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Abstract

Background: Long non-coding RNAs (lncRNAs) are involved in many fundamental biological processes, such as
transcription regulation, protein degradation, and cell differentiation. Information on lncRNA in the melon fly,
Zeugodacus cucurbitae (Coquillett) is currently limited.

Results: We constructed 24 RNA-seq libraries from eight tissues (midgut, Malpighian tubules, fat body, ovary, and
testis) of Z. cucurbitae adults. A total of 3124 lncRNA transcripts were identified. Among those, 1464 were lincRNAs,
1037 were intronic lncRNAs, 301 were anti-sense lncRNAs, and 322 were sense lncRNAs. The majority of lncRNAs
contained two exons and one isoform. Differentially expressed lncRNAs were analyzed between tissues, and
Malpighian tubules versus testis had the largest number. Some lncRNAs exhibited strong tissue specificity. Specifically
expressed lncRNAs were identified and filtered in tissues of female and male Z. cucurbitae based on their expression
levels. Four midgut-specific lncRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR), and
the data were consistent with RNA-seq data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses of targets of midgut-specific lncRNAs indicated an enrichment of the metabolic process.

Conclusions: This was the first systematic identification of lncRNA in the melon fly. Expressions of lncRNAs in multiple
adult tissues were evaluated by quantitative transcriptomic analysis. These qualitative and quantitative analyses of
lncRNAs, especially the tissue-specific lncRNAs in Z. cucurbitae, provide useful data for further functional studies.

Keywords: Long non-coding RNA, Zeugodacus cucurbitae, RNA-seq, Transcriptome, Differential expressions

Background
The high-throughput sequencing technology has greatly
stimulated studies of insect genomes and transcriptomes
[1]. Hundreds of insect genomes and transcriptomes are
now accessible in the NCBI Short Read Archive (SRA)
database. These provide valuable information for gene
annotation [2]. As the member of the non-coding RNA
families, long non-coding RNA (lncRNA) is defined as

transcript longer than 200 nt (nucleotides) without
protein-coding potential [3, 4]. Non-coding RNAs play
essential roles in many biological processes, such as gen-
omic imprinting, dosage compensation, and post-
transcription regulation [5, 6]. However, most studies of
insect transcriptome analysis have focused on protein-
coding genes, and non-coding RNAs were less inform-
ative [7]. According to the genomic location [8],
lncRNAs are classified into four subcategories: long
intergenic non-coding RNA (lincRNA), sense lncRNA,
anti-sense lncRNA, and intronic lncRNA [9]. In eukary-
otes, lncRNAs are transcribed at several sites of the
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genome by RNA polymerase II and RNA polymerase III
[10]. Similar to mRNAs, lncRNAs are modulated by
post-transcriptional modifications, such as polyadenyla-
tion, splicing, and capping [11]. LncRNAs show poor
conservation among different species and have relatively
low expression level compared with mRNAs [12].
Systematic identification and analyses of lncRNAs have

been investigated in various species, such as goat [13],
mouse [14], zebrafish [15], tilapia [4], chicken [16], and
fungus [17]. Many studies have provided data enabling
lncRNA identification in insects. In Drosophila melano-
gaster, a total of 1875 candidate lncRNAs were identified
from multiple transcriptome data sets [18]. Using RNA-
seq technology, 8096 putative lncRNAs were identified
in one susceptible and two insecticide-resistant strains
of Plutella xylostella [19]. In addition, 2949 lncRNAs
were found in RNA-seq data of multiple life stages of
Anopheles gambiae [20]. These studies increased the
catalog of insect lncRNAs and provided insight into their
functions, such as cell differentiation, transcription regu-
lation, and dosage compensation [1]. Compared with
mRNA, lncRNA exhibits more tissue specific-expression
in insects, indicating a specific function associated with
these tissues [21].
LncRNAs can play crucial roles in many biological pro-

cesses, such as cell differentiation and development [22,
23]. In Drosophila, lncRNAs were probable involved in
molting because the mass of lncRNAs was significantly up-
regulated in the late embryonic and larval stages [5].
Knockdown of lincRNA_1317 expression by RNA interfer-
ence suppressed the replication of dengue virus in Aedes
aegypti, demonstrating the essential role of the lncRNA in
anti-viral defenses [24]. Genome location and co-
expression analyses of protein-coding genes and lncRNAs
revealed that several lncRNAs might be associated with fe-
cundity and virulence in Nilaparvata lugens [1]. More
interestingly, specific expression of lncRNAs among tissues
suggested their associated functions. In Locusta migratoria,
knockdown of a brain-specific lncRNA (PAHAL) by RNA
interference reduced aggregation behavior [25]. Functional
annotation of target genes of testis-specific lncRNAs from
RNA-seq data indicated that they may participate in the
spermatogenesis of Bombyx mori [26].
The melon fly, Zeugodacus cucurbitae (Coquillett), is

one of the most destructive and troublesome agricultural
pests [27, 28]. The genome of Z. cucurbitae has been se-
quenced and released [29], which provides sequence in-
formation for gene annotation and functional research.
The genome-wide expression of genes during the devel-
opmental stages has also been analyzed by RNA-seq
[30]. However, there is no information about lncRNAs
or functional studies in Z. cucurbitae. In this study, 24
RNA-seq datasets were constructed from different tis-
sues of female and male Z. cucurbitae, including midgut,

Malpighian tubules, fat body, ovary, and testis. By the
way, a total of 3124 lncRNAs were strictly identified
from the RNA-seq data, and their features and charac-
teristics were analyzed. Differentially expressed lncRNAs
between tissues in female and male adults, as well as
similar tissues in female and male adults, were analyzed.
Tissue-specific lncRNAs were screened in female and
male tissues based on their relative expression levels.
GO and KEGG pathway enrichment analysis of targets
of midgut-specific lncRNAs revealed unique functional
annotations. Our findings create a catalog of lncRNAs in
tissues of Z. cucurbitae and provide information that will
be useful for further functional studies.

Results
Identification and characterization of lncRNAs
A total of 511,526,830 raw reads were generated from 24
RNA-seq datasets. Q30 scores were ≥ 93.0% in all of the
samples. GC contents ranged from 40.1 to 46.69%. The
accuracy of RNA-seq data was of high degrees as no “N”
base was detected in any of the samples (Table 1). All of
the RNA sequencing data produced in this study are avail-
able in the NCBI BioProject database (http://www.ncbi.
nlm.nih.gov/bioproject/) under the accession number:
PRJNA579200. After filtering under a computational pipe-
line (Fig. S1), a total of 22,159 lncRNA candidates were
retained. Null-expressed transcripts (FPKM value < 1 in
all analyzed samples) were discarded, and the numbers of
lncRNAs in female and male tissues were screened. In fe-
males, the largest population of lncRNAs (1024) was
found in the Malpighian tubules (Fig. 1a). There were 20,
330 null-expressed lncRNAs in female tissues (Fig. 1b).
Fat body had the largest lncRNA population (1026)
among male tissues (Fig. 1c). Male tissues had 19,680
null-expressed lncRNAs (Fig. 1d). After discarding all
null-expressed lncRNAs, a total of 3124 lncRNA tran-
scripts were strictly identified from the transcriptome data
of the eight tissues. Most of these were lincRNAs (1464;
46.9%), followed by intronic lncRNAs (1037; 33.2%), anti-
sense lncRNAs (301; 9.6%), and sense lncRNA (322;
10.3%) (Fig. 2a). The lncRNA length distribution showed
that most lncRNA transcripts were longer than 3000 nu-
cleotides (Fig. 2b). The majority of lncRNAs only had one
isoform (Fig. 2c). Most of the lncRNAs in Z. cucurbitae
contained two exons (Fig. 2d).

Expression of lncRNAs in Z. cucurbitae
To analyze the differences in expression of lncRNAs
among tissues, the hierarchical clustering of 1554 differ-
entially expressed lncRNAs (DELs) was analyzed in a
heatmap using the FPKM value (Fig. 3). Many DELs
clustered in specific tissues based on lncRNA expression
levels among the different tissues. DELs between every
two pairs of tissues were analyzed. In female Z.
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cucurbitae. A total of 151 higher- and 103 lower-
expressed lncRNAs were found in the comparison of
Malpighian tubules vs. ovary. The comparison of midgut
vs. fat body showed 69 DELs, among which 36 were
higher- and 33 were lower-expressed (Fig. 4a). Compari-
sons of Malpighian tubules vs. testis and midgut vs. Mal-
pighian tubules had the most and fewest DELs in males,
respectively. A total of 806 DELs were found in male
Malpighian tubules vs. testis; 604 were higher- and 202
were lower-expressed. A total of 45 DELs existed in
midgut vs. Malpighian tubules of males; 28 were higher-
and 17 were lower-expressed (Fig. 4b). DELs between
similar tissues in male and female adults were analyzed.
The comparison of ovary vs. testis had 623 DELs, which
was much more than other tissue comparisons (Fig. 4c).
LncRNAs showed differential expression among tissues.

Tissue-specific lncRNAs were identified in all tissues.
Venn diagrams showed that each tissue contained a cer-
tain number of tissue-specific lncRNAs. In midgut, Venn
diagram analysis showed 8 and 8 specifically expressed
lncRNAs in females and males (Fig. 5a1 and a2). A total of

5, 7, 9, and 21 specifically expressed lncRNAs were found
in female Malpighian tubules (Fig. 5b1), male Malpighian
tubules (Fig. 5b2), female fat body (Fig. 5c1), and male fat
body (Fig. 5c2), respectively. A total of 42 ovary-specific
lncRNAs had a relatively high expression in the ovary
compared with other female tissues (Fig. 5d1). The num-
ber of testis-specific lncRNAs (364) was much larger than
those of other tissues (Fig. 5d2).

Functional annotation of target genes of tissue-specific
lncRNAs
GO and KEGG pathway analysis were conducted to
study the potential functions of lncRNAs, and some of
them can regulate the expression of neighboring genes
(cis) and related co-expressed genes (trans) [31]. To il-
lustrate some special functional annotations, target genes
of tissue-specific (e.g., midgut-specific) lncRNAs were
analyzed. A total of 457 target genes were obtained in
the female midgut, among which 51 were cis-regulated
and 410 were trans-regulated. For the male midgut, a
total of 273 target genes were predicted, including 34

Table 1 Summary statistics of the RNA-seq data

Sample ID Read Sum Base Sum GC (%) N (%) Q30 (%) Genome Mapping Rate

fFB1 71,005,430 21,094,233,520 43.55 0 93.12 82.34%

fFB2 71,920,846 21,287,840,586 43.52 0 93.54 82.50%

fFB3 69,864,623 20,811,064,364 43.52 0 93.23 81.43%

fMG1 65,842,842 19,680,348,232 43.11 0 93.39 33.85%

fMG2 58,622,426 17,525,507,334 40.38 0 93.40 21.06%

fMG3 91,469,944 27,328,946,668 43.28 0 93.78 20.44%

fMT1 76,741,248 22,856,925,352 42.55 0 93.57 76.87%

fMT2 83,141,124 24,796,064,764 42.18 0 93.22 71.47%

fMT3 66,939,800 19,978,132,492 41.35 0 93.19 35.27%

fOV1 61,518,157 18,365,855,324 42.82 0 93.78 84.97%

fOV2 54,295,717 16,193,760,614 42.71 0 93.21 87.65%

fOV3 54,641,144 16,335,419,334 43.13 0 93.09 84.49%

mFB1 76,375,481 22,756,855,810 43.17 0 93.50 83.55%

mFB2 63,341,864 18,878,214,080 42.64 0 93.28 80.40%

mFB3 62,003,794 18,453,417,274 42.44 0 93.52 73.90%

mMG1 90,288,388 26,975,723,848 45.28 0 93.85 25.70%

mMG2 68,545,617 20,457,951,046 46.69 0 93.58 38.44%

mMG3 64,956,243 19,317,213,164 46.69 0 94.01 32.30%

mMT1 60,513,113 18,076,644,312 42.84 0 93.54 80.45%

mMT2 72,498,489 21,656,770,372 42.47 0 93.60 78.64%

mMT3 68,670,761 20,523,605,726 40.10 0 93.37 39.75%

mTE1 57,330,203 17,072,620,942 42.36 0 93.31 84.01%

mTE2 64,218,906 19,189,876,708 42.48 0 93.53 87.38%

mTE3 60,939,729 18,190,973,854 42.43 0 93.61 86.87%

Note: Q30 refers to nucleotides with a quality value above 30 in reads. Genome mapping rate means the percentage of reads mapped to the reference genome
Abbreviations: f/m female/male, MG midgut, MT Malpighian tubules, FB fat body, OV ovary, TE testis
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cis-regulated and 241 trans-regulated genes. GO analysis
indicated that these target genes were involved in differ-
ent physiological activities, including biological process,
molecular function, and cellular component. In these
categories, metabolic process, catalytic activity, and
membrane were the most abundant subgroups (Fig. 6a).
KEGG pathway analyses showed that these target genes
were most frequently predicted in metabolism, among
which the three pathways (purine metabolism, oxidative
phosphorylation, and carbon metabolism) were most sig-
nificantly enriched (Fig. 6b).

Validation of differentially expressed lncRNAs
Four differentially expressed lncRNAs were randomly se-
lected and their expression patterns in the eight tissues
were examined by RT-qPCR. The selected four differen-
tially expressed lncRNAs were named as Zc-Lnc22787,
Zc-Lnc50977, Zc-Lnc99852, and Zc-Lnc11868. The ex-
pression patterns of these four lncRNAs calculated from
RNA-seq data and RT-qPCR results were consistent
(Fig. 7). All of our findings showed that our pipeline was
strict in lncRNA identification and indicated that the
identified lncRNAs were differentially expressed, in vivo.

Discussion
The lncRNAs are responsible for several key physio-
logical processes [32, 33], including epigenetics [34],

immune response [35], and protein degradation [36].
LncRNAs in insect species have now been studied in D.
melanogaster [5], A. aegypti [24], B. mori [26], P. xylos-
tella [19], N. lugens [1], and Phlebotomus perniciosus
[37]. The lncRNAs in Z. cucurbitae were undocumented,
so we identified these lncRNAs and studied their expres-
sion in adult tissues by RNA-Seq.
Our transcriptome data were of high quality as illus-

trated by the relatively large Q30 percentages [30]. No
“N” base was detected in any of the samples. It is pos-
sible that the presence of microbes in the Z. cucurbitae
midgut resulted in the relatively low genome mapping
rates. A low mapping rate was also reported in the mid-
gut transcriptome of mosquito [38]. After identification
under a computational pipeline, the screening criteria of
the expression threshold of at least 1 FPKM in each tis-
sue resulted in a strict catalog containing 3124 lncRNAs.
A similar result was reported in Drosophila, in which
1077 lncRNAs were identified from 43,967 transcripts in
the transcriptomes of different development stages [5].
Each tissue had a specific number of lncRNA in Z.
cucurbitae. In Drosophila, lncRNAs were also distributed
in many tissues of males [18]. Differences in the lncRNA
numbers of different tissues may explain the variable
lncRNA amounts in different insect species. Among the
identified lncRNAs, the long intergenic lncRNAs
(lincRNA) were most common, followed by intronic,

Fig. 1 Number of lncRNAs in tissues of female (a) and male (c) Zeugodacus cucurbitae. LncRNAs with null expression in female tissues (b) and
male tissues (d) were discarded. Abbreviations were consistent with the above
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Fig. 2 Number of four types of lncRNA (a), the lncRNA length distribution (b), the isoform number of lncRNA (c), the exon number distribution of
lncRNA (d). lincRNA means long intergenic non-coding RNA

Fig. 3 Cluster heatmap showing the expression profile of differentially expressed lncRNAs in female (a) and male (b) tissues of Zeugodacus
cucurbitae. The heatmap was generated using R pheatmap. Red and Green indicate higher and lower expression levels, respectively.
Abbreviations are consistent with the above
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sense, and anti-sense lncRNAs. In B. mori, lincRNAs
and intronic lncRNAs were the most and least common,
and sense lncRNAs were not identified [26]. Compared
with Z. cucurbitae, a lack of sense lncRNA in B. mori
was probably due to the different analytical methods
used. In Drosophila, lincRNAs and sense lncRNAs were
present in the largest and smallest numbers, respectively
[39], which was consistent with our results. Blastn
searches of Z. cucurbitae lncRNAs against NONCODE
databases and NCBI nr were conducted, and no homolo-
gous sequences were detected. This demonstrated that

lncRNA was not conserved among different species,
which was consistent with previous studies [1, 26].
LncRNAs have shown similar molecular features and

characteristics in different insect species. In the melon
fly, the lengths of lncRNA transcripts were variable. The
lncRNA group containing 201–600 nt had relatively
more transcripts than other length intervals. The major-
ity of lncRNA had two exons in Z. cucurbitae. Similarly,
most abundant lncRNAs contained two exons in N.
lugens [1]. The majority of Drosophila lncRNA tran-
scripts contained 200–500 nucleotides [5]. The lncRNA

Fig. 4 Statistical analysis of differentially expressed lncRNAs between tissues in female Zeugodacus cucurbitae (a), male Zeugodacus cucurbitae (b),
and similar tissues between female and male Zeugodacus cucurbitae (c). Abbreviations are the same as above

Fig. 5 Quantitative expression analysis of midgut, Malpighian tubules, fat body, ovary, and testis in Zeugodacus cucurbitae. Each section of the
Venn diagrams shows the numbers of differentially expressed lncRNAs with a ratio of two tissues expression level above 10. Venn diagrams
indicate the number of midgut-specific lncRNAs (a1 and a2), Malpighian tubules-specific lncRNAs (b1 and b2), fat body-specific lncRNAs (c1 and
c2), ovary-specific lncRNAs (d1), and testis-specific lncRNAs (d2) in female and male Zeugodacus cucurbitae. Abbreviations are consistent with
those used previously
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group containing one isoform was the largest in Z.
cucurbitae, which was consistent with the ENCODE pro-
ject [40]. These results showed that Z. cucurbitae
lncRNAs share features and characteristics similar to
other insect lncRNAs.
LncRNAs showed various expression patterns in dif-

ferent insect tissues [21]. In female Z. cucurbitae, the
comparison of Malpighian tubules vs. ovary owned the
greatest amount of DELs, and this correlates with the

large functional diversity between the two tissues. A
similar result was reported in B. mori where the huge
differential expression between posterior silk gland and
testis correlated with a large functional difference [26].
DELs in comparisons containing testis were more abun-
dant than in comparisons without testis in male Z.
cucurbitae supporting the different expressions and
functions of testis compared with other tissues. This is
similar with Drosophila, in which testis owned the

Fig. 6 GO and KEGG pathway analyses of the target genes of midgut-specific lncRNAs in Zeugodacus cucurbitae. a GO analysis of the functions of
lncRNA target genes. b KEGG pathway analysis of lncRNA target genes
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largest proportion of differentially expressed lncRNAs
[41]. Additionally, DELs in ovary vs. testis were much
more common than comparisons made between similar
tissues. This reflects the large functional differences be-
tween the reproductive organs of female and male melon
flies. Similarly, the ovary and testis showed the largest
difference in B. mori [26]. As in Drosophila [39], the di-
verse distribution of lncRNAs in tissues of Z. cucurbitae
resulted in extremely highly expressed lncRNAs in such
tissues. Tissue-specific lncRNAs were obtained in female
and male tissues of Z. cucurbitae based on their relative
expressions. Each tissue contained specific lncRNAs in-
dicating that their functions were associated with the
target tissue [42]. Drosophila transcriptome analysis re-
vealed that many lncRNAs had dominant expression in
the testis [18], which was similar to our findings. Expres-
sion patterns of four randomly selected differentially
expressed lncRNAs were determined by RT-qPCR, and
the results of RNA-seq and RT-qPCR were consistent.
This verifies the high quality of the RNA-seq [13].
The expression patterns of lncRNAs can help to clarify

their possible biological roles. In Drosophila, knockout
of 33 testis-specific lncRNAs by CRISPR/Cas9 reduced
fertility [41]. A lncRNA (CRG), specifically expressed in
the nervous system, regulates the locomotor ability and
climbing ability of adult Drosophila [43]. In Apis melli-
fera, over-expression of an ovary-specific lncRNAs
lncov1 during a critical developmental period revealed
its potential roles in regulating the ovary size of the

worker bees [36]. In B. mori, functional annotation of
Malpighian tubules-specific lncRNAs indicated integral
components of membrane and oxidative phosphoryl-
ation were abundantly annotated, and fat body-specific
lncRNAs suggested enrichment of the oxidation-
reduction process and metabolic pathways [26]. Thus,
the functions of lncRNAs were tightly associated with
their specific distribution. In this study, functional anno-
tations of targets of midgut-specific lncRNAs were ana-
lyzed. GO analyses revealed a frequent annotation of
metabolic process, and KEGG pathway analyses showed
that the majority of lncRNAs were annotated by metab-
olism pathways. Similarly, in Anopheles gambiae, metab-
olism was enriched in the functional annotation of
lncRNA targets from the transcriptome of the midgut
[44]. Thus, metabolism was enriched in midgut-specific
lncRNA targets, indicating unique functions of the mid-
gut and serving as a guideline for further functional
research.

Conclusion
We constructed 24 RNA-seq libraries from tissues of Z.
cucurbitae, including midgut, Malpighian tubules, fat
body, ovary, and testis. A total of 3124 lncRNA tran-
scripts were qualitatively and quantitatively identified
based on their expression. A total of 1554 differentially
expressed lncRNAs were obtained, the greatest differ-
ence was found in Malpighian tubules vs. testis of males.
Tissue-specific lncRNAs were identified in female and

Fig. 7 Validation of four randomly selected differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR). The bar represents the mean
lncRNA expression and the error bar represents the positive standard error (SE) of the mean. Abbreviations were consistent with those used
previously. Data were analyzed by one-way ANOVA followed with Tukey’s test (P < 0.05)
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male Z. cucurbitae based on their relative expression
levels. The most significant population of tissue-specific
lncRNAs was found in testis. GO and KEGG pathway
analysis revealed a special functional annotation of
midgut-specific expressed lncRNA targets; metabolic
process and metabolism were significantly enriched. This
study released a informative catalog of lncRNAs in tis-
sues of Z. cucurbitae, and the data will be useful for fu-
ture functional studies.

Methods
Insects and tissue preparation
Melon flies were collected as pupae from Hainan Acad-
emy of Agricultural Sciences (20.01° N; 110.37° E), Hai-
kou, Hainan Province, China, in 2016, and reared in an
environmental chamber at 26 °C–27 °C and 65–75% rela-
tive humidity (RH) under a 14:10 h (light: dark) photo-
period in a temperature-controlled insectary [30]. Newly
emerged melon fly adults were sexed and reared separ-
ately. Adults were dissected on day five to obtain the tis-
sues, including midgut, Malpighian tubules, fat body,
ovary, and testis. Each tissue was sampled separately
from female and male adults with three biological
replicates.

RNA isolation, library construction, and sequencing
Total RNA was isolated from the 24 samples using TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. The concentrations
of all RNA samples were tested with a NanoDrop One
spectrophotometer (Thermo Fisher Scientific, Madison,
WI, USA). The degrees of purity of RNA samples were
measured by absorbance ratios of OD260/280 and
OD260/230. The integrity levels were evaluated using 1%
agarose gel electrophoresis.
A Ribo-Zero rRNA Removal Kit (Epicentre, Madison,

WI, USA) was used to remove rRNA in the input mater-
ial, which contained 1.5 μg RNA per sample. Sequencing
libraries were constructed using the NEBNext® Ultra™
Directional RNA Library Prep Kit (NEB, Beverly, MA,
USA) for Illumina sequencing following the manufac-
turer’s instructions. Index codes were added in order to
attribute sequences to each sequencing sample. In this
process, fragmentation was obtained using divalent cat-
ions under relative higher temperature using NEBNext
First-Strand Synthesis Reaction Buffer (5×) (NEB). The
random hexamer primers and reverse transcriptase
(NEB) were used for first-strand cDNA synthesis. DNA
Polymerase I and RNase H (NEB) were used for second-
strand cDNA synthesis. The remaining overhangs were
transformed into blunt ends via exonuclease/polymerase
activities using exonuclease and polymerase (NEB).
NEBNext Adaptor was ligated with a hairpin loop struc-
ture to prepare for hybridization after adenylation of the

3′-ends of the sequence fragments. Purification of library
fragments were conducted with AMPure XP Beads
(Beckman Coulter, Beverly, CA, USA), which generated
fragments preferentially 150–200 bp in length. A total of
3 μL of USER Enzyme (NEB) was used in the procedure
of size-selected and adaptor-ligated cDNA at 37 °C for
15 min. Then PCR was performed with Universal PCR
primers, Phusion High-Fidelity DNA polymerase, and
Index (X) Primer. In the end, an AMPure XP system
(Beckman Coulter) was implemented in purification of
PCR products, and evaluation of library quality was per-
formed on an Agilent 2100 Bioanalyzer (Agilent, Palo
Alto, CA, USA) [45]. After the libraries were prepared,
sequencing was performed on an Illumina Hiseq plat-
form by Biomarker Technologies (Beijing, China).

Clustering, sequencing, and assembling
After cluster generation, sequencing of library and gen-
eration of paired-end reads were accomplished. The raw
data produced from sequencing were firstly processed
through in-house Perl scripts. The reads containing
ploy-N or adapters and low-quality reads were removed
so as to obtain clean reads. All of the downstream ana-
lysis were performed with clean data. Q20, Q30, GC per-
cent, and the total number of clean data was computed
in this step. The sequencing data were aligned to the Z.
cucurbitae genome (ASM80634v1, GenBank assembly
accession number: GCF_000806345.1) using TopHat
program (version 2.0) [46], parameters “mismatch 2 (-N
2), Insert_size 40 (-r 40)” were used, and other parame-
ters were default. Cufflinks (version 2.2.1) [47] and
Scripture (versions VPaperR3) [48] software were used
to assemble the final transcriptome, parameters “oper-
ation core number 4, library-type fr-unstrande” were
used in Cufflinks and all the other parameters were de-
fault in the two softwares. Cuffdiff (version 2.1.1) was
used to calculate the FPKM (fragments per kilobase per
million reads) value of transcripts with default parame-
ters [49], including lncRNAs and mRNAs in each
sample.

Identification of long non-coding RNAs
After the filtering and mapping, a step-wise filtering
pipeline was developed to identify lncRNAs from the as-
sembled transcriptome. In the first, transcripts shorter
than 200 nt and those overlapped with protein-coding
genes in the same sense of strand were discarded. At the
same time, transcripts with open reading frames less
than 300 nt and mapping to two more exons were
retained. Next, three tools of Coding-Non-Coding Index
(CNCI, version v2) [50], the Coding-Potential Assess-
ment Tool (CPAT version 1.2.2) [51], and Coding Po-
tential Calculator (CPC, version 0.9 r2) [52] were used
to predict the protein-coding potential. Transcripts with
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CNCI scores < 0, CPAT = “no”, and CPC scores < 0 were
retained. After that, Pfam was implemented and tran-
scripts that contained any known protein domains would
be excluded [53]. Finally, the remaining transcripts were
aligned with Rfam database, GtRNAdb database, Silva
database, and Repbase database, respectively, to screen
out other ncRNA, such as small nuclear RNA (snRNA),
transfer RNA (tRNA), small nucleolar RNA (snoRNA)
repeat sequences, and ribosomal RNA (rRNA) using
Bowtie tools [54]. Genome mapping rates revealed large
differences among biological replicates of Malpighian tu-
bules from female and male melon flies. Considering
this, Malpighian tubules as well as other tissues had one
deleted replicate, and the average FPKM values between
the remaining two replicates were used for downstream
analyses [20]. Transcripts with an FPKM value < 1 in all
tissues were considered as null-expressed and were dis-
carded. The remaining transcripts were considered reli-
able lncRNAs. Additionally, mRNAs were obtained from
the same RNA-seq libraries in this study.

Tissue-specific expressed lncRNAs
Tissue-specific lncRNAs refer to lncRNAs that have ex-
tremely high expression in the given tissue [18]. To
study the tissue-specific lncRNAs in female and male Z.
cucurbitae, DESeq was used to analyze the significance
of the differential expression of lncRNAs in each two tis-
sues [55]. In this step, the software provided a statistical
program for calculating the difference in numeric gene
expression analysis with fold change ≥2 and a False Dis-
covery Rate (FDR) < 0.05. On this basis, tissue-specific
expressed lncRNAs were screened in each tissue with
the ratio of FPKMtissue 1/FPKMall the others ≥ 10.

Target prediction and GO and KEGG pathway analysis
LncRNA targets were predicted according to the gen-
omic location and co-expression between lncRNAs
and mRNAs. Two categories (cis-regulation and
trans-regulation) of the lncRNA regulation modes
were analyzed. LncRNAs’ regulation on their neighbor
genes within 100 kb upstream and downstream in
chromosomes was regarded as cis-regulation [56]. For
trans-regulation, co-expression analyses of lncRNA
and mRNA were investigated based on their expres-
sions as previously implemented in tissues of B. mori
[26]. Coefficients with r > 0.9 or < − 0.9 and pearson’s
correlation with p-value < 0.01 were judged to be cor-
related expressed. All of the identified cis- and trans-
regulated protein-coding genes were used for GO and
KEGG pathway analysis. TopGO R packages and
KOBAS software [57] were used for GO and KEGG
pathway analysis, respectively.

Quantitative real-time PCR (RT-qPCR)
To validate expression patterns of differentially
expressed lncRNAs, the eight tissues were dissected
from 5-day-old melon fly adults in the same manner as
the sequenced samples. After total RNA isolation,
lnRcute lncRNA cDNA kit (TIANGEN, Beijing, China)
was used for first-strand lncRNA cDNA synthesis.
Primers used for lncRNAs validation were designed
using Primer 3.0 (http://bioinfo.ut.ee/primer3-0.4.0/)
(Tab. S1). To determine the cycle threshold (Ct) value
and amplification efficiency of each pair of primers, a
standard curve was conducted with serial dilutions of
cDNA (1, 5− 1, 5− 2, 5− 3, 5− 4). The qPCR reaction was
run on a CFX384 Optics Module (Bio-Rad, Singapore)
using the lnRcute lncRNA SYBR Green premix (TIAN
GEN, Beijing, China). RT-qPCR was conducted with
10 μL of mixture, each consisted of 5 μL of lncRNA
SYBR premix, 4 μL of nuclease-free water, 0.5 μL of
lncRNA cDNA (~ 500 ng/μL), and 0.25 μL each of for-
ward and reverse primers (10 μM). The PCR procedure
was as follows: an initial denaturation at 95 °C for 3 min,
followed by 40 cycles of 95 °C for 5 s and 60 °C for 15 s,
the specificity of primers were ensured by the record of
a melting curve analysis from 60 °C to 95 °C. Relative ex-
pression levels of lncRNAs among different tissues were
normalized by Alpha-tubulin and beta-tubulin 1 [58].
All experiments were conducted in four biological repli-
cates. Data were calculated by qBase plus software [59].

Statistical analysis
The difference among tissues was analyzed using SPSS
19.0 software (IBM, Chicago, IL, USA) with a one-way
analysis of variance (ANOVA) followed by Tukey’s hon-
estly significant difference (HSD) test (P < 0.05).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07014-x.

Additional file 1: Figure S1. The computational pipeline for lncRNA
identification from transcriptome.

Additional file 2: Table S1. Primer sequences used for RT-qPCR.
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