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Abstract

Background: Genes are regulated by various types of regulators and most of them are still unknown or unobserved.
Current gene regulatory networks (GRNs) reverse engineering methods often neglect the unknown regulators and
infer regulatory relationships in a local and sub-optimal manner.

Results: This paper proposes a global GRNs inference framework based on dictionary learning, named dlGRN. The
method intends to learn atomic regulators (ARs) from gene expression data using a modified dictionary learning (DL)
algorithm, which reflects the whole gene regulatory system, and predicts the regulation between a known regulator
and a target gene in a global regression way. The modified DL algorithm fits the scale-free property of biological
network, rendering dlGRN intrinsically discern direct and indirect regulations.

Conclusions: Extensive experimental results on simulation and real-world data demonstrate the effectiveness and
efficiency of dlGRN in reverse engineering GRNs. A novel predicted transcription regulation between a TF TFAP2C and an
oncogene EGFR was experimentally verified in lung cancer cells. Furthermore, the real application reveals the prevalence
of DNA methylation regulation in gene regulatory system. dlGRN can be a standalone tool for GRN inference for its
globalization and robustness.

Background
Gene regulatory networks (GRNs) play fundamental and
central roles in response to endogenous or exogenous
stimuli for maintaining the viability and plasticity of cells
[1, 2]. Although it has been acknowledged that aberrant
gene networks can be a key driver of human diseases
including cancer, little is known about the GRNs of
cancer, which has largely impeded the development of
cancer precision medicine [3–5]. In these years, a deluge
of omics big data has been generated and accumulated

worldwide, which provides an unprecedented opportun-
ity for reverse engineering GRNs in a cost-efficient way
[6, 7]. Efficient computational models for inferring GRNs
from these omics data are urgently needed theoretically
and practically.
Generally, several key issues need to be carefully dealt

with in inferring GRNs [7]: 1) Highly complex and het-
erogeneous networking. Various types of regulations,
e.g., transcriptional, methylation or miRNA regulations,
are involved and mutually interwoven in GRNs; 2) A
large number of regulatory elements or variables unknown
or hidden; 3) Discerning indirect and direct interactions; 4)
Prior knowledge exploitation or integration of multi-omics
data. Broadly speaking, according to the way of modeling
transcriptional expression patterns [8], current GRN infer-
ence methods can be divided into two categories: parame-
terized topology paradigm (PTP) and un-parameterized
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topology paradigm (UPTP). The former attempts to model
expression patterns of genes including TFs by parameteriz-
ing the topology of the GRNs with various methods [9, 10],
such as probabilistic graphical models, ODEs and Petri
Nets, while the latter treats each pair or subset of regulators
and target genes locally and then assembles them into a
complete network [11]. In PTP, the use of generative
network models allows to take advantage of prior
knowledge and favors a global inference for GRNs re-
covery. A main disadvantage of the PTP methods, how-
ever, is the expensive computational cost raised by the
heuristic or greedy search for network parameters in an
extremely large space. For example, Gaussian graphical
models need to estimate a partial correlation matrix of
size at least square of the number of genes [12, 13].
Compared with Gaussian graphical models, Bayesian
networks can tell about both the strength and the dir-
ection of regulations, leading to a great prevalence in
practice [14]. Friedman et al [10] firstly introduced
Bayesian networks to reconstruct S. cerevisiae’s gene
networks. Recently, Siahpirani et al. [15] considered
three types of prior biological knowledge, ChIP, motif
and knockout, in an integrative Bayesian network for
GRNs inference. For more related works, refer to other
literature, e.g. [6, 14, 16–18].
In contrast, UPTP methods often make use of similar-

ity measures [19], e.g. Pearson correlation (PC), mutual
information (MI), or their variants, to score the confi-
dence of regulations between a pair of genes. For this
reason, the resulting GRNs are also called dependency
networks. Among the similarity measures, most com-
monly used is MI for its particular power of modeling
complex dependencies [20]. For example, the ARACNE
method, proposed by Margolin et al. [21], combined MI
with the data procession inequality (DPI) to recover
GRNs. Due to the transitive effect of correlations and
the limited number of observations, ARACNE tends to
be over-sensitive to the high noise in microarray data,
often yielding plenty of false positives in practice. To
overcome the over-sensitivity, Meyer et al. [22] intro-
duced the maximum relevance/minimum redundancy
filter for refinement, and Liu et al. [23] designed another
two redundancy reduction algorithms specifically for
eliminating weakly indirect and noise-induced regula-
tions respectively. Compared with MI, conditional MI
(CMI) can provide a constringent result by calculating
the mutual information of two genes conditional on
other genes [24]. Recent studies show that direct use of
CMI, however, tends to have a too conservative result
due to the rigid conditional constraint [25]. To relax the
constringency, Zhang et al. [26] developed a new condi-
tional MI, CMI2, for characterizing the causal associa-
tions between genes, which alternatively quantifies the
conditional mutual information through calculating the

Kullback–Leibler divergence. By combining CMI2 with
path consistency algorithm, the Zhang’s model can ac-
curately measure the correlations between gene-pairs for
keeping synergistic regulations, thus alleviating the
underestimation problem of CMI. For these conditional
measures, one more big challenge still remains, i.e. the
optimal selection problem of conditional genes, due to
lack of prior knowledge.
Recently, target gene-centric regression models (TGCR)

have attracted increasing attentions for GRNs reconstruc-
tion [2, 23, 27]. They mainly rely on regression models, in-
stead of the similarity measures described above, and can
favourably bypass the challenging optimal selection prob-
lem of conditional genes in conditional correlation models
like CMI. Briefly, a TGCR method regresses the expression
levels of a target gene on known transcriptional factors
(TFs) and reports TFs with non-zero coefficients to be a
regulator for the target gene. Many regression models have
been explored in this way for GRN inference [6], for ex-
ample, sparse models including l1 or l0 regularized regres-
sion [28, 29]. Compared with the pair-wise paradigm above,
TGCR can approach a global inference of regulators for a
target gene by trying to estimate a global objective. For ex-
ample, the recently developed GENIE3 [30], which won the
DREAM5 network inference challenge, decomposes the re-
construction of a p-gene regulatory network into p different
regression problems. In each of the regression problems, a
tree-based ensemble model, Random Forests or Extra-
Trees [31], is applied to calculate a local ranking of genes,
and the resulting p local rankings are finally aggregated to
reach a global ranking of all gene pairs.
Dictionary learning (DL) is a recently developed signal

restoration model, which finds a dictionary of atomic
vectors for a sparse representation of the observed data
[32, 33]. Extensive applications in different signal pro-
cessing fields such as image denoising, audio processing
as well as pattern classification, have witnessed the great
success of DL in recovering hidden signals [34]. We here
develop a DL-based GRN inference framework (dlGRN),
which intends to learn a sparse representation of the
gene regulatory system via a modified DL algorithm and
then makes a global inference of the regulators for a tar-
get gene based on the sparse representation, independ-
ent of known or observed regulators. We argue that it is
the first time to truly globally reverse engineering GRNs
with the help of a sparse representation of the regulatory
system. We demonstrated the effectiveness and effi-
ciency of the proposed method on synthetic data and
real-world data about two model organisms and human
lung cancer. A novel predicted regulation of a TF,
TRAP2C, on an oncogene, EGFR, was experimentally
verified. dlGRN is also versatile to infer DNA methyla-
tion regulations besides the most concerned transcrip-
tional regulations.
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Results
Overview of dlGRN
Figure 1a shows the pipeline of dlGRN. The proposed
method first decomposes the expression matrix of target
genes (TGs) using a modified DL algorithm to uncover
atomic regulators (ARs), which as basic regulatory sig-
nals reflecting the whole regulatory landscape underpin-
ning the expression data, as shown in Fig. 1b. The
modified DL algorithm, called sfk-svd, fits the scale-free
and sparse property of GRNs. Given a pair of TF tf, and
TG g, dlGRN then estimates Pearson correlations (PCs)
between tf and the resulting ARs associated with g and
calculates a confidence score (cs) for the regulation of tf
on g via the inverse function of the cumulative distribu-
tion of PCs, as shown in Fig. 1a. The confidence score is
meaningful in systems biology and will be robust due to
the globalization of ARs. To avoid small sample bias, we

also devise a resampling procedure to wrap the inference
model and obtain a final GRN as an average network
over multiple runs (Fig. 1a).

Evaluation of the performance of uncovering hidden ARs
When applying sfk-svd to Simulation data I, we ob-
served that root mean squared errors (RMSEs) grad-
ually decreased and converged within ~ 200 iterations
in all the data scenarios (Figs. S1-S5 in S1 Notes), ir-
respective of the values of l, {25, 50, 100 and 150},
suggesting the convergence of the algorithm. With
the learned ARs, we calculated RRs and PPVs against
the 50 real regulators and averaged them over 20 ran-
dom data sets in each scenario. Results show that
both RRs and PPVs reached a maximum of > 90%, ir-
respective of sample sizes and noise levels (Fig. 2a),
indicating the super power of dlGRN in learning

Fig. 1 The global inference framework of GRNs (dlGRN). a Pipeline of dlGRN. b A global gene regulatory model based on ARs (GGRM)
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hidden regulatory signals. We observed that the par-
ameter l took substantial impact on the power: l = 50,
i.e., the real number of regulators, always led to the
highest RRs and PPVs, while l > 50 or l < 50 de-
creased PPVs significantly, as shown in Fig. 2 b-c.
This may relate to the efficacy of dictionary learning,
which can be incomplete or over-complete depending
on l, and on the other hand, suggests that an optimal
l tends to be equal to or slightly larger than the real
number of regulators. Similar results were obtained in
simulation scenarios of SNR = 20, 25, 30 and 40 (Fig.
S6 in Supplemental material SI Notes). Figure 2(b, c)
also reveal that the power increases as the sample
size becomes larger, especially when noise is high
(Fig. S6). Figure 2d-e visualizes the changes of the
average RRs and average PPVs over different samples
sizes with SNR, showing a trend that the power in-
creases as noise reduces, especially when l is large.

Evaluation of the performance of dlGRN in predicting
gene regulations
Results reveals that on Simulation data I, dlGRN
achieved higher average AUROCs and AUPRs than four
state-of-the-art methods, GENIE3 [30], CLR [35], ARAC
Ne-AP [11] and ARACNE [21] in all the scenarios of
sample sizes and noise levels, as shown in Table 1 (and
Table S1 in Supplemental material SII Notes). We found
that the optimal values of l are always around the num-
ber of real regulators [36], which is consistent with the
pattern of the power of recovering hidden regulatory sig-
nals in simulation experiments (Fig. 2). The advantage of
dlGRN over previous methods was almost completely
kept on the non-linear Simulation data II, shown in
Table 2. A main difference is that the maxima of
AUROC (83.24%) and AUPR (24.39%) are reached at
l = 500 (Table S2 in Supplemental material SI Notes),
which is far larger than the number (195) of real

Fig. 2 Evaluation of the signal recovery power of dlGRN on Simulation data I. a Error barplots of average RRs and average PPVs (l = 50). b, c
Changing curves of average RRs and average PPVs with l at SNR = 10 (b) and 15 (c). d, e Changing curves of average RRs(d) and average PPVs(e)
over sample sizes with SNR
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regulators. This should be related to the increased non-
linear complexity in Simulation data II.
For the real two model organisms and three LUAD data

sets, AUROCs and AUPRs were calculated against the cor-
responding experimentally-validated TF-target regulations,
respectively. Results reveal that for the S. cerevisiae data set
and all the three lung cancer data sets, dlGRN still achieved
higher AUROCs and AUPRs than those of the four previ-
ous methods and competitive results for the E. coli data set,
as shown in Table 2. For each of the three lung cancer data
sets, we further sorted the predicted regulations in a de-
creasing order of cs and counted the numbers of true posi-
tives in the top num = 10, 50, 100, 150 and 200 for each
method, finding that dlGRN called most true positives on
all the three data sets and most common true positives, re-
gardless of num, as shown in Fig. 3. Taken together, these
results suggest the superior power of dlGRN in recovering
regulations over state-of-the-art methods.

The inferred GRNs by dlGRN are globally scale-free,
whose nodes tend to locally cluster
Aberrant gene networks can drive the development of com-
plex diseases such as cancer [37]. Following the known
2677 TF-target regulations, we then selected 2677 TF-
target pairs with top cs by each method and built GRNs for
LUAD on each of the three lung cancer data sets (Fig. 4a-c
and Fig. S7 in Supplemental material SI Notes). The ln-
transformed distributions of the degree of nodes in the

resulting GRNs are examined (Fig. 4d-f). Following the
power-law property, i.e., ln(P (deg)) ~ γ ln (deg), where P
(deg) represents the likelihood that a gene has a degree of
deg, we found that the GRNs obtained by dlGRN have γ =
− 6.97, − 6.33 and − 7.19 for the three data sets, GSE32863,
GSE10072 and GSE7670, respectively, whose absolute
values are larger than those by previous methods, indicating
more sparse topological structures. In real-life networks,
nodes tend to form tightly knit groups with a relatively high
density of connectivity [38, 39]. We calculated the average
cluster coefficients (ACCs) of these GRNs, finding that the
GRNs by dlGRN had larger ACCs (0.31, 0.32, 0.47 for
GSE32863, GSE10072 and GSE7670 data sets respectively)
than those by all the previous methods on all the three data
sets. We further compared the numbers of correctly recog-
nized TFs per target gene and the average numbers (AN)
over all target genes among different methods. Results re-
veal that the GRNs by dlGRN had AN = 0.38, 0.32 and 0.41
for GSE32863, GSE10072 and GSE7670 data sets respect-
ively, as (Fig. 4a-c), which are larger than those by the four
previous methods, confirming the higher sensitivity of
dlGRN in recognizing regulations. Furthermore, Venn dia-
grams of the three sets of 2677 links for different
methods (Fig. S8 in Supplemental material SI Notes)
reveal that dlGRN resulted in significantly more
shared links (484) than other methods (p-value<
0.001), suggesting the better reproducibility and
consistency of GRNs by dlGRN.

Table 1 Performances (mean% ± std.% of AUROCs, mean% ± std.% of AUPRs) of different inference methods on Simulation data I
(n = 20, SNR = 10, 20 and 30). Best results for each SNR case are in bold

METHOD SNR = 10 SNR = 20 SNR = 30

GENIE3 81.13 ± 0.49, 53.83 ± 0.77 82.05 ± 0.51, 56.11 ± 0.61 81.89 ± 0.51, 56.04 ± 0.78

CLR 81.04 ± 0.29, 57.66 ± 0.42 81.95 ± 0.36, 59.80 ± 0.53 81.74 ± 0.44, 59.50 ± 0.69

ARACNe-AP 62.56 ± 1.45, 13.68 ± 5.37 64.17 ± 0.61, 18.63 ± 3.77 64.13 ± 1.32, 19.17 ± 7.03

ARACNE 81.84 ± 0.43, 55.20 ± 0.53 82.65 ± 0.41, 57.18 ± 0.73 82.55 ± 0.62, 56.37 ± 1.10

dlGRN (l = 25) 88.21 ± 0.51, 65.49 ± 1.10 90.05 ± 0.67, 70.10 ± 1.49 90.62 ± 0.41, 71.05 ± 0.89

dlGRN (l = 50) 91.06 ± 0.31, 77.77 ± 1.00 96.10 ± 0.42, 89.88 ± 1.12 97.45 ± 0.29, 92.11 ± 1.48

dlGRN (l = 100) 90.48 ± 0.45, 75.16 ± 1.06 96.23 ± 0.65, 89.18 ± 1.39 97.73 ± 0.32, 92.06 ± 0.22

dlGRN (l = 150) 90.40 ± 0.45, 75.86 ± 0.98 95.96 ± 0.32, 87.73 ± 0.41 97.54 ± 0.46, 91.44 ± 1.13

Table 2 Results (AUROCs%, AUPRs%) of different methods on simulation data II, two real-world model organism data sets and three
lung cancer data sets GSE32863, GSE10072, GSE7670. Best values for each data set are in bold

Data sets GENIE3 CLR ARACNe-AP ARACNE dlGRN

Simulation data II 81.50, 28.36 74.34, 22.63 68.19, 15.59 75.72, 19.12 83.24, 24.39

E. coli 71.67, 2.11 58.72, 1.12 56.55, 0.61 61.66, 0.80 68.77, 1.69

S. cerevisiae 52.94, 0.31 52.43, 0.22 51.64, 0.02 53.01, 0.22 54.49, 0.41

GSE32863 52.67, 5.81 51.77, 5.52 51.09, 5.60 52.36, 5.73 54.84, 6.40

GSE10072 51.84, 5.54 51.51, 5.43 51.17, 5.42 51.28, 5.40 52.52, 5.93

GSE7670 53.17, 5.90 51.74, 5.58 51.64, 5.62 51.04, 5.58 53.59, 6.29
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Literature survey shows that many predicted TFs by
dlGRN for each target gene were previously reported.
Take as an example the target gene “ID2”, whose encod-
ing protein belongs to the inhibitor of DNA binding
family with a helix-loop-helix (HLH) domain and plays
important roles in cell proliferation, differentiation and
angiogenesis [40]. Among the 11 experimentally-verified
TFs for ID2, 4, 2 and 2 were successfully predicted by
dlGRN on the three data sets, GSE32863, GSE10072 and
GSE7670, respectively, all more than those by the four
previous methods, as shown in Fig. 5a-e. Especially,
dlGRN correctly called a known TF of ID2 (MEIS1) sim-
ultaneously on the three data sets, but the four previous
methods none. Among other regulators predicted by
dlGRN, CREB1, missed by all the four previous methods
(Fig. 5f-h and Fig. S9 in Supplemental material SI
Notes), has been previously reported to regulate ID2 in
[41]. For EGR2, Kim et al. [42] experimentally observed
that EGR2 transactivates ID2 by binding to the promoter
of ID2 and knockdown of EGR2 represses ID2 gene ex-
pression in osteoclast-lineage cells. Both ETS2 and
ETV4 encode proteins with ETS-domain which can bind
to the gene family of IDs [43]. Both SMAD4 and
SMAD7 are members of SMAD family, which have pre-
viously reported to suppress the expression of ID2 in
tumorigenesis [44, 45]. STAT5B is one of two STAT5 TFs
from the STAT family, playing important roles in apop-
tosis and TCR signalling. Li et al. [46] observed that

STAT5 proteins regulated ID2 transcription by recruiting
STAT5B in a cis-regulatory element to the ID2 promoter
in dendritic cells. Furthermore, Sun et al. [47] reported
that STAT5 stimulates the expression of ID2 to control
the CD103+ DC production and the pDC inhibition.

dlGRN is intrinsically distinctive of direct and indirect
regulations
Cascade regulatory structure (CRS) is a basic type of regula-
tory motifs in GRNs [48], where gene A, for example, regu-
lates gene B and gene B subsequently regulates gene C,
denoted by A→ B→C. In other words, gene A indirectly
regulates gene C via two direct regulations. Due to the tran-
sitive effect of correlations, current methods often fail to
infer CRS completely correctly. The background 2677-link
networks of the lung cancer data contain totally 6678 CRSs,
against which we investigated how dlGRN distinguishes
direct and indirect regulations. Hypothetically, a CRS may
be recovered in five patterns (Fig. S10 in Supplemental ma-
terial SI Notes): Pattern 1 (P1), which wrongly calls a direct
regulation between A and C, Pattern 2 (P2), which recovers
the CRS completely correctly, and the rest three patterns,
named P3, P4 and P5, which correctly recognize the
indirect regulation between A and C but miss direct
regulations, A→ B, B→ C, or both, respectively. Fig-
ure 4g-i compares the numbers of the five patterns
detected by dlGRN and the four previous methods on
the three data sets, showing that dlGRN completely

Fig. 3 True positives comparison on three lung cancer datasets. Numbers of true positives (TPs) in most highly scored num = 10, 50, 100, 150 and
200 regulations by dlGRNs and previous methods (GENIE3, CLR, ARACNe-AP and ARCNE) on three lung cancer data sets GSE32863 (a), GSE10072
(b), GSE7670 (c) and across these data sets (d)
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correctly called most CRSs (P2) with least recognition
errors of indirect regulations (P1) on almost all the
data sets. ARACNe missed most direct regulations
(P5) on almost all the three data sets, which may be
related to the over-trimming of links by DPI. These
results suggest that dlGRN is intrinsically distinctive
of direct and indirect regulations due to the modeling
globalization.

A novel predicted transcriptional regulation of TFAP2C on
EGFR in lung cancer
Considering that EGFR is one of hottest onco-genes in
lung cancer, we looked into the predicted TFs for EGFR
by dlGRN on the three lung cancer data sets. We aver-
aged the resulting cs over the three data sets for each of
the 55 known TFs (Supplemental material SIII Notes),

and found that two TFs, LMO2 and TFAP2C, not re-
corded as TFs of EGFR in the UCSC and TRED data-
bases (April, 2017), are with highest average cs (0.36
and 0.33), suggesting a high likelihood of regulating
EGFR. To experimentally verify the predictions, we
searched for the transcription factor binding sites
(TFBSs) of the two TFs to the promoter of EGFR
using the online JASPAR tool (http://jaspar.genereg.
net/), finding 93 TFBSs for TFAP2C but none for
LMO2. Based on the 93 TFBSs, we conducted
TFAP2C siRNA knockdown experiments on lung can-
cer cell A549. As a result, we observed that EGFR
significantly (p-value< 0.01) depressed its expression
after knockdown of TFAP2C in the two repeats
(Fig. 6a). Similar depression has been previously ob-
served in luminal breast cancers [49]. A potential

Fig. 4 Topological analysis of the reconstructed 2677-link GRNs by dlGRN and the four previous methods. a-c Topology of GRNs inferred by
dlGRN on data sets, GSE32863 (a), GSE10072 (b) and GSE7670 (c). Node sizes are proportional to the connectivity. γ : slope of the fitted power-law
curve; AN: Average number of correctly called TFs per target gene; ACC: average clustering coefficient. d-f Distributions of the log-transformed
degrees of nodes in the GRNs on data sets, GSE32863 (d), GSE10072 (e) and GSE7670 (f). g-i Counts of each CRS pattern (P1-P5) predicted on
data sets GSE32863 (g), GSE10072 (h) and GSE7670 (i)
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regulatory mechanism of EGFR by TFAP2C may be
via three most highly scored TFBSs predicted by JAS-
PAR, as shown in Fig. 6b. According to KEGG path-
way database (https://www.genome.jp/kegg/pathway.
html), activated EGFR can lead to cell growth and
proliferation via RAS-MAPK signalling pathway. We
found that many genes along the RAS-MAPK signal-
ling pathway, e.g., RAS and MAP 2 K1, significantly
over-expressed in tumors compared with normal tis-
sues in the three lung cancer data sets (Fig. 6c).

dlGRN reveals the prevalence of DNA methylation
regulation in gene regulatory system
By replacing the expression levels of TFs with DNA
methylation levels, dlGRN can be used to infer DNA
methylation regulation of genes. For the lung cancer
data set, GSE32863, Selamat et al. [50] monitored the
DNA methylation profiles of the 116 samples at the
same time. We downloaded the DNA methylation
data (GSE32861) from GEO and applied dlGRN to
jointly analyze it with the expression data, GSE32863.
Results reveal that a considerable proportion of genes
(60.5%) are significantly methylation-regulated at an
ad hoc p-value cutoff of 0.05 (by a permutation test
described in Supplemental material SI Notes), as
shown in Fig. 7a (and Supplemental material SIV
Notes). This coincides with the indispensible roles of
DNA methylation in cellular activity [36]. Many of the
inferred methylation regulations have been previously

observed as hypo- or hyper methylations in cancer (Table
S3 in Supplemental material SI Notes). Take gene
“RAB25” (cs = 0.6976, p-value<1e-3) as example. The gene
belongs to the RAS superfamily of small guanosine tripho-
sphatase (GTPase), which regulates tumor progression
and aggressiveness during tumorigenesis. Figure 7b-c box-
plots the expression and methylation levels of RAB25 in
tumor and adjacent non-tumor tissues, showing that
RAB25 is both significantly up-expressed (p-value< 2.2e-
16) and significantly down-methylated (p-value< 2.2e-16)
in the LUAD. Correlation analysis confirms that RAB25 e-
xpression is significantly negatively correlated with its
methylation (Pearson correlation is − 0.67 and p-value =
3.76e-16). We reason that the abnormal over-expression
of RAB25 in LUAD may be driven by its aberrant hypo-
methylation, albeit needs to be experimentally verified.

Discussion
In this paper, we have proposed a global inference
framework for reverse engineering GRNs based on deep
learning, i.e. dlGRN. The framework interrogates the
gene regulatory system using DL and predicts regula-
tions between TFs and TGs in a global way. Specifically,
a modified DL algorithm sfk-svd was developed for reli-
ably uncovering ARs which reflect the whole regulatory
mechanism. The modified DL algorithm fits the scale-
free and sparse property of GRNs. Then, the regulation
confidence of a TF on a target gene can be estimated by
a correlation analysis between the TF and the ARs

Fig. 5 Results of TF regulation inference for target gene ID2 on the three lung cancer datasets (GSE32863, GSE10072 and GSE7670) by different
methods. a-e Venn diagrams of TFs between the background network and the three inferred GRNs by dlGRN (a) and four previous methods,
GENIE3 (b), CLR (c), ARACNe-AP (d) and ARACNE (e). f-h Known and called TFs of ID2 by dlGRN on data sets, GSE32863 (f), GSE10072 (g) and
GSE7670 (h)
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associated with the target genes. The use of ARs guaran-
tees the globalization of the regulation inference. A re-
sampling procedure was also designed to avoid sample
biases for inference robustness. Experiments on simula-
tion and real data sets show that dlGRN outperforms
state-of-the-art methods with higher AUROCs and
higher AUPRs in GRN reconstruction.
Discerning indirect and direct regulations is of import-

ance in GRN reconstruction. Previous methods such as
similarity criteria often call plenty of spurious direct reg-
ulations due to the transitive effect of correlations. In
contrast, dlGRN works in a AR-based global way and
thus is intrinsically distinctive of direct and indirect reg-
ulations, as illustrated in the experiment on lung cancer
data (Figs. S8, S9), where dlGRN correctly recognized
most CRS modules with least errors on almost all the
three data sets.
We experimentally verified a novel predicted regu-

lation, i.e., the regulation of TF TFAP2C on a hot
once-gene EGFR, in lung cancer cell A549 and

conceived a potential three TFBSs molecular mech-
anism. Over-expressed EGFR can stimulate cell
growth and proliferation via RAS-MAPK signalling
pathway. Many genes along the pathway, e.g., RAS
and MAP 2 K1, were observed to be over-expressed
in tumors in the three lung cancer data sets (Fig.
6c), confirming the downstream of tumor signals
trigged by the abnormal TFAP2C-EGFR regulation.
In addition, we also revealed the prevalence of DNA
methylation regulation in gene regulatory system.
Considering the pressing need of understanding
GRNs in cells, we envision that our approach will be
very useful and promise broad applications in bio-
logical and medical research.
Despite the success of recovering TF/DNA methyla-

tion regulations, gene regulatory system is complex
and involves various types of expression regulations,
for example, histone modification and miRNA degrad-
ation, which regulate target genes in different ways
and may need more specific reverse engineering

Fig. 6 Experimental verification of TFAP2C regulating EGFR in A549 cancer cells. a Relative expression levels of EGFR with or without
knockdown of TFAP2C. “**” mean p-values< 0.01. b Potential transcriptional regulation mechanism of TFAP2C on EGFR. c Comparison
of expression of genes along onco-signalling pathway activated by EGFR between tumor and normal tissues in the three data sets
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models. We also notice that TFs preferentially bind to
a certain target sequence, and searching for that se-
quence or similar patterns in the regulatory regions
of the target genes may help improve dlGRN. Future
work will be addressing these issues for better
performance.

Methods
A global model of gene regulatory systems (GGRM)
In cells, gene expression can be regulated and mediated
in concert by various types of regulatory factors, such as
TFs, microRNAs or epigenetic states. We hypothesize
that the expression levels of a target gene are collectively
shaped by a handful of basic regulators in a weighted
linear way. Considering that plenty of regulators are un-
known or unobserved, we intend to interrogate the
whole regulatory mechanism by mining as many hidden
basic regulatory signals as possible via dictionary learn-
ing, as shown in Fig. 1b. Theoretically, the resulting
regulatory signals, referred to as atomic regulators
(ARs), can represent all possible regulatory factors, such

as TFs, microRNAs, epigenetic statuses, or even combin-
ational regulatory modules. Mathematically, let Y∈Rn�p

denote an observed expression matrix of p target genes
in n samples, we reformulate Y as

Y ¼ DXþ ε ð1Þ

where D∈Rn�l represents the regulatory dictionary
matrix of l ARs across n samples, incomplete or over-

complete; X∈Rl�p represents the sparse regulation
coefficient matrix of the l ARs on target genes, of
which element xij represents the regulation effect of
the i-th AR to the j-th target gene; ε is a random
white noise subjecting to an i.i.d Gaussian distribu-
tion with mean of zero. The learned AR dictionary
reflects a surrogate of the regulatory mechanisms
underlying Y. The number of ARs (l) is an important
parameter to learn all the ARs behind the expression
data. However, no exact guidance exists for choosing
the parameter in practice. Theoretically, the param-
eter should be large enough for a comprehensive

Fig. 7 DNA methylation regulation frequently occurs in cellular activity. a Comparison of probabilistic density between permutated and observed
methylation regulation scores. b, c Boxplots of expression and DNA methylation of gene RAB25 in LUAD and adjacent normal tissues on data
sets GSE32861 and GSE32863
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regulatory picture, for example, at least larger than
the number of known or real regulators, while not
too large values are necessary to avoid overfitting.
Empirically, one can try different values and choose
the best one.
Considering the sparse and power-law property of

GRNs, we solve the model [1] by simultaneously
optimizing D and X under a scale-free sparsity
constraint:

D̂; X̂
� � ¼ arg min

D;X
Y −DXk k22 s:t: xik k0≤ ti; i

¼ 1;…; p

ð2Þ

where xi is the i-th column of X and ti is a prior
positive constant, referred to as scale-free sparsity
parameter, that specifies the upper boundary of the
number of ARs for the i-th target gene. We set ti by
randomly sampling from a distribution P(ti) ∝ ti

−λ (λ =
2–4 and ti= 2–6). The optimization [2] guarantees
the sparsity of the resulting GRNs and makes it under
control in network structure. However, the objective
function is not convex on both D and X together and
is algorithmically NP-hard. Mathematically, for such
optimization problems, no solutions are immediately
available and local minima is often desirable in prac-
tice [51]. We then developed a modified k-SVD algo-
rithm, named scale-free-constrained k-SVD (sfk-svd),
to approximate a local solution for the optimization
problem [2]. Briefly speaking, the algorithm repeats
two steps, i.e., sparse approximation and dictionary
update, until the error converges (See Section 1 in S1
Notes for details).
There are many methods that can be used to analyze

the latent regulatory signals, such as PCA [52], ICA [53]
or NCA [54]. However, these methods either impose
strict statistical properties for learned latent regulators,
e.g. orthogonality (PCA) and independence (ICA), or
strongly needs priori connectivity information, e.g. NCA,
which makes them not suitable and scalable for large
scale biological systems inference, especially with limited
number of samples [55, 56]. Compared with these
methods mentioned above, k-SVD-like dictionary learn-
ing methods are promising, because they hardly impose
none statistical properties on the atomic regulators to be
mined except the sparseness of the inferred network
structure which is in coordination with the real-world
GRN structure.

Inferring regulatory relationships based on ARs

Let ðD̂; X̂Þ represent a solution for the GGRM. For the
g-th target gene, assume that the g-th column x̂g of X̂
has ng non-zero elements with subscripts (1), (2), …,

(ng), we can have ng ARs that are associated with the tar-
get gene,

SAR ¼ d̂ 1ð Þ; d̂ 2ð Þ;…; d̂ ngð Þ
n o

ð3Þ

where d̂ðiÞ is the (i)-th column of D̂ . For a given TF
tf with an expression profile dtf, we then assess how
it regulates g as follows: First, calculate Pearson cor-
relation coefficients (pcc) between tf and each AR.
Note that one can use Spearman correlation for non-
linear association. Second, estimate the regulation
confidence score (cs) as

cstf→g ¼ Γ − 1 αð Þ ð4Þ

where Γ−1 represents the inverse function of the cu-
mulative distribution of |pcc| and 0 ≤ α ≤ 1 is a quan-
tile cutoff (α = 0.9 as default). Larger αs lead to more
sensitive results. Figure 1a illustrates the inference
procedure.

A resampling procedure
Considering that resampling can relieve sample bias
in machine learning, especially when sample size is
small or moderate [57], we also devise a resampling
procedure for more reliable inference: 1) Randomly
selecting a subset of s samples from the total sam-
ples without replacement and running dlGRN with
the s samples; 2) Repeating 1) N times to obtain N
cs by [4] for each pair of regulators and target
genes; 3) Averaging the resulting N cs as final re-
sults. Specifically, we set s = 25% × n and N = 2 × n
as default. The pseudo code of the proposed GRN
inference approach dlGRN can be listed below:

Parameters of dlGRN
In the proposed GGRM, the parameter l represents
the number of atomic regulators (ARs) and should
approximate to the number of real-world regulators,
including TFs, microRNAs and DNA methylation.
Theoretically speaking, the value of l needs to be esti-
mated based on the biological priors of the organism
from which the transcriptomic data was collected. In
our context, the value of l was set to range around
the number of known regulators of genes in the data-
set for fully demonstrating the performance of
dlGRN. The parameter ti is a small positive constant
to constrain the maximum l0-norm of the i-th regula-
tory coefficient vector. The resampling procedure
makes the inference results insensitive to the selection
of ti within a limited scope [29]. In our context, ti
was set to range in 2–6 in all data scenarios.

Shi et al. BMC Genomics          (2020) 21:711 Page 11 of 14



Measures for method evaluation
We adopted two measures, i.e. recovery rate (RR) and
positive predictive value (PPV), to evaluate the perform-
ance of recovering ARs from gene expression data. An-
other two measures, i.e. area under receiver operating
characteristic curve (AUROC) and area under preci-
sion–recall curve (AUPR), were used to assess the per-
formance of detecting regulatory relationships [58]. See
Supplemental material S1 Notes for details of these
measures.

Datasets
Two simulation data sets
Simulation data I mimic a linear regulatory system with
background networks following the sparse and scale-free
property, consisting of p = 1500 target genes and k = 50
regulators. Totally, 30 data scenarios were considered:
six noise levels times five sample sizes (See Supplemen-
tal material SI Notes for details of Simulation data I gen-
eration). Simulation data II were downloaded from the
DREAM5 project (http://www.the-dream-project.org/),
which are used to mimic a non-linear regulatory system
with a background network drawn from known tran-
scriptional regulatory networks of Yeast Strains. The
data sets consist of the expression profiles of 1548 target
genes and 195 TFs in 805 samples. See the literature
[59] for more details of Simulation data II.

Five real data sets
First two data sets come from two model organisms, E.
coli and S. cerevisiae, which consist of the expression
profiles of 4511 target genes and 334 TFs in 805 samples
and the expression profiles of 5950 target genes and 333
TFs in 536 samples, respectively. For the two data sets,
2066 and 3940 experimentally verified TF–TG

regulations were collected from the literature [60–62] as
silver standard, respectively. Three human lung adeno-
carcinoma (LUAD) transcriptional data sets, GSE32863,
GSE10072 and GSE7670, were downloaded from GEO
database and preprocessed (Supplemental material SI
Notes) to have the expression levels of 4771 genes in
116, 107, and 54 samples, respectively. For the lung can-
cer data sets, 2677 TF-target genes regulations were col-
lected from the UCSC database [63] and TRED database
[64] (on April 1, 2017) as silver standard.

Cell culture
Human lung cancer cell A549 was purchased from
American Type Culture Collection and cultured in
DMEM medium supplemented with 10% fetal bovine
serum (Biological Industries, Israel). Cells were cultured
in a 37 °C humidified atmosphere of 5% CO2 and
planted in a 6-well plate after the cell states became
well.

RNA extraction and quantitative real time PCR
Cancer cells were transfected with siRNAs and negative
controls with liposome (lip3000 in our experiments) for
48 h. After the medium was removed, cancer cells were
washed 3 times with PBS. Total mRNAs from cultured
cells were extracted using Trizol (Invitrogen, UCA) ac-
cording to the manufacture’s instructions. cDNA was
synthesized using the HiScript II 1st Strand cDNA Syn-
thesis Kit (Vazyme Biotech, China), and the expression
levels of mRNAs were quantified using ChamQ SYBR
Color qPCR Master Mix (Vazyme Biotech, China).
Quantitative Real Time PCR was performed using the
Bio-Rad CFX Real-time PCR system (Bio-Rad, USA).
Statistical comparison of the two groups each with tripli-
cates was conducted using Student’s t-test. Statistically
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significances were calculated and indicated. *: P < 0.05,
**: P < 0.01.
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