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Abstract

Background: Teleost fish play important roles in aquatic ecosystems and aquaculture. Threadfins (Perciformes:
Polynemidae) show a range of interesting biology, and are of considerable importance for both wild fisheries and
aquaculture. Additionally, the four-finger threadfin Eleutheronema tetradactylum is of conservation relevance since its
populations are considered to be in rapid decline and it is classified as endangered. However, no genomic
resources are currently available for the threadfin family Polynemidae.

Results: We sequenced and assembled the first threadfin fish genome, the four-finger threadfin E. tetradactylum.
We provide a genome assembly for E. tetradactylum with high contiguity (scaffold N50 = 56.3 kb) and high BUSCO
completeness at 96.5%. The assembled genome size of E. tetradactylum is just 610.5 Mb, making it the second
smallest perciform genome assembled to date. Just 9.07-10.91% of the genome sequence was found to consist of
repetitive elements (standard RepeatMasker analysis vs custom analysis), making this the lowest repeat content
identified to date for any perciform fish. A total of 37,683 protein-coding genes were annotated, and we include
analyses of developmental transcription factors, including the Hox, ParaHox, and Sox families. MicroRNA genes were
also annotated and compared with other chordate lineages, elucidating the gains and losses of chordate
microRNAs.

Conclusions: The four-finger threadfin . tetradactylum genome presented here represents the first available
genome sequence for the ecologically, biologically, and commercially important clade of threadfin fish. Our findings
provide a useful genomic resource for future research into the interesting biology and evolution of this valuable
group of food fish.
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Background

Teleostei is the most species-rich and diverse group of
vertebrates, with ~ 30,000 species, accounting for around
half of all extant vertebrate species [1]. In addition to
their great diversity, teleosts play important ecological
roles in aquatic ecosystems, and are of great relevance as
a source of protein in both wild fisheries and aquacul-
ture. Consequently, the study of teleost genomes is of
considerable importance from evolutionary, ecological
and applied perspectives.

The teleost order Perciformes comprises more than
10,000 species and represents the single largest group
of vertebrates, with representatives in almost every
aquatic ecosystem on earth [2]. Many perciform fish
are highly important commercially, and the group is
fast becoming an important model system for verte-
brate genomics, with the number of genome se-
quences available growing rapidly.

The fourfinger threadfin, Eleutheronema tetradacty-
lum, belongs to the perciform family Polynemidae,
commonly known as threadfins. A distinguishing fea-
ture of threadfins is the pectoral fin, which is com-
posed of two distinct sections, an upper normally
shaped fin, and a lower section consisting of up to
seven long, threadlike independent rays, which are be-
lieved to act as sensory probes for locating food in
muddy habitats [3]. Like other threadfins, E. tetradac-
tylum has the ability to tolerate a wide range of salin-
ities, and is often found in estuaries and rivers, as
well as its main coastal marine habitat over shallow
sand or mud flats [4, 5]. Threadfins are important for
commercial and sport fisheries across a wide socio-
economic spectrum, and are marketed as fresh,
frozen, dried or salted fish. E. tetradactylum is a par-
ticularly valued species, not least because of its large
size compared to other threadfins (~2m maximum
length). However, E. tetradactylum is believed to be
declining rapidly across much of its tropical Indo-
West Pacific range, and is classified as endangered by
the IUCN [6]. Like many fish, E. tetradactylum is a
protandrous hermaphrodite that can undergo sex
change at different ages [4, 7].

To date, no genomic resources are available for the
threadfin family Polynemidae. To address this and pro-
vide the first reference genome for Polynemidae, we se-
quenced and assembled a draft genome for the four-
finger threadfin, Eleutheronema tetradactylum. Here we
describe the E. tetradactylum genome, to provide re-
sources that can facilitate a better understanding of this
poorly studied fish lineage. We compare findings to
those for other perciform fish, and perform a range of
specific analyses on transposable element content, and
key developmental loci, including Hox genes and
microRNAs.
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Results

Genome assembly metrics

The genomic DNA from a single individual of E. tetra-
dactylum was isolated and sequenced using the 10X
Genomics platform. The final assembly size was 610.5
Mb, which is close to the estimated genome size (~ 630
Mb, Supplementary Figure S1). The scaffold N50 length
was 56.3 kb (Table 1), and among the 36,746 scaffolds,
the longest scaffold was 568.4kb. To estimate genome
completeness, we performed a BUSCO assessment [8].
We found that 96.5% of BUSCO genes were detected
(88.2% of which were complete, and 8.3% of which were
fragmented) (Table 1, Supplementary Table S1).

A total of 38,490 gene models were predicted for E.
tetradactylum, including 37,683 protein-coding genes
and 807 tRNAs. Orthologous genes of the four-finger
threadfin were compared to the genomes of goldfish, sal-
mon, zebrafish and human. A total of 8777 gene groups
are shared in these five vertebrates (Fig. la), while 12,
071 gene groups are conserved among the four fish spe-
cies. In addition, we carried out an orthologous gene
comparison between the four-finger threadfin and all
other available percid fish genomes (Fig. 1b). The num-
ber of protein coding genes of these 12 percid fish
species ranges considerably, from 20,541 to 37,683 (Sup-
plementary Table S2).

Repeat content

To assess the repeat content of the four-finger threadfin
genome, we generated a de novo repeat library using
RepeatModeler. Following this, we applied two ap-
proaches for repeat annotation: (i) a standard Repeat-
Masker analysis, and (ii) a custom implementation
including repeat defragmentation and removal of over-
lapping annotations. The standard RepeatMasker ana-
lysis identified a very low repeat content of just 9.07%
(Table 2), while the custom implementation identified a
slightly higher, but still very low repeat content of

Table 1 Summary of genome assembly metrics for E.
tetradactylum

Common name Four-finger threadfin

Species Eleutheronema
tetradactylum

Accession number WFKG00000000

Number of scaffolds 36,746

Assembly size 610,497,648

Scaffold N50 56,314

Largest scaffold 568375

Number of genes (protein-coding 38,490 (37,683)

game)
Gap content
BUSCOs (Complete)

14,703
96.5% (88.2)%
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Repeat analysis of the four-finger threadfin
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(See figure on previous page.)

Fig. 1 Comparison of orthologous gene groups between E. tetradactylum and other vertebrates. a Shared and unique orthologous gene groups
in four species of Teleostei and human. b Genome-wide comparison of orthologous genes among various percid fish. Abbreviations: Cau:
goldfish Carassius auratus; Dre: zebrafish Danio rerio; Ete/Etet: four-finger threadfin Eleutheronema tetradactylum; Hsa: human Homo sapiens; Ssa:
Atlantic salmon Salmo salar; Carg: Channa argus; Ecra: Etheostoma cragini; Espe: Etheostoma spectabile; Lcro: Larimichthys crocea; Lmac: Lateolabrax
maculate; Nalb: Nibea albiflora; Pcha: Parachaenichthys charcoti; Pfla: Perca flavescens; Pflu: Perca fluviatilis; Sluc: Sander lucioperca; Ssin: Sillago sinica

10.91%, with the slight increase a consequence of mer-
ging fragmented repeats into longer repeat models dur-
ing this approach (Table 2).

In the E. tetradactylum genome, repeats are much
more prevalent in gene flanks (regions within 20 kb up-
stream and 20 kb downstream of annotated host genes),
compared to intergenic regions or introns (Fig. 2: Repeat
Localities). This potentially suggests recruitment of re-
peats for host associated purposes through donation of
coding or regulatory sequence (e.g. [9, 10]), although
very little evidence exists of repeats directly inserted into
gene regulatory 5" and 3" UTRs (Fig. 2: Repeat locality).
Alternatively, this pattern suggests the involvement of
other at present unclear genomic processes that have re-
sulted in an uneven distribution of repeats.

Transposable elements (TEs) account for the vast ma-
jority of repeats annotated in the four-finger threadfin
genome (Table 2). Other categories of repeat (simple,
small RNA, satellite, and low complexity) account for
just 0.32-1.01% of the genome (Table 2, Fig. 2: Repeat
content). Among TEs, the largest contribution of se-
quence comes from DNA transposons (4.27-5.31%),
followed by LINEs (1.88-1.99%%), and LTR elements
(1.01-1.33%) (Table 2). These figures are broadly similar
to those reported for the yellow drum Nibea albiflora
[11], another perciform fish with a similarly low TE
content.

Examination of the repeat landscape generated for the
four-finger threadfin implies that there has been a steady

decrease in transposon activity over recent time periods,
since there is a notable decrease in repeats separated by
low levels of divergence, which correspond to more re-
cent copies (Fig. 2: Repeat landscape plot). This pattern
is primarily a consequence of a reduction in the relative
activity of DNA transposons and LTR elements, since
levels of divergence for LINEs appears to have remained
relatively stable.

Hox, ParaHox, and sox genes of E. tetradactylum

Hox cluster genes encode a group of transcription fac-
tors that control the anteroposterior axis during devel-
opment [12, 13]. A total of 59 Hox genes were recovered
in the E. tetradactylum genome (Fig. 3a-b, Supplemen-
tary data S1, Figure S2). HoxA, B, C, D clusters with
conserved microRNAs (mir-10 and mir-196) were re-
vealed (Fig. 3b). Retention of HoxA7, extra copies of
HoxB genes, as well as the loss of HoxD13a were ob-
served in E. tetradactylum (Fig. 3b). These data suggest
dynamic Hox gene gains and losses have occurred during
fish evolution.

As for the Hox evolutionary sister group, the ParaHox
genes including 2 Gsx, 1 Pdx, and 3 Cdx genes could be
identified on 6 different scaffolds (Supplementary data
S1, Figure S3). This situation mirrors what has been
found in other teleosts, which have broken ParaHox
clusters with secondary gene losses having occurred after
whole genome duplication [14, 15].

Table 2 Table summarising repeat content in the E. tetradactylum genome, detailing the number of elements, overall length, and
genomic proportion, for each major repeat type, for a standard RepeatMasker analysis (left) and a custom annotation approach

(right, see methods for details)

Repeat Class Traditional Repeat Annotation (RepeatMasker)

Refined Conservative Repeat Annotation

No. Total Length Percentage sequence No. Total Length Percentage sequence

elements (Mb) (%) elements (Mb) (%)
Retroelement 155419 19.14 3.14 150453 2192 3.59
SINE 13534 146 024 12936 1.63 027
LINE 60949 11.49 1.88 60294 1218 1.99
LTR element 80936 6.19 1.01 77223 8.11 133
DNA 298755 26.04 427 276340 3242 531
transposon
Rolling-circle 15702 1.28 0.21 15557 2.05 034
Unclassified 32821 7.88 1.29 29890 7.80 1.28
Other 11396 1.00 0.16 19703 240 039
Total repeats 514093 55.34 9.07 491943 66.59 1091
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The expansion of key transcription factors is pro-
posed to act as a critical genetic driver for the evolu-
tion of vertebrate innovations [16]. The Sox gene
family encodes transcription factor members that con-
tain the high mobility group box (HMG box) DNA
binding domain, which is conserved throughout the
metazoans, and play vital roles in various develop-
mental processes [17, 18]. A total of 26 Sox genes
from 6 subgroups were identified in E. tetradactylum
genome, but not Sox30, which is similar to findings
for the zebrafish and pufferfish (Fig. 3c, Supplemen-
tary Figure S4).

MicroRNAs

MicroRNAs are an important group of post-transcriptional
regulators with a key role in development. A total of 356
microRNA genes, including 126 bilaterian-conserved micro-
RNA species, were identified in E. tetradactylum (Supple-
mentary data S2). Comparing E. tetradactylum microRNA
content with that of other chordates available in miRBase
[19], MirGeneDB [20] and other relevant genomes [21], 36
chordate-conserved microRNAs were identified (Fig. 4a). In
particular, 33 and 19 microRNAs appear to have emerged in
the vertebrate ancestor and gnathostome ancestor respect-
ively (Fig. 4a, Supplementary data S2).
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The last common ancestor of vertebrates underwent
two rounds of whole genome duplication (WGD), with
an additional round of WGD that occurred in the ances-
tor of teleosts (i.e. the teleost specific genome duplica-
tion or ‘TGD’) [22-29]. In the salmonid lineage and the
lineage containing the last common ancestor of carp and
goldfish, an additional fourth WGD (4R) occurred [30,
31]. Consequently, copy numbers of the 36 chordate-
conserved microRNAs discussed above were investi-
gated, to investigate patterns in the retention of dupli-
cates (Fig. 4b). About 60% of microRNAs have multiple
copies in different vertebrates (post-WGD). While in
more distant vertebrate relatives the pattern appears to
differ, for example in the sea squirt and amphioxus, 88
and 62.5% of their microRNAs exist as single copies re-
spectively (Fig. 4b). This is likely to be influence of
WGDs in vertebrate lineages. Intriguingly, comparison
of microRNA copies between human and teleosts (which
were subject to the TGD), also revealed that more than
50% of microRNAs have more paralogues in teleost spe-
cies than in human (Fig. 4c). For example, 36 out of 54
(67%) conserved microRNAs possess additional dupli-
cates in E. tetradactylum compared to human (Fig. 4c).
Our findings suggest that WGD events have a profound
influence on the evolution of microRNA complements,

and thus that microRNA landscapes may be a useful in-
dicator of WGD events.

Discussion
Considerable variation exists among the genome sizes of
perciform fish, with the genome size of the threadfin
lying very much at the lower end. At the upper end of
the spectrum for perciform fish, the pikeperch (Percidae:
Sander lucioperca) has an estimated genome size of
1014 Mb, and an assembly genome size of ~ 900 Mb
[32], and the red sea bream (Sparidae: Pagrus major) has
an estimated genome size of ~ 806 Mb, and an assembly
genome size of 829.3 Mb. Meanwhile, at the lower end
of the spectrum, the yellow drum (Sciaenidae: Nibea
albiflora) has an estimated genome of 573-581 Mb and
an assembly genome size of 596 Mb [11], and the Chin-
ese sillago (Sillaginidae: Sillago sinica) has an estimated
genome size of ~524 Mb, and an assembly genome size
of just 534 Mb [33]. Comparison of various percid fish
genomes showed that E. tetradactylum possesses the lar-
gest number of protein-coding genes, but the smallest
average protein size, which may contribute to its small
overall genome size, despite its large number of genes.
Nguinkal et al. [32] examined repeat content among
the genomes of nine perciform fish species, and found it
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to vary from 13.8% in the yellow drum (Nibea albiflora)
to 39.8% in the pikeperch (Sander lucioperca). Thus,
among perciform fish, the four-finger threadfin has an
especially low repeat content. One of the key determi-
nants of genome size in eukaryotes is repeat content
[34], and in line with this, a strong relationship between
genome size and repeat content is reported for perci-
form fish [32]. Consequently, the repeat content of the
four-finger threadfin conforms to its relatively small gen-
ome size of ~ 610 Mb. However, the genome assembly of
the yellow drum is even smaller (~565Mb) than the
four-finger threadfin genome presented here, but its re-
peat content is higher at 13.8% [11]. Thus, it appears
that the repeat content of the four-finger threadfin is es-
pecially low, both among fish genomes [35], and com-
pared to other vertebrate genomes more generally.
Reasons for the low repeat content of the threadfin gen-
ome are unclear at present, and further elucidation of
this finding represents an interesting avenue for future
study. Further, it remains unclear what factors have led
to certain expansions of repeats, particularly DNA trans-
posable elements, in other perciform fish such as the
pikeperch [32].

Hox cluster genes encode a group of transcription fac-
tors that control the anteroposterior axis during devel-
opment [12, 13]. The E. tetradactylum contains HoxA?7,
while cyprinid fish (such as zebrafish, common carp and
goldfish) and pufferfish have lost HoxA7 [36—38]. More-
over, additional copies of HoxB genes, as well as the loss
of HoxDI13a, were observed in E. tetradactylum. These
data suggest dynamic Hox gene gains and losses have oc-
curred during fish evolution, and have undoubtedly
helped to shape the wide diversity of body forms observ-
able among teleost fish, and not least structures such as
the charismatic threadfins displayed by fish in the family
Polynemidae.

Different to majority of invertebrates, vertebrate an-
cestor has gone through 2R WGD and teleost ances-
tor has further experienced an extra TGD, which
contributed to the greatly successful radiation and di-
versification of their genetic complexity [22-29]. By
comparing microRNA contents in different chordate
lineages (Fig. 4), the emergence/gain of microRNAs
well reflected the functional consequences of verte-
brate WGD, and the paralogue numbers of conserved
microRNAs in various chordate lineages are also in
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line with those WGD events. Our findings suggest
that microRNA landscape could be a useful indicator
of WGD event.

Conclusions

This study provides a new genomic resource of the four-
finger threadfin E. tetradactylum, and represents the first
available genome sequence for the biologically interesting
and economically important threadfin fishes (family Poly-
nemidae). In particular, our analyses help to facilitate
studies on the developmental biology of the four-finger
threadfin, and comparative developmental genomics ana-
lyses among perciform fish more generally. With their
great diversity, wide variation in body forms, and special-
ized morphological adaptations, in combination with rap-
idly increasing genomic resources, the perciform fishes are
fast emerging as a vertebrate group with great potential to
further the study of developmental genomics. Addition-
ally, we provide a detailed analysis of the repeat content of
the four-finger threadfin genome, highlighting the very
low repeat content present. It is currently unclear why re-
peat content varies so greatly among perciform fish, and
what mechanisms drive largescale reductions in repeat
content in certain genomes. However, the analysis of
unsampled lineages from across phylogenetic diversity, as
undertaken here, lays important groundwork for further
exploration and elucidation of these patterns. Overall, the
analyses and genomic resources provided here provide a
starting point for further advances in our understanding
of the genomics of the unusual threadfin fishes.

Methods

Genomic DNA extraction, sequencing and assembly
Frozen flesh of a single individual of E. tetradactylum was
obtained from a Sai Kung market at Sai Kung, Hong Kong.
Genomic DNA was isolated from muscle tissue using the
PureLink Genomic DNA Kit (Invitrogen), and species iden-
tity was confirmed with COI barcoding. The DNA sample
was sent to Novogene (Hong Kong) for library preparation
and sequencing on the lllumina HiSeq X system. Chromium
WGS reads were assembled using Supernova (v2.1.1) with
default parameters (https://support.10xgenomics.com/de-
novo-assembly/software/pipelines/latest/using/running), and
the Supernova pseudohap assembly output was used for fur-
ther analysis. Genome size estimation was analyzed using a
k-mer-based statistical approach in the GenomeScope webt-
ool [39]. Completeness of genome assembly was examined
by BUSCO (v4.0.0, metazoa_odb10, actinopterygii_odb10, 8).

Repetitive elements annotation

Repetitive elements were identified as previously de-
scribed pipeline [40, 41] with the chordata RepBase
dataset [42]. Subsequently, the resulting de novo repeat
library was utilised to identify repetitive elements using
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RepeatMasker [43], by implementing two approaches.
Firstly, a standard RepeatMasker analysis was performed.
Secondly, repeat models were maximised using an auto-
mated process implemented in RepeatCraft [44] under
strict merge parameters with LTR_FINDER v1.0.5 [45]
and the LTR_FINDER_Parallel wrapper [46] to defrag-
ment repeat segments. For loci where RepeatMasker an-
notations overlapped (i.e where the same sequence was
annotated as different repeat families), only the longest
repeat was selected. This is a conservative approach that
ensures TE content estimates are not inflated by count-
ing the same bases multiple times, and facilitates a one-
to-one matching of sequence with repeat family identity.
A revised summary table was constructed using the re-
vised repeat counts for the second approach, which are
presented alongside the bare RepeatMasker results.
Rstudio v1.2.1335 [47] with R v3.5.1 [48] and ggplot2
ver. 3.2.1 [49] was used to generate all the plots.

Genome and microRNA annotation

Raw sequencing reads from 4 transcriptome datasets
were downloaded from the Sequence Read Archive
(SRA) (SRR7899951, SRR7899952, SRR7899953 and
SRR7899954) for gene model prediction using Trimmo-
matic [50], Funannotate [51], Trinity [52] and PASA
[53] as previously described procedures and parameters
[41, 54].

Precursor sequences of microRNAs of known chordate
species were retrieved from both miRbase and MirGen-
eDB (Supplementary data S3, [19, 20]), and used to
search for homologous sequences in the E. tetradacty-
lum genome using BLASTN with the following parame-
ters: -r 5 -q—4 -G 8 -E 6 -e value 1. Results were also
manually inspected for good sequence conservation and
hairpin folding by CentroidFold [55].

Gene family and phylogenetic analyses

Gene models of goldfish (Carassius auratus), zebrafish (Da-
nio rerio), salmon (Salmo salar) and human (Homo sapiens)
were download from Goldfish genome project (https://re-
search.nhgri.nih.gov/goldfish) and NCBI (GCF_000002035.6,
GCF_000233375.1, GCF_000001405.39) respectively, and
further compared with E. tetradactylum using all-against-all
BLASTP alignment (E-value of 107°) and OrthoMCL
(v2.0.9, inflation value of 1.5, [56]). The links to the gene
models of 12 percid fish are shown in Supplementary Table
S3. The gene models were then compared with E. tetradacty-
lum using the same parameters.

For analysis of Hox, ParaHox, and Sox genes, reference
sequences were obtained from HomeoDB ([57], http,//
homeodb.zoo.ox.ac.uk/), NCBI (https://www.ncbi.nlm.
nih.gov/), Uniprot (https://www.uniprot.org/) and rele-
vant genomes in Ensembl database (https://asia.ensembl.
org/index.html) as queries to carry out tBLASTn [58]
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searches to retrieve protein coding gene sequences from
the E. tetradactylum genome (reference sequences used
in this study could be found in Supplementary data S3).
Each putatively identified gene was also compared to se-
quences in the NCBI nr database. Further, protein se-
quences were aligned to other known members of
putative gene families using MAFFT [59], and phylogen-
etic trees were constructed using MEGA [60] and dis-
played using iTOL [61].
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