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isolates. Our bioinformatic analyses and expression data
reveal that both G10 and P11 have three distinct CYP51
isoforms that are upregulated during difenoconazole
treatment. While this has not been shown for sensitive
isolates in the literature, it is plausible that the fungus is
compensating and producing additional transcripts to
flood the synthesis of CYP51 proteins to maintain sterol
biosynthesis in the presence of difenoconazole. Add-
itional studies of ergosterol and the ERG pathway inter-
mediates using a metabolomic approach should be
conducted by analyzing flux through the pathway in
both sensitive and resistant isolates to help answer the
biological basis of the observed increase in ERG11 tran-
scription. Additionally, gene expression of the entire er-
gosterol biosynthetic pathway in both isolates lends itself
to possible transcription factor (TF) redundancy and or
alternative regulation to facilitate sterol biosynthesis in
G10 but not in P11 in the presence of difenoconazole. In
other systems, a P. digitatum sterol regulatory element-
binding protein has been implicated in prochloraz resist-
ance, acting as a transcription factor, as it is associated
with virulence and regulating CYP51 gene expression
[12]. Hence, it is possible that we have a similar situ-
ation, but will require further investigation at both the
genetic and biochemical levels using targeted gene dele-
tion of these loci in G10 and P11.

Active efflux is a main contributor of difenoconazole
resistance in Penicilliumspp.
We suspected that additional mechanisms were in place in
which resistance was more complicated than previously re-
ported that involved CYP51a overexpression and associated
point mutations (E.g. Y126F) in P. expansum [18]. Through
comparative transcriptomic analysis, we observed increases
in broad classes of genes, in response to difenoconazole ex-
posure. Unlike resistance in other Penicillium spp. our data
implicate multiple, coordinated mechanisms of difenocona-
zole resistance. Though not unique in filamentous fungi,
active efflux has not been demonstrated in blue mold spe-
cies, as a resistance mechanism to difenoconazole. For ex-
ample, energy dependent active efflux, a component of
resistance shown in isolate G10, is evident in the CDR1
(Candida drug resistant) ortholog PEX2_044360 ABC
transporter. This locus represents a well-studied active

Fig. 4 KEGG map of ergosterol pathway genes differentially
regulated, upregulated in blue and downregulated in yellow, in
Penicillium species a G10 and b P11 isolates after exposure to 5 μg/
ml difenoconazole. Copyright permission was granted for use and
modification of: M00101 Cholesterol biosynthesis, squalene 2,3-
epoxide = > cholesterol. M00102 Ergocalciferol biosynthesis,
squalene 2,3-epoxide = > ergosterol/ergocalciferol. M00917
Phytosterol biosynthesis, squalene 2,3-epoxide = > campesterol/
sitosterol. M00103 Cholecalciferol biosynthesis
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parameters were 1 cycle of 95 °C for 3 min followed by
39 cycles of 95 °C for 10 s, 60 °C for 30 s, then 1 cycle of
95 °C for 10 s. Melt curve was conducted at 65 °C to
95 °C for 5 s at 0.5 °C increments on a C1000 Touch
thermal cycler CFX96 Real Time PCR machine (Bio-
Rad). Two blank no template controls were included in
each 96 well plate alongside two housekeeping genes as
positive controls for each locus tested for all 16 samples.
Normalized expression of the CYP51 genes as compared
to the calmodulin gene is expressed as log2 (fold change
of difenoconazole over acetone) means and standard er-
rors for each isolate.

Efflux pump inhibition assay
Broad spectrum efflux pump inhibitors, milbemycin ox-
ime and clorgyline, were dissolved in DMSO to make
concentrated stocks (25 mg/ml). Conidial suspensions of
G10 and P11 were harvested from PDA plates in 1 ml of
sterile water (as indicated above but without Tween 20)
and adjusted to 1 × 104 conidia/ml and added to 25 μM
and 250 μM clorgyline or 10 μM and 100 μM milbemy-
cin oxime in 1.5 ml Eppendorf tubes. Separate control
samples (2) consisted of adding DMSO carrier at the
maximum concentration and water only to conidial sus-
pensions. Samples were incubated at room temperature
with gentle rocking for 24 h, and 20 μl of spore solution
was pipetted in a 3-point fashion onto 3 (4.5 cm) Petri
plates containing PDA amended with acetone (carrier
control) or 5 μg/ml difenoconazole. Petri plates were
placed in an incubator at 25 °C and colony diameters
were measured using a digital micrometer after 6 days.
The inhibition assay was conducted twice.

Statistical analyses
The effect of inhibitor treatments on G10 and P11 iso-
lates grown on acetone and difenoconazole was deter-
mined by generalized linear mixed models using the
PROC GLIMMIX procedure of SAS (Version 9.4, Cary,
NC). Differences between treatments were determined
using the LSMEANS procedure in SAS 9.4 at the α =
0.05 level of significance with an adjustment for Tukey’s
HSD to control for family-wise error. To help explain re-
lationships between gene expression in fold change de-
termined by RNAseq and qRT-PCR, a linear regression
analysis (SAS v9.4; PROC REG) was completed for all
conditions for G10 and P11 at the α = 0.05 level of
significance.
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