38). The suggestive signifi-
cance threshold (P-value = 5 × 10–4) is indicated as a black horizontal line
and SNPs that reached the suggestive significance threshold are marked
with green. Supplementary Fig. 5. Q-Q plots of three EWAS analyses
conducted in a 149 sample set for human head hair greying defined as A
greying vs. no greying (BLR analysis); B no greying vs. mild greying vs. se-
vere greying (MLR3 analysis); C 6-stage hair greying classification (MLR6
analysis). Supplementary Table 1. Characteristics of the study popula-
tion including discovery and replication/prediction modelling cohorts.
Supplementary Table 2. LD analysis conducted for exome-wide se-
lected SNPs. Supplementary Table 3. A selection of exome-wide identi-
fied SNPs (P-value < 5 × 10–4) associated with hair greying in a discovery
cohort of 149 individuals from Poland. Supplementary Table 4. Replica-
tion analysis of EWAS results in a replication cohort of 849 Polish individ-
uals. Supplementary Table 5. Results of association testing for 336
literature-based selected candidate SNPs for hair greying associated previ-
ously with hair colour/pigmentation, hair loss, hair shape and hair
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thickness. Supplementary Table 6. The results of mRMRe analysis for
binary and 3-stage hair greying classification conducted in a 849-sample
cohort

Additional file 2: Supplementary Table 7. The genotype-phenotype
dataset generated with whole-exome sequencing.

Additional file 3: Supplementary Table 8. The genotype-phenotype
dataset generated with targeted next-generation sequencing.
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