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Combined transcriptome and proteome
profiling of the pancreatic β-cell response
to palmitate unveils key pathways of β-cell
lipotoxicity
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Abstract

Background: Prolonged exposure to elevated free fatty acids induces β-cell failure (lipotoxicity) and contributes to
the pathogenesis of type 2 diabetes. In vitro exposure of β-cells to the saturated free fatty acid palmitate is a
valuable model of lipotoxicity, reproducing features of β-cell failure observed in type 2 diabetes. In order to map
the β-cell response to lipotoxicity, we combined RNA-sequencing of palmitate-treated human islets with iTRAQ
proteomics of insulin-secreting INS-1E cells following a time course exposure to palmitate.

Results: Crossing transcriptome and proteome of palmitate-treated β-cells revealed 85 upregulated and 122
downregulated genes at both transcript and protein level. Pathway analysis identified lipid metabolism, oxidative
stress, amino-acid metabolism and cell cycle pathways among the most enriched palmitate-modified pathways.
Palmitate induced gene expression changes compatible with increased free fatty acid mitochondrial import and β-
oxidation, decreased lipogenesis and modified cholesterol transport. Palmitate modified genes regulating
endoplasmic reticulum (ER) function, ER-to-Golgi transport and ER stress pathways. Furthermore, palmitate
modulated cAMP/protein kinase A (PKA) signaling, inhibiting expression of PKA anchoring proteins and
downregulating the GLP-1 receptor. SLC7 family amino-acid transporters were upregulated in response to palmitate
but this induction did not contribute to β-cell demise. To unravel critical mediators of lipotoxicity upstream of the
palmitate-modified genes, we identified overrepresented transcription factor binding sites and performed network
inference analysis. These identified LXR, PPARα, FOXO1 and BACH1 as key transcription factors orchestrating the
metabolic and oxidative stress responses to palmitate.
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Conclusions: This is the first study to combine transcriptomic and sensitive time course proteomic profiling of
palmitate-exposed β-cells. Our results provide comprehensive insight into gene and protein expression changes,
corroborating and expanding beyond previous findings. The identification of critical drivers and pathways of the β-
cell lipotoxic response points to novel therapeutic targets for type 2 diabetes.

Keywords: Pancreatic islets, Beta-cells, Free fatty acids, Lipid metabolism, Endoplasmic reticulum stress, RNA-
sequencing, Proteome, Type 2 diabetes

Background
The prevalence of type 2 diabetes has dramatically risen
over the past few decades, reaching currently 9% of the
world population [1]. This rise, expected to continue in
the coming years, can be in large part explained by the
global epidemic of obesity. Obesity increases the risk of
the developing type 2 diabetes 7-fold [2] and is associ-
ated with increased circulating levels of free fatty acids
(FFA), due to resistance to the anti-lipolytic effect of in-
sulin and increased adipose tissue mass [3]. The increase
in FFA may be a crucial link between obesity and the
pathogenesis of diabetes. There is a substantial body of
evidence supporting that elevated FFA have deleterious
effects on β-cell function and survival, a phenomenon
commonly referred to as lipotoxicity [4–6]. Prolonged
elevation of FFA in obese [7] or genetically predisposed
individuals [8] impairs glucose-stimulated insulin secre-
tion. In animal models, high-fat feeding impairs the abil-
ity of β-cells to compensate for insulin resistance [9, 10]
and induces β-cell apoptosis [11].
Palmitate is the most prevalent saturated FFA in

humans. In large-scale epidemiological studies in the
United States [12, 13] and Europe [14], high circulating
levels of palmitic acid were associated with higher risk of
type 2 diabetes, insulin resistance and inflammation [12].
Among different saturated FFA, palmitic acid had the
strongest association with type 2 diabetes risk [14]. In
vitro, palmitate is more toxic to β-cells than the unsatur-
ated FFA oleate [15]. Prolonged exposure to palmitate
decreases glucose-stimulated insulin secretion in rat [16]
and human islets [17, 18] and induces β-cell apoptosis
[15]. Even if exposure to a single FFA cannot fully reflect
the complex metabolic environment to which β-cells are
exposed in vivo [19], exposure to palmitate mimics
pathophysiological changes relevant for β-cell failure ob-
served in type 2 diabetes [6]. Thus, it is a useful model
to explore mechanisms of lipotoxicity.
Omics studies leverage high-throughput technologies

to decipher the intricate biological processes underlying
complex diseases, such as diabetes. RNA-sequencing
(RNA-seq) enables the interrogation of the whole tran-
scriptome and has become the method of choice for
transcriptome profiling. Compared to microarrays,
RNA-seq has improved accuracy in transcript

quantification, higher dynamic range and provides infor-
mation on alternative splicing and novel transcripts [20].
As quantitative proteomics offered limited depth of
coverage until recently, changes in transcript levels de-
tected by transcriptome studies have been widely used
as a surrogate for protein expression changes.
Compared to the separate analysis of transcript and

protein changes induced by an environmental insult, the
joint analysis of such datasets is a powerful tool to valid-
ate key expression changes and clarify whether transcript
abundance mediates protein alterations. The integration
of complementary layers of information generated by
transcriptomics and proteomics is challenging, due to
biological, technical and computational pitfalls [21].
However, it holds great potential for providing a more
comprehensive view of gene expression regulation in-
volved in human disease.
Our group has previously performed RNA-seq of hu-

man islets exposed to palmitate, as an in vitro model to
better understand the response of β-cells to metabolic
stress [22]. In the present study, we crossed this tran-
scriptomic study (with the addition of one more experi-
ment) with a proteome analysis of palmitate-treated rat
INS-1E cells. We used both targeted and unbiased bio-
informatic analyses to identify critical pathways and reg-
ulators of the β-cell response to lipotoxicity that are
preserved among two different species, suggesting rele-
vant functional impact. To elucidate the interactions be-
tween differentially expressed genes, we used the output
of a random forests algorithm applied on expression
data, together with literature information, to predict a
gene regulatory network. Finally, we interfered experi-
mentally with the expression of selected target genes to
explore their role in β-cell function and survival.

Results
Transcript and protein profiling of pancreatic β-cells
Six human islet preparations exposed to palmitate for
48 h were profiled by RNA-seq. Five of these prepara-
tions (number 1–5 in Supplementary Table 1) have been
previously published [22], while preparation 6 was new;
RNA-seq of these 6 preparations was reanalyzed as de-
scribed [22]. The donor characteristics are provided in
Supplementary Table 1. RNA-seq identified 26,346
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different gene transcripts, out of which 1087 were up-
regulated and 2333 downregulated. Proteomic profil-
ing was performed in INS-1E cells following time
course exposure to palmitate at 0, 4, 16 and 24 h
(n = 2). This detected 7091 proteins, 394 of which
were identified as outliers (as defined in the proteo-
mics methods) and removed. 6333 proteins were suc-
cessfully mapped to gene names and these genes/
proteins were selected for further analysis. After this
selection, the number of up- and down-regulated
genes became 540 and 955 respectively. The number
of up- and down-regulated proteins became 744 and
647 respectively. Comparison between RNA-seq and
proteome revealed 85 upregulated and 122 downregu-
lated genes common to both datasets (p-value for the
intersection < 1 × 10− 5, from a hypergeometric
distribution).

Comparison of INS-1E cell and human islet gene
expression profiles
In order to test the biological relevance of crossing
omics data between species, we compared the human
islet RNA-seq data with our previous INS-1E cell
microarray data [23]. For this comparison, we used
the rank-rank hypergeometric overlap (RRHO)
method. RRHO treats data from two unrelated data-
sets as a ranked continuum of differential expression
changes and searches for coordinated changes in gene
expression in a threshold-free manner [24]. This

robust method captures statistically significant and
biologically relevant changes that may be missed
when user-defined thresholds are applied [24]. RRHO
heatmaps allow to visualize the pattern and signifi-
cance of the overlap. Perfectly correlated gene expres-
sion changes in two datasets generate a strong
positive signal along the diagonal in the RRHO heat-
map (Supplementary Fig. 1A), whereas perfect overlap
limited to the most up- and downregulated genes
translates to a significant signal at the bottom left
and upper right corners of the map, respectively
(Supplementary Fig. 1B). When comparing two ran-
dom gene sets, the heatmap shows absence of signifi-
cant overlap throughout (Supplementary Fig. 1C).
Comparing human islet RNA-seq data with INS-1E
cell microarray data following palmitate exposure re-
vealed highly significant overlap, most prominent for
upregulated genes (Fig. 1a, bottom left corner) but
also for downregulated genes (upper right corner).
We further compared the INS-1E cell microarray profiling
with the INS-1E cell proteome following palmitate expos-
ure. The RRHO map showed highly significant overlap
along the diagonal of differential expression (Fig. 1b), rem-
iniscent of the map obtained when two independent data-
sets have identical expression changes (Supplementary
Fig. 1A). These data indicate that gene signatures between
rat INS-1E cells and human islets exposed to palmitate are
significantly correlated, rendering their joint analysis in
the present study pertinent.

Fig. 1 RRHO map showing highly significant overlap between human islet RNA-seq and INS-1E cell transcriptomes (a) and between microarrays
and proteome of INS-1E cells following palmitate exposure (b). RNA-seq in human islets, microarrays in INS-1E cells and proteome in INS-1E cells
were performed after exposure to palmitate for 48 h, 14 h and 24 h, respectively. Genes are ranked by fold change from most up- to most down-
regulated. The level map colors represent -log p-values for overlap between ranked genes, with an indication of the smallest FDR corrected p-
value for coordinates with the most statistically significant overlap between genes up-regulated in both datasets (bottom left corner) and down-
regulated in both (top right corner)
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Analysis of palmitate-modified genes/proteins
In a first step, we analyzed the 207 genes differentially
expressed in both the RNA-seq and proteome by manu-
ally curating them into functional categories based on
their presumed biological function (Fig. 2 and Supple-
mentary Table 2). Exposure to palmitate produced a
complex transcriptional and translational response.
Among the functions that were most affected by palmi-
tate were: lipid metabolism, channels and transporters,
cytoskeleton and extracellular matrix. Additionally,
palmitate caused gene expression changes related to cell
cycle control, apoptosis and stress pathways, including
endoplasmic reticulum (ER) stress and oxidative stress.

Lipid metabolism
Palmitate modulated the expression of genes with key
roles in FFA metabolism. It induced expression of CPT1,
which mediates mitochondrial FFA uptake, and enzymes
involved in FFA β-oxidation, namely ACADVL, ACAA2
and HADHB. Palmitate inhibited expression of ACACA,
an enzyme catalyzing fatty acid synthesis and lipogen-
esis, and induced FADS1, a desaturase that catalyzes the
synthesis of long-chain omega-3 and omega-6 polyunsat-
urated fatty acids.
Moreover, palmitate modulated expression of genes

involved in cholesterol biosynthesis and transport.
Palmitate downregulated DHCR24, which catalyzes the
final step in cholesterol biosynthesis, induced expression
of the LDL receptor and attenuated ABCG1 expression.

The latter acts as cholesterol efflux channel in other cell
types. In β-cells, it affects the cholesterol content of in-
sulin granules and granule morphology. Interestingly, its
deficiency attenuates insulin secretion in mouse β cells
[25].

ER stress
In previous studies by us and others, chronic exposure
to palmitate has been shown to activate signaling
through the three canonical branches of the ER stress
response under the control of PERK, IRE1 and ATF6,
and to elicit ER stress-induced apoptosis [15, 26].
CREB3L2 and other members of the CREB3/ATF fam-

ily of transcription factors have been proposed as novel
ER stress transducers, functioning in a cell- and
stimulus-specific manner [27]. These ER membrane-
bound proteins are activated by regulated intramem-
brane proteolysis at the Golgi in response to ER stress.
CREB3L2 was upregulated by palmitate at the mRNA
and protein level. This was confirmed by qPCR in INS-
1E cells and independent human islet preparations (Sup-
plementary Fig. 2A-B). Based on data suggesting a role
of CREB3L2 against ER stress-induced apoptosis in
other cell types [28, 29], we investigated whether
CREB3L2 protects β-cells from lipotoxicity. CREB3L2
knockdown by siRNA in human islet cells did not alter
palmitate-induced apoptosis (Supplementary Fig. 2C-D).
Interestingly, CREB3L2 silencing by two siRNAs target-
ing different mRNA regions in INS-1E cells decreased

Fig. 2 Manual classification of palmitate-modified β-cell transcripts and proteins into functional categories. Upregulated genes are shown in red
and downregulated genes in green. The list of genes shown in this figure is not exhaustive
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glucose-stimulated insulin secretion, without affecting
insulin content (Supplementary Fig. 2E-G). These data
unveil a role of CREB3L2 in regulating insulin secretion,
and not in lipoapoptosis.
Palmitate induced LMAN1 and LMAN2 expression.

LMAN1 is known to act as a cargo receptor for selective
glycoprotein transport between the ER and Golgi com-
partments and the early secretory pathway [30]. Palmi-
tate has been shown to inhibit protein trafficking
between ER and the Golgi, inducing ER stress by subse-
quent protein overload in the ER [31]. Palmitate also up-
regulated ERO1A, an oxidoreductase involved in
oxidative protein folding in the ER. The palmitate-
induced ERO1A upregulation may be deleterious, since
ERO1A hyperactivity has been reported to lead to oxida-
tive perturbations, eliciting ER stress [32]. Finally, palmi-
tate downregulated EIF2B5, which codes for the catalytic
eIF2Bε subunit of the eukaryotic initiation of translation
factor eIF2B [33]. The latter is a regulator of protein
translation by exchanging GDP for GTP in eIF2, enab-
ling the ternary complex to form and translation to initi-
ate. In conditions of ER stress and PERK-dependent
eIF2α phosphorylation, eIF2B function is inhibited; our
current findings also suggest transcriptional and transla-
tional regulation of the protein.

Channels and transporters
Palmitate modified the expression of several channels
and transporters. It upregulated CLIC1, an intracellular
chloride ion channel, previously shown to act as a down-
stream effector of insulin [34], and it enhanced expres-
sion of members of the SLC7 family of amino-acid
transporters. SLC7A1 was upregulated at both protein
and mRNA level and SLC7A5 and SLC7A11 were up-
regulated at the mRNA level. It has been previously
shown that SLC7A1 and SLC7A5, as well as other
amino-acid transporters, are induced during ER stress in
β-cells. This is part of an anabolic program to overcome
translational repression secondary to PERK-dependent
eIF2α phosphorylation [35] and it was suggested to con-
tribute to β-cell demise. To test this hypothesis, we
evaluated the effect of SLC7A1 depletion in β-cells
under lipotoxic conditions and following exposure to
the chemical ER stressor cyclopiazonic acid (CPA).
SLC7A1 knockdown in INS-1E cells induced apop-
tosis under basal conditions and increased palmitate
and CPA toxicity (Supplementary Fig. 3A-D). Simi-
larly, SLC7A5 inhibition by RNA interference (Supple-
mentary Fig. 3E-F) or by the chemical inhibitor BCH
(Supplementary Fig. 3G) did not protect from
palmitate-induced apoptosis. Thus, the upregulation
of these amino-acid transporters by lipotoxic ER
stress does not mediate cell death.

Hormones and receptors
Palmitate inhibited expression of the GLP1 receptor in
our –omic studies. This is in keeping with previous re-
ports demonstrating that palmitate downregulates the
GLP1 receptor, which decreases the β-cell insulin
secretory response and impairs the effect of GLP1 ago-
nists [36].

Pathway analysis and enriched transcription factors
Further to our manual annotation, we used bioinfor-
matic approaches to obtain an unbiased overview of the
biological pathways modified in lipotoxic conditions.
Genes modified by palmitate at both mRNA and protein
level were analyzed by Ingenuity Pathway Analysis (IPA,
QIAGEN Inc., https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis) to identify
enriched pathways. IPA evaluates the overrepresentation
of a group of genes mapping to a specific pathway com-
pared to a reference set of genes and calculates signifi-
cance for each pathway of interest. IPA indicated that
upregulated genes were involved principally in the oxi-
dative stress response, fatty acid β-oxidation, mitochon-
drial dysfunction, the ERK/MAPK pathway and amino-
acid metabolism (Fig. 3a). Downregulated genes were
overrepresented in cell cycle regulating pathways, LXR/
RXR signaling and cAMP-mediated signaling (Fig. 3b).
In order to identify transcription factors orchestrating

the palmitate-induced gene expression changes, the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) was used to assess overrepresenta-
tion of transcription factors binding sites [37, 38].
Among the most enriched transcription factors were
CREBP1, p300, PPARA, XBP1, BACH1 and BACH2
(Fig. 4).

Network inference analysis
Aiming to unravel potential key mediators of lipotoxi-
city, we combined the output of a random forests algo-
rithm to infer regulations among the differentially
expressed genes and proteins, and a prior network ob-
tained from literature data (see Methods - Network in-
ference analysis). To obtain this prior network, we
searched IPA and DAVID for putative upstream regula-
tors in the set of 207 differentially expressed genes/pro-
teins. The obtained regulators (53 in total) were added
to the set of 207 genes/proteins, resulting in a set of 258
genes/proteins (2 were already present). As shown in
Fig. 5, we obtained a network of 416 regulations involv-
ing 190 genes/proteins: 3 regulations inferred from the
RNA-seq and proteomics dataset, all present in the prior
network; 97 inferred from the RNA-seq dataset, of which
44 were present in the prior network; and 316 inferred
from the proteomics dataset, of which 129 were present
in the prior network. The most significant hub genes
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with the highest number of interactions with palmitate-
modified genes were USF1, MEF2C, JUND, HNF1A,
FOXO1 and BACH1.
USF1 polymorphisms have been associated with in-

creased risk for type 2 diabetes and metabolic syndrome
[39–41]. The role of HNF1A and FOXO1 in β-cell
pathophysiology is well established. HNF1A mutations
cause maturity-onset diabetes of the young (MODY)
type 3 and rare variants in this gene increase type 2 dia-
betes risk [42]. FOXO1 is a transcription factor acting as
a key nutrient sensor, with a critical role in β-cell func-
tion and survival [43, 44].
BACH1 (BTB and CNC homology 1) is a transcription

factor that binds to Maf-recognition elements (MAREs)
and inhibits transcription of oxidative stress-responsive
genes, including heme oxygenase-1 (HMOX1) [45].
qPCR showed a trend for BACH1 induction in INS-1E

cells and significant upregulation of BACH1 in human
islets exposed to palmitate (Supplementary Fig. 4A-B).
BACH1 silencing in human islet cells did not protect
from palmitate-induced apoptosis (Supplementary
Fig. 4C-D). BACH1 knockdown in INS-1E cells, con-
firmed by qPCR of BACH1 and its target Hmox1 (Sup-
plementary Fig. 4E-F), did not alter insulin content but
it enhanced glucose- and potassium-stimulated insulin
secretion (Supplementary Fig. 4G-I). Collectively, these
findings suggest that BACH1 may contribute to lipotoxic
β cell dysfunction.

Discussion
The present study is the first to integrate transcriptomic
and proteomic profiling of β-cells exposed to palmitate,
to thoroughly map the lipotoxic response. Our group
has previously published a transcriptome analysis of

Fig. 3 Enriched pathways in differentially expressed genes/proteins in palmitate-treated β-cells. Upregulated (a) and downregulated genes (b)
were analyzed separately by IPA. The length of the bars is proportional to the significance of the association between the set of genes and the
pathway, expressed by the negative logarithm of the p-value. The red line indicates the ratio of modified genes/proteins mapping to the
pathway to the total number of elements of this pathway. Only pathways with p < 0.05 are shown
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palmitate-treated human islets using RNA-seq [22]. This
pointed to important pathways for lipotoxic β-cell de-
mise, such as the ER stress response, suppression of au-
tophagic flux and inhibition of transcription factors that
control β-cell identity. This study, as well as microarray
studies of human islets [18, 46] and clonal β-cells [47,
48] by other groups, have helped to expand our under-
standing of the underlying mechanisms of lipotoxicity. A
limitation of transcriptomic studies is that transcrip-
tional changes are not necessarily mirrored by protein
expression [49–51]. This can be explained by post-
transcriptional regulation that affects mRNA stability
and translation rate (microRNAs, RNA binding pro-
teins), post-translational modifications, and protein turn-
over. As an example, palmitate has been shown to alter
the expression of non-coding RNAs [52] and the lysine

acetylation of proteins [53]. Therefore, crossing tran-
scriptomic with proteomic data provides valuable in-
sights that may not be uncovered by the individual
analysis of mRNA and protein expression.
In the present study, we used state-of-the art, highly

sensitive transcriptome and proteome profiling tech-
nologies. These allowed deep coverage of the transcrip-
tome and detection of least 2–3 times more proteins
compared to previous proteomic studies of palmitate-
treated β-cells [17, 54–56]. We focused our analyses on
the subset of differentially expressed genes that were
common to the RNA-seq and proteomic datasets, i.e.
changes in transcript abundance resulted in protein ex-
pression changes, strengthening the validity and func-
tional relevance. The targeted analysis of our data,
together with the unbiased, bioinfomatic analyses,

Fig. 4 Enriched transcription factors in palmitate-modified genes/proteins in β-cells. Genes differentially expressed at both mRNA and protein
level were analyzed by DAVID (UCSC_TFBS). The length of the bars is proportional to the significance of the overrepresentation of potential
binding sites for the indicated transcription factors in the modified genes, expressed by the negative logarithm of the p-value. The red line
indicates the fold enrichment of the palmitate-modified genes compared to a random set of genes from the human genome
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unveiled pathways and transcription factors with import-
ant roles for the palmitate-induced β-cell dysfunction
and death.

Lipid metabolism
In accordance with previous microarray [46, 48] and
proteomic studies [55], palmitate induced extensive
changes in genes involved in lipid metabolism. Palmitate
triggered changes consistent with increased FFA β-
oxidation, reduced lipogenesis and modified cholesterol
metabolism. CPT1, the rate-limiting enzyme in mito-
chondrial FFA import, was upregulated and ACACA, a
key enzyme driving lipogenesis, was downregulated.
Interestingly, it has been shown that adenoviral CPT1
overexpression in β-cells impairs glucose-stimulated in-
sulin secretion [57]. A recent study found that short-
term inhibition of ACACA in mice impaired insulin se-
cretion and long-term ACACA inhibition decreased β-
cell mass [58]. The palmitate-induced lipid metabolism
gene/protein expression changes identified in the
present study may hence contribute to inhibit insulin

secretion and affect β-cell mass. Our in silico analyses
point to specific transcription factors orchestrating these
palmitate-induced changes. Pathway analysis showed
that palmitate modified LXR/RXR signaling. LXR is a
transcription factor that forms heterodimers with RXR
and regulates FFA β-oxidation, lipid synthesis and stor-
age. LXR agonists have been shown to modulate palmi-
tate toxicity in β-cells [59, 60]. Transcription factor
enrichment analysis by DAVID identified PPARα as a
critical player in the transcriptional response. PPARα is
predicted in silico to bind to the large majority of the
palmitate-modulated genes related to lipid metabolism.
Our network inference analysis indicated FOXO1 as a

major regulator of the β-cell response to palmitate.
FOXO1 signaling was identified as an enriched pathway
in a previous proteomic study of palmitate-exposed hu-
man islets [17]. FOXO1 is a multifunctional protein
regulating proliferation, differentiation, apoptosis and
metabolic pathways in β-cells [44]. FOXO1 inhibition
in vitro protects β-cells from FFA-induced apoptosis
[61]. On the other hand, ablation of FOXO1 in mice

Fig. 5 Network inference analysis of palmitate-modified genes/proteins. Enriched regulators identified by IPA and DAVID were added to the 207
differentially expressed genes, resulting in a dataset of 258 genes considered for this analysis. Upregulated genes are shown in red,
downregulated genes in green, and the added regulators are shown in white circles. Regulatory networks were inferred in the RNA-seq and
proteomics data separately using a random forest algorithm to score predictors and then the 2 networks were combined. Blue lines denote
regulations identified in RNA-seq, yellow lines denote regulations identified in proteomics and black lines denote regulations found in both
datasets. Regulations present in biological databases (IPA, DAVID, TRANSFAC, RegNetwork) are shown in continuous lines and regulations that
have not been previously described are shown in dashed lines
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increases palmitate oxidation in a PPARα-dependent
way and impairs glucose-stimulated insulin release [43].
FOXO1-deficient cells have impaired ability to switch
from lipid to glucose oxidation, becoming metabolically
inflexible [43], which can ultimately lead to loss of β-cell
identity and dedifferentiation [62]. Taken together, our
data suggest that LXR, PPARα and FOXO1 are key tran-
scription factors for the metabolic adaptation or dys-
function of β-cells in response to palmitate.

cAMP/PKA signaling
A further finding of our pathway analysis was that
palmitate modified cAMP/PKA signaling. The activation
of PKA by cAMP is a cellular signaling pathway that reg-
ulates a variety of cellular responses. In keeping with the
role of cAMP/PKA signaling in lipotoxicity, it has been
shown that prolonged exposure to palmitate suppresses
the glucose-induced cAMP increase and contributes to
secretory defects [63]. Raising intracellular cAMP levels
confers protection against palmitate-induced apoptosis
[64].
Compartmentalization of PKA is essential to elicit dis-

tinct cellular effects. This is mediated by the family of
PKA anchoring proteins (AKAPs), which target PKA to
discrete subcellular locations and integrate signals de-
rived from multiple pathways [65]. Interestingly, palmi-
tate downregulated 3 members of this family, namely
AKAP1, AKAP7 and AKAP11. Palmitate also upregu-
lated PDE4D, a phosphodiesterase that inactivates cAMP
signaling, and VASP, a known target of PKA modifying
actin cytoskeleton [66].
Activation of cAMP signaling mediates, at least in part,

the insulinotropic and anti-apoptotic effects exerted by
GLP1 [67, 68]. In this study, we confirm that palmitate
represses GLP1 receptor expression, potentially contrib-
uting to decreased cAMP signaling.

Oxidative stress
Palmitate also upregulated genes involved in oxidative
stress pathways. FFA are important inducers of reactive
oxygen species (ROS) through mitochondrial and non-
mitochondrial pathways [69]. While short-term elevation
of ROS stimulates insulin secretion, sustained or exces-
sive ROS production inhibits insulin secretion [69].
Both in the DAVID and network inference analyses,

BACH1 was predicted to be a key transcription factor
mediating the response to palmitate. BACH1 is a crucial
player in regulating antioxidant gene transcription, act-
ing as a repressor of heme oxygenase-1 (HMOX1) and
other antioxidant enzymes [70]. In mouse models,
BACH1 deficiency confers protection against oxidative
stress-induced diabetes [71]. In our functional studies,
BACH1 inhibition did not affect apoptosis, but it en-
hanced insulin secretion and induced heme oxygenase-1.

This points to a role of BACH1 in regulating insulin se-
cretion, through the modulation of the oxidative stress
response.

Amino-acid metabolism and transport
Pathway analysis indicated that palmitate induced
changes in amino-acid metabolism, in particular of pro-
line, histidine and arginine. These were associated with
the differential expression of two enzymes, PYCR1 that
synthesizes proline from arginine and AMDHD, involved
in histidine degradation. Furthermore, palmitate induced
SLC7A1 expression, which transports the cationic
amino-acids arginine, lysine and ornithine. In contrast to
a previous report [35], we found that SLC7A1 and
SLC7A5 silencing did not protect from lipotoxic or ER
stress-induced apoptosis. Hence, the upregulation of
amino-acid transporters during ER stress does not con-
tribute to β-cell demise. Recent plasma metabolomic
studies have shown a positive association between spe-
cific branched-chain amino-acids and type 2 diabetes
[72]. Metabolomic studies of β-cells, basally and in the
face of metabolic stress, will shed further light on the
biological impact of amino-acid alterations.

Cell cycle
In keeping with microarrays in INS-1E cells [48] and
proteomics in human islets [17, 46], we found that cell
cycle pathways were downregulated. FFA suppress
glucose-stimulated β-cell proliferation in in vitro and
in vivo rodent models [73]. Human β-cells express cell
cycle regulating key molecules but, contrary to rodent
cells, these molecules are refractory to activation by pro-
liferative signals [74]. Given that adult human β-cells are
post-mitotic and do not proliferate [75, 76], the down-
regulation of cell cycle regulating genes by palmitate is
an intriguing finding. It may reflect gene expression
changes in non-β-cells in human islets.
We acknowledge that this study has certain limita-

tions. First, transcriptome was performed in human is-
lets, while proteome was performed in clonal rat INS-1E
β-cells, because of the amount of material needed for
protein profiling. There are differences between rat and
human β-cells, with respect to glucose sensing, redox
regulation and susceptibility to cytotoxic agents [77].
Nevertheless, the comparison by RRHO of human islet
and INS-1E cell transcriptomes shows that there is
strong overlap between their palmitate-induced gene sig-
natures (Fig. 1a). A previous quantitative comparison of
human and rat β-cells demonstrated that the core prote-
omic architecture of β-cells is highly conserved. In par-
ticular, the relative abundance of glycolytic enzymes,
Krebs cycle enzymes, β-oxidation enzymes, and oxidative
phosphorylation are quite similar [78]. The comparison
of gene/protein expression profiles between INS-1E cells
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and human islets is therefore relevant. Second, RNA-seq
was performed in human islets, which is a mixed cell
population containing 50% β-cells. It has been shown,
however, that there is a high correlation between β-cell
and islet-expressed genes (r = 0.94) and that 87% of the
variance in β-cell gene expression can be explained using
islet expression as a proxy [79]. Studies in human islets
also suffer from variability, due to islet isolation proce-
dures, clinical donor characteristics and (epi) genetic
variation [80]. They are, nevertheless, the β-cell model
closest to human (patho)physiology. Transcript and pro-
tein changes were assessed at different times in human
islets and INS-1E cells. These time points were selected
on the basis of previous functional studies, indicating
that human islets are less sensitive than INS-1E cells to
palmitate [15]. Finally, several studies have shown that
the abundance of transcripts with detectable proteins in
proteomics is shifted to higher expression values. This
suggests that some transcripts do not yield functional
proteins or yield lowly expressed proteins that are below
the proteomics detection limit. Taking into account that
RNA-seq is more sensitive in detecting quantitative
changes in gene expression, we applied less strict criteria
in the definition for differential expression from the pro-
teomics database.
Notwithstanding these limitations, this is the first

study to combine transcriptomic analyses with sensitive
time course proteomic profiling of palmitate-exposed β-
cells.

Conclusions
This combined transcriptomic and proteomic study of
β-cells provides a comprehensive overview of the gene
expression changes induced by palmitate and highlights
significant pathways implicated in the response to lipo-
toxicity. These include alterations in lipid metabolism,
oxidative stress, ER stress, cAMP/PKA signaling and cell
cycle pathways. Our bioinformatic analyses unveil tran-
scription factors that may act as drivers of the response
to FFA and could serve as targets for future
investigations.

Methods
Human islets and rodent β-cells
Human islets were obtained from heart-beating organ
donors with no medical history of diabetes or metabolic
disorders. Islets were isolated using collagenase digestion
and density gradient purification and cultured in M199
medium (at 5.5 mM glucose). The islets were shipped
from Pisa to Brussels within 1–5 days of isolation. In
Brussels, the human islets were cultured in Ham’s F-10
medium (at 6.1 mM glucose), containing 10% heat-
inactivated FBS, 2 mM GlutaMAX, 50 mM 3-isobutyl-1-
methylxanthine, 1% charcoal-absorbed BSA, 50 units/mL

penicillin, and 50mg/mL streptomycin. The islets were
treated with 0.5 mM palmitate (Sigma, Schnelldorf,
Germany) or control (ethanol) in the same medium con-
taining 1% charcoal-absorbed BSA but no FBS for 48 h.
The use of albumin to complex FFA is essential to en-
sure that the experiment is biologically relevant [5, 81].
Palmitate was dissolved in 90% ethanol, heated to 60 °C,
and diluted 1:100 (final concentration 0.5 mM). The
average percentage of β-cells in the human islet prepara-
tions, examined by insulin immunofluorescence [15],
was 50%.
The rat insulinoma cell line INS-1E [82] (a kind gift

from Professor Claes Wollheim, Centre Medical Univer-
sitaire, Geneva, Switzerland) was used between passages
61–72 and maintained in RPMI 1640 medium (SVA,
Uppsala, Sweden) containing 11.1 mM glucose supple-
mented with 10% FBS (Invitrogen, Carlsbad, CA), 10
mM HEPES (Invitrogen), 2 mM L-glutamine (SVA), 1
mM sodium pyruvate (Sigma-Aldrich, St. Louis, MO),
50 μM β-mercaptoethanol (Sigma-Aldrich) and antibi-
otics (6 mg/ml penicillin G and 5mg/ml streptomycin
sulfate [Invitrogen]). INS-1E cells tested negative for
Mycoplasma infection. 72 h prior to treatment cells were
seeded in 100mm Petri dishes at a density of 2,400,000
cells per dish in 15ml medium. During palmitate expos-
ure (0.4 mM, for 0, 4, 16 and 24 h), cells were kept in
similar medium, but with a 1% FBS concentration and
0.5% FFA-free BSA (Roche Diagnostics GmbH, Mann-
heim, Germany). Untreated cells received equal amounts
of ethanol and BSA. Two independent replicates were
performed for each treatment. Palmitate was prepared in
12.5% ethanol as 100mM stock solution, and, prior to
treatment, complexed with BSA for 30 min at 37 °C.

RNA-seq
RNA-seq was performed in 6 human islet preparations
exposed to palmitate for 48 h or ethanol (control) and
analyzed as previously described [22]. In order to assess
differential expression, the exact Fisher test was applied
on RNA-seq counts for each paired sample, followed by
the Benjamini-Hochberg correction for multiple testing.
Genes were considered as differentially expressed if they
were significantly modified (p < 0.05) in the same direc-
tion in at least 4 out the 6 paired samples, and signifi-
cantly modified in the opposite direction in at most 1
paired sample.

Proteomics
Proteomics were performed on INS-1E cells following a
time-course palmitate exposure at 0, 4, 16 and 24 h
using an iTRAQ technique in 2 independent experi-
ments. iTRAQ is based on the covalent labeling of the
N-terminus and side chain amines of peptides from pro-
tein digestions with tags of varying mass. Samples were
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pooled and fractionated by liquid chromatography and
analyzed by tandem mass spectrometry (MS/MS). A
database search was performed using the fragmentation
data to identify the labeled peptides and corresponding
proteins. The fragmentation of the attached tag gener-
ates a low molecular mass reporter ion that was used to
relatively quantify the peptides and proteins from which
they originated [83]. A detailed description of the
method is provided in the additional material (Supple-
mentary Methods).
Protein expression was first divided by the expression

mean of the control samples (i.e. the 2 samples at 0 h) of
all proteins. Then, the expression of each protein at fur-
ther time points was divided by the mean of its control
samples. A 95% confidence interval for the ratio between
the control samples was estimated (2 to the power of ±
1.96*standard deviation of the log2 transformed ratio, as-
suming normality) and used as cut-off values for up and
down-regulation (1.24 and 0.8 respectively). Proteins
were considered outliers and excluded from analyses if
the ratio of the control samples exceeded the estimated
95% confidence interval. A protein was considered dif-
ferentially expressed if its expression was higher/lower
than these cut-offs in any of the time points of exposure
in at least one experiment. Rat proteins were mapped to
human genes using Uniprot conversion tools (www.uni-
prot.org/) and NCBI’s homology database (https://www.
ncbi.nlm.nih.gov/homologene).

Rank-rank hypergeometric overlap (RRHO)
Rank-rank hypergeometric overlap (RRHO) maps were
generated by a modified two-tailed RRHO method [24,
84]. Differentially expressed genes were ranked by the
logarithm of fold change. The p-values of the overlap-
ping genes were assessed by a two-tailed hypergeometric
test and false discovery rate corrected by the Benjamini
and Yekutieli method. The RRHO R package was modi-
fied to better take into account the multiplicity of min-
imal p-values, null p-values, the up- and down-regulated
genes going in opposite direction and the asymmetry be-
tween the number of genes up- or down-regulated in
the two datasets.

Network inference analysis
Gene regulatory networks were obtained by combining
inferred networks from the expression profiles of the
proteomics and RNA-seq datasets and a prior network,
obtained from literature knowledge.

Prior network
To obtain a prior network using literature data, we
searched for putative upstream regulators of the set of
207 differentially expressed genes/proteins using IPA
(QIAGEN, Redwood City) and DAVID. In DAVID, we

looked for enriched transcription factor binding sites
(source UCSC TFBS, selection criteria Benjamini-
Hochberg adjusted p < 0.05). For IPA, the upstream ana-
lysis was used (criteria for selection non-adjusted p <
0.001). 53 regulators were obtained and added to the set
of differentially expressed genes/proteins (2 of them
were already present - the added 51 regulators are
ATF2, MEF2C, NFE2L1, NF1, USF1, RFX1, BACH1,
CUX1, POU2F1, CREB1, NFYA, HNF1A, TCF3, ARNT,
STAT3, FOXO1, PML, ACLY, HNF4A, LSS, LAMC1,
APP, CDKN1A, MTA3, PTEN, E2F4, SCAP, PCM1,
HDAC10, LPIN1, WT1, KRAS, SIRT1, RRP1B, MLXIPL,
SLC2A1, ATM, PPP3CA, ITGAV, PNPLA2, VEGFA,
TOPBP1, E2F3, IDH2, ABCA1, ALG2, IQCB1, MBNL2,
EIF2B3, ACOT8, and SLC25A10). A prior regulatory
network was obtained by associating the enriched tran-
scription factors to the respective targets, and including
regulations obtained in the TRANSFAC [85] and
RegNetwork [86] databases, involving the novel set of
258 genes/proteins. In the end, a prior network of 3082
regulations between 258 genes/proteins was obtained
(1877 regulations from DAVID, 232 regulations from
IPA, 938 regulations from TRANSFAC, 551 regulations
from RegNetwork).

Network inference from expression data
A regulatory network was inferred in the RNA-seq and
proteomic datasets separately. In the RNA-seq data, fold
change values were used (the minimum RPKM was set
to 0.1). Inference was done on 6 samples (of fold change
values). On both datasets, the data was log2 transformed
and the expression of each gene/protein was divided by
its standard deviation. In both datasets, network infer-
ence was done on a variable scoring manner. For each
gene/protein, that gene/protein is considered a target
variable, and all other genes/proteins are scored with re-
spect to their predictive value towards it. In the proteo-
mics dataset, the inference was directed, making use of
the fact that different time points were used. In this case,
the target variable takes the form “4h#1, 4h#2, 16h#1,
16h#2, 24h#1, 24h#2”. The predictor variables take the
form “0h#1, 0h#2, 4h#1, 4h#2, 16h#1, 16h#2”. In the
RNA-seq dataset, the inference was undirected, and the
regulation score between two genes was the maximum
of the two scores obtained when each of the genes was
considered as target.
A random forest algorithm was used to score predic-

tors of a target variable. A similar approach has been
proposed in GENIE3 [87]. This was implemented in R
using the package “randomForest” RF [88]. The number
of trees was set to 20,000 and the number of variables
randomly sampled as candidates at each split was set to
244/3. The adopted score (variable importance) is the
total decrease in node impurities from splitting on the
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variable, averaged over all trees (node impurity measured
by the residual sum of squares). A null distribution of
random scores was obtained by shuffling the data and
repeating the network inference procedure. Using this
distribution, original regulation scores were associated to
a p-value. Regulations (edges) were selected if p < 0.001
or alternatively if p < 0.05 and the regulation was present
in the prior network. This analysis was performed for
the 2 datasets (RNA-seq and proteomics) separately.
The two obtained networks were then merged and a
final network of 416 regulations involving 190 genes/
proteins was obtained.

Treatments
For validation and functional studies, INS-1E cells and
dispersed human islets were exposed in independent ex-
periments to 0.5 mM palmitate precomplexed to 0.67%
FFA-free BSA for 24 h. For these experiments, human is-
lets were cultured in the same medium as described
above (see section human islets and rodent β-cells). INS-
1E cells used for functional studies were authenticated
by DNA bar-coding of COX subunit 1 on August 2017
and periodically tested for Mycoplasma infection. They
were cultured in RPMI 1640 medium complemented as
described above but containing 5% FBS, which was low-
ered to 1% during palmitate exposure. Exposure to
palmitate (0.5 mM) in the presence of 1% charcoal-
absorbed BSA or precomplexed to 0.67% FFA-free BSA
results in similar unbound FFA concentrations [81].
BCH (2-Amino-2-norbornanecarboxylic acid) was used
to inhibit the system L of amino-acid transporters at a
concentration of 10 mM. The ER stressor CPA was used
at 25 μM for 16 h. All compounds were from Sigma-
Aldrich.

RNA interference
The siRNAs are listed in Supplementary Table 3. Allstar
Negative Control siRNA (siCT, Qiagen) was used as
negative control. Transfection was performed using 30
nM siRNA and Lipofectamine RNAiMAX (Invitrogen-
Life Technologies) as described [89]. Cells were trans-
fected for 48 h.

Assessment of β-cell apoptosis
Apoptotic cells were identified and counted by fluores-
cence microscopy after propidium iodide (5 μg/ml) and
Hoechst 33342 (10 μg/ml) staining (Sigma-Aldrich) [90].
At least 400 cells were counted per experimental condi-
tion by two investigators, one of them unaware of the
conditions, with an agreement between them of > 90%.

qPCR
Poly(A)+ RNA was isolated using the dynabeads mRNA
DIRECT kit (Invitrogen) and reverse transcribed. qPCR

was performed on a Rotor-Gene Q (Qiagen) or a MyiQ2
(Bio-Rad) instrument and the amplicons were quantified
as copies/μl using a standard curve. Expression was cor-
rected for the reference genes glyceraldehyde-3-
phosphate dehydrogenase (Gapdh) for rat and β-actin
(ACTB) for human cells. Primer sequences are listed in
Supplementary Table 4.

Glucose-stimulated insulin secretion
INS-1E cells were pre-incubated for 1 h in RPMI
GlutaMAX-I medium (0 mM glucose, Life Technologies)
and for 30 min in Krebs-Ringer solution. Cells were then
sequentially exposed to Krebs-Ringer containing 1.67
mM glucose, 16.7 mM glucose or 30 mM KCl for 1 h. In-
sulin was measured using the rat insulin ELISA (Merco-
dia, Uppsala, Sweden) in cell-free supernatant and acid
ethanol-extracted cell lysates. Results were normalized
to total protein content (assayed by Bradford).

Statistical analysis in functional experiments
Data are shown as Tukey boxplots. Comparisons be-
tween gene expression data in treated and untreated
conditions were performed by ratio t-test. Multiple com-
parisons between groups were performed by ANOVA
followed by Sidak’s or Dunnett’s post hoc test. For gene
expression data, the same tests were applied after loga-
rithmic transformation of the data. A p-value< 0.05 was
considered statistically significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07003-0.

Additional file 1 Supplementary Fig. 1. Theoretical RRHO maps. To
exemplify and facilitate interpretation of the RRHO plots, RRHO maps
were generated for 3 different hypothetical conditions: (A) Identical gene
expression changes in two unrelated transcriptome datasets X and Y that
generate perfect overlap. The red color along the diagonal indicates
highly significant overlap; the blue color shows that no overlap exists
between upregulated genes in X and downregulated genes in Y (upper
left corner), and vice versa; (B) Identical gene expression changes among
the 10% most up- or downregulated genes in the two datasets that
result in highly significant overlap in the bottom left (genes similarly
upregulated in both X and Y) and upper right corner (genes similarly
downregulated in X and Y); (C) Two random datasets that generate no
overlap (indicated by the blue color).

Additional file 2 Supplementary Fig. 2. CREB3L2 deficiency impairs
glucose-stimulated insulin secretion. CREB3L2 mRNA expression mea-
sured by qRT-PCR in INS-1E cells (A) and human islets (B) exposed to
palmitate for 24 h. (C-D) Human islet cells were transfected with CREB3L2
siRNA or control siRNA (siCT) and treated with palmitate for 24 h. (C)
Apoptosis evaluated by DNA-binding dyes. (D) CREB3L2 mRNA expression
measured by qPCR. (E-G) INS-1E cells were transfected with control siRNA
or two Creb3l2 siRNAs. (E) Creb3l2 mRNA expression measured by qPCR.
(F) Insulin secretion after incubation with 1.7 mM and 16.7 mM glucose
and (G) insulin content following Creb3l2 knockdown. Insulin secretion
and content were measured by ELISA and corrected by total protein con-
tent. Data are from 4 to 7 independent experiments. *p < 0.05, **p < 0.01
vs siCT transfected cells or as indicated. #p < 0.05, ##p < 0.01 for
palmitate-treated vs control-treated cells.
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Additional file 3 Supplementary Fig. 3. The amino-acid transporters
SLC7A1 and SLC7A5 are upregulated during ER stress but do not mediate
ER stress-induced cell death. INS-1E cells were transfected with Slc7a1
siRNA (A-D) or control siRNA (siCT) and then exposed to palmitate for 24
h (A-B) or the ER stressor CPA for 16 h (C-D). (E-G) Slc7a5 activity was
inhibited in INS-1E cells by Slc7a5 siRNA (E-F) or by the chemical L-
amino-acid transport inhibitor BCH (G), and cells were exposed to palmi-
tate for 24 h. Slc7a1 (A) and Slc7a5 (E) mRNA expression assayed by qPCR.
(C, D, G) Apoptosis evaluated by DNA-binding dyes. Data are from 4 to 5
independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 vs siCT
transfected cells. #p < 0.05, ##p < 0.01 and ###p < 0.001 vs non-treated
cells.

Additional file 4 Supplementary Fig. 4. BACH1 knockdown stimulates
insulin secretion. BACH1 mRNA expression assayed by qPCR in INS-1E
cells (A) and human islets (B) exposed to palmitate for 24 h. (C-D) Human
islet cells were transfected with BACH1 siRNA or control siRNA (siCT) and
treated with palmitate for 24 h. (C) BACH1 mRNA expression measured
by qPCR. (D) Apoptosis evaluated by DNA-binding dyes. (E-I) INS-1E cells
were transfected with control siRNA or two different Bach1 siRNAs. mRNA
expression measured by qPCR of Bach1 (E) and heme oxygenase 1
(Hmox1) (F), a transcriptional target of Bach1. Insulin content (G) and in-
sulin secretion after incubation with 1.7 mM and 16.7 mM glucose (H) or
1.7 mM glucose and 1.7 mM glucose plus 30 mM KCl (I). Insulin secretion
and content were measured by ELISA and corrected by total protein con-
tent. Data are from 4 to 7 independent experiments. *p < 0.05, **p < 0.01,
***p < 0.001 and ****p < 0.0001 vs siCT transfected cells. #p < 0.05,
##p < 0.01 for palmitate-treated vs control-treated cells.

Additional file 5 Supplementary Table 1. Characteristics of the organ
donors and human islet preparations used for RNA-seq. Supplementary
Table 2. Functional classification of genes and corresponding proteins
modified by palmitate. Within each functional category, genes were clas-
sified in order of fold change. The level of transcript expression in control
samples is indicated in RPKM units. Supplementary Table 3. siRNAs.
Supplementary Table 4. Primer sequences
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