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Abstract

Background: Pathway analysis is widely applied in transcriptome analysis. Given certain transcriptomic changes,
current pathway analysis tools tend to search for the most impacted pathways, which provides insight into
underlying biological mechanisms. Further refining of the enriched pathways and extracting functional modules by
“crosstalk” analysis have been proposed. However, the upstream/downstream relationships between the modules,
which may provide extra biological insights such as the coordination of different functional modules and the signal
transduction flow have been ignored.

Results: To quantitatively analyse the upstream/downstream relationships between functional modules, we developed
a novel GEne Set Topological Impact Analysis (GESTIA), which could be used to assemble the enriched pathways and
functional modules into a super-module with a topological structure. We showed the advantages of this analysis in the
exploration of extra biological insight in addition to the individual enriched pathways and functional modules.

Conclusions: GESTIA can be applied to a broad range of pathway/module analysis result. We hope that GESTIA may
help researchers to get one additional step closer to understanding the molecular mechanism from the pathway/
module analysis results.
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Background
Pathway analysis is a routine process in transcriptome
analysis used to gain biological insights. As reviewed in
several recent works [1–3], such analysis can be roughly
categorized into three groups: Over Representative Ana-
lysis (ORA), Functional Class Scoring (FCS), and Pathway
Topology Based (PTB) analysis. The ORA methods, exem-
plified by GO enrichment analysis [4, 5], are based on
hypergeometric distribution and the over-representation
of the shared genes between pathways. The FCS method,
exemplified by GSEA [6], incorporates the level of gene

expression changes in weighting the calculation of the en-
richment score. Since these tools do not consider the
topological structure of the gene interaction networks,
more recently developed algorithms convert the topo-
logical structure of the pathways into impact scores (e.g.
SPIA) [7] or weights (e.g. CePa, NetPathMiner) [8, 9] be-
fore incorporating them in the enrichment algorithm.
Despite the wide application of these tools in transcrip-

tome analysis, there are biases and false positives in these
pathway analysis results. Donato et al. 2013 [10] showed
that unrelated pathways may also be significantly enriched
by pathway analysis due to shared genes (crosstalk) in the
pathways. They designed a “crosstalk analysis” to identify
such crosstalk effects and remove them from the pathway
analysis results, while generating new sub-pathways that
represent functional modules. Although the refinement of
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the enriched pathways and the extraction of functional
modules greatly improved the rationality of the results,
the interpretation of the results is based upon the prior
knowledge of the pathways and modules, which provides
limited evidence to distinguish the true positive from false
positive if a seemingly unrelated pathway/module is sig-
nificantly enriched.
To explore the biological insights beyond individual

enriched pathways and functional modules and generate
extra clues to help inferring the molecular mechanisms,
we propose a new strategy that quantitatively assesses the
upstream/downstream relationships between pathways/
modules. Our new algorithm uses topology, but also uti-
lizes gene-gene interaction at supra-pathway level. This is
based on the idea that the pathways/modules of a bio-
logical process are coordinately regulated, hence they may
have interactions, especially upstream/downstream rela-
tionships. To our knowledge, there is currently no such al-
gorithm/software to identify the upstream/downstream
relationships between pathways/modules. The existing
pathway crosstalk analysis software (e.g. CrossTalkZ and
SPATIAL) [11, 12] investigates the interactions between
pathways to search for more shared features of the path-
ways than solely shared genes. As a result, these algo-
rithms are able to reduce the false negative rate, but not
the false positive rate, of the pathway analysis results. Add-
itionally, along with other crosstalk analysis software such
as BinoX [13] and FoPA [14], they are unable to assess the
upstream/downstream relationships..
In this study, we developed a novel algorithm called

GEne Set Topological Impact Analysis (GESTIA). GES-
TIA is based on a global network merged from KEGG
pathways [15, 16]. Based on the network, GESTIA can
take user-defined gene sets/functional modules or pre-
compiled pathways and compute the relative influence
score of one pathway/module on the other. A positive
GESTIA score indicates the former pathway/module is
upstream of the latter, and vice versa. We demonstrated
that GESTIA score does not directly correlate with the
similarities or the functional correlations of the pathways/
modules, which means that even though two pathways/
modules may share no common genes, they can still have
strong GESTIA scores, indicating that one pathway/mod-
ule acts upstream of the other and, therefore, has a strong
impact on that other pathway/module but not vice versa.
On the other hand, pathways/modules that share a large
number of genes might not have a high GESTIA score,
since the two pathways/modules may only interact with
each other mutually. We applied GESTIA scores to
analyze the relative influence of the DNA repair pathways
and oncogenic pathways on each other, and showed that
GESTIA score can be a good indicator of the upstream/
downstream relationships of the pathways. Additionally,
we used GESTIA on published transcriptome datasets and

demonstrated the practicality of using GESTIA scores to
infer molecular mechanisms from dispersed pathways/
modules by assembling them into a topological structure.
GESTIA has been implemented in R package (http://
github.com/yanshen2953/GESTIA).

Results
Development of the GEne set topological impact analysis
(GESTIA)
To assess the relationships between gene sets or pathways,
the significance of the enrichment of the overlapping genes
is often used as an indicator. However, the number of over-
lapping genes between pathways does not reflect the up-
stream/downstream interactions of the pathways. As
observed in the example signaling pathways (REACTOME_
MAPK1_ERK2_ACTIVATION and REACTOME_MAPK
3_ ERK1_ACTIVATION from Molecular Signature Data-
Base, MSigDB, Fig. 1a) [6, 17], it is possible for two path-
ways to share a high proportion of genes, yet exhibit nearly
equal dominant effects on each other. The “dominant ef-
fects” here means a “tail to head” interaction of the up-
stream pathway to the downstream pathway. On the other
hand, even if two pathways share few or even no common
genes, they might still be closely correlated with each other.
This is illustrated in Fig. 1b, which displays REACTOME_
MAPK1_ERK2_ACTIVATION and REACTOME_PI3K_
AKT_ ACTIVATION signaling pathways from MSigDB,
and in Fig. 1c, which displays BIOCARTA_MTOR_PATH-
WAY and REACTOME_PI3K_AKT_ACTIVATION from
MSigDB. The two pathways in Fig. 1a and Fig. 1b show an
almost symmetrical topology, which is also true in the
biological sense. The yellow pathway in Fig. 1c is clearly lo-
cated upstream of the red pathway. In order to quantita-
tively assess the upstream/downstream relationships of two
pathways/modules, especially the relationships exempli-
fied by Fig. 1b and Fig. 1c, we developed a novel algo-
rithm named “GEne Set Topological Impact Analysis”
or GESTIA (Fig. 1d).
Since genes may have different functions or interactions

in different pathways/modules, interrogating the interac-
tions between pathways in the context of a global network
enables comprehensive assessment of the gene interac-
tions beyond the individual pathways being studied (see
Fig. 1b as an example). Suppose Gene A and Gene B are
from two different pathways, and they do not interact with
each other according to these two pathways. However,
they may interact with each other in a third pathway. This
interaction will only be shown if we take the gene interac-
tions from the third pathways into consideration when we
study the relationship of the first two pathways. And this
the reason that two pathways sharing no common genes
are still possible to interact with each other. Considering
the situations like this, we constructed a global network
from the KEGG pathway database before calculating
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GESTIA scores. The code for merging and filtering the
global network can be found in Additional file 3.
To quantitatively assess the upstream/downstream rela-

tionships of pathways/modules, we designed the GESTIA
score to reflect the relative influence of one pathway/mod-
ule on the other, since “upstream” usually implies that one
pathway/module acts on another pathway/module. There-
fore, we converted the calculation of GESTIA score into
the comparison (subtraction) of the two calculable influ-
ence scores, pathway/module A on pathway/module B
and the reverse, B on A. To calculate the influence score
of A on B, we took the sum of all the influences of the
genes in A on B as the raw influence score. The influence
score of B on A was calculated similarly.
However, with any given topological structure of two

pathways/modules, there is a chance for random interac-
tions between genes that belong to different pathways/
modules. The influence scores of these random interac-
tions, therefore, form the null distribution. Because of the
variability of the topological structure of pathways, it is dif-
ficult to construct a universal null distribution for all the
combinations of different pathways. Therefore, we permu-
tated the interactions between the two pathways/modules

being studied to calculate an empirical null distribution of
the influence score, while maintaining the internal topo-
logical structure of each of the two pathways/modules.
For pathways with overlapping genes, the interactions be-

tween the shared genes and other genes can be considered
as both intra-pathway/module and inter-pathway/module
interactions, which impede the permutations, because if we
perturb these inter-pathway/module interactions, we will
have to change the pathways’/modules’ topological struc-
ture, since these interactions are also intra-pathway/mod-
ule. To overcome this dilemma, we create pseudo-vertices
in the network that duplicate the shared genes (Fig. 1d). In
this way, the two previously overlapping pathways/modules
are split into two non-overlapping pathways/modules,
which enables the same permutation strategy as for non-
overlapping pathways/modules. At the same time, since this
splitting process does not perturb the topological structure
of individual pathways/modules, the raw influence scores
remain the same. This overlap-splitting strategy successfully
solved the difficulty of permutating pathways/modules with
overlapping genes, enabling the unbiased modeling of the
null distribution of the influence scores. Meanwhile, similar
to GSEA [6], we estimated the significance of the relative

Fig. 1 Representative pathway interactions and the design of GESTIA. a. Visualization of the gene interactions between REAC
TOME_MAPK1_ERK2_ ACTIVATION and REACTOME_MAPK3_ERK1_ACTIVATION. Vertices in red represent genes in the first of the two pathways,
yellow represent genes in the second, and blue represent shared genes. b. Visualization of the gene interactions between REAC
TOME_MAPK1_ERK2_ACTIVATION and REACTOME_PI3K_ AKT_ACTIVATION. The color set of the vertices is the same as in a. c. Visualization of the
gene interactions between BIOCARTA_MTOR_PATHWAY and REACTOME_PI3K_ AKT_ACTIVATION. from MSigDB. The color set of the vertices is
the same as in a. d. The design of GESTIA. The color set of the vertices is the same as in a, and green represent pseudo-vertices
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influence scores by calculating the chance of randomly per-
mutated interactions getting a more significant relative in-
fluence score than the real one.

Measurement of the upstream/downstream position of
two pathways by GESTIA score
We applied GESTIA first on the example pathway pairs in
Fig. 1. We calculated a GESTIA score of 0.013 and a p-
value of 0.49 for Fig. 1a, which is consistent with the dem-
onstrated topological structure of the two parallel pathways
(red and blue vertices && yellow and blue vertices). For
Fig. 1b, we got a positive GESTIA score of 0.011, which in-
dicated “slight” upstream activity of the pathway REAC
TOME_MAPK1_ERK2_ACTIVATION (yellow vertices) to
the pathway REACTOME_PI3K_AKT_ ACTIVATION
(red vertices). Indeed, although all the arrows between the
two pathways end in the REACTOME_PI3K_ AKT_ACTI-
VATION pathway, almost all of the endpoint genes (IRS1,
IRS2 etc.) of these interactions are downstream of this path-
way, meaning that if the interactions are randomly chosen
between the two pathways while maintaining the directions,
there is a large chance that the resulted random raw GES-
TIA score is higher than the real one, because the randomly
chosen interactions are likely to end in more upstream
genes of REACTOME_PI3K_AKT_ACTIVATION. There-
fore, the significance of these upstream/downstream rela-
tionships is low, reflected by a p-value of 1.0. For Fig. 1c,
pathway BIOCARTA_MTOR_PATHWAY (red and blue
vertices) clearly sits downstream of pathway REACTOME_
PI3K_AKT_ACTIVATION (yellow and blue vertices);
therefore, the strong negative GESTIA score (− 1.4) and a
small p-value of 0.001 is as expected. In general, GESTIA
score and its p-value can correctly indicate upstream/down-
stream relationships between two pathways.
To compare GESTIA with commonly used pathway

analysis tools, we applied GESTIA on the DNA repair
pathways and oncogenic pathways, most of which were se-
lected from Chi et al. 2019 [18]. We first calculated the
matrix of the Jaccard Index, which is an indicator of simi-
larity, for the oncogenic and DNA repair pathways (Fig. 2a,
Additional file 4). The oncogenic pathways and the DNA
repair pathways can be clearly separated into two groups
by the number of shared genes between them. Using the
Jaccard Index matrix as an adjacency matrix, we con-
structed an undirected weighted network of these path-
ways, which shows a similar tendency (Fig. 2c).
The heatmap of GESTIA score matrix, however, shows

a distinct structure of relationships between these path-
ways (Fig. 2b, Additional file 5). Since the sign of the
GESTIA score reflects the upstream/downstream rela-
tionship of the two pathways, we arranged the matrix to
be the GESTIA scores of row pathways over column
pathways; therefore, a positive score indicates that the
row pathway is upstream of the column pathway. As

expected, the DNA repair pathways shows fewer interac-
tions because of the distinct mechanisms these pathways
are involved in. On the other hand, all of the growth factor
receptor pathways are upstream of PID_P53_REGULA-
TION _PATHWAY, as expected. However, there are two
special cases that showed unexpected relationships with
other pathways. One is PID_ERBB2_ ERBB3_PATHWAY,
which is downstream of all other oncogenic pathways.
Examination of this pathway and its interactions with other
pathways showed that, unlike other growth factor receptor
pathway collections, this pathway contains more down-
stream pathway genes, e.g. genes from the PI3K/AKT and
MAPK signaling pathways, as exemplified by the compari-
son of PID_ERBB2_ERBB3_PATHWAY and REAC
TOME_SIGNALING_BY_ERBB2 (Additional file 1). Al-
though the names of these two pathways may create an im-
pression that they should be similar, or at least partially
similar because they are both about ERBB2’s pathway, the
significant differences in the gene members of these two
pathways suggest that the annotations and the components
of the pathways might differ from database to database,
hence researchers need to check the components of the
pathway collections in detail to accurately interpret the
enriched pathways. The other unexpected pathway is
REACTOME_PI3K_EVENTS_IN_ERBB2_ SIGNALING,
which is upstream of other growth factor receptor path-
ways. This is because it contains fewer downstream genes
than other pathways, as exemplified by the interactions of
this gene set with REACTOME_SIGNALING_BY_ERBB2
(Additional file 2). To better visualize the upstream/down-
stream relationships of these pathways, we constructed a di-
rected weighted network of these pathways to demonstrate
the interactions between these pathways (Fig. 2d).
Negative values and values less than 1 were excluded
before the construction of the adjacency matrix. This
network clearly shows the upstream/downstream rela-
tionships of the oncogenic pathways and PID_P53_
REGULATION_PATHWAY.

Assembly of the enriched pathways based on GESTIA scores
Next, we demonstrate the ability of GESTIA to analyze
the upstream/downstream relationships of enriched path-
ways in real datasets. We first analyzed the up/down-regu-
lated pathways enriched by GSEA analysis of the RNA-seq
data of TERThigh Vs. TERTlow hepatocytes from Lin et al.
2018 [19]. In this paper, GSEA revealed enriched gene sets
associated with cell division and receptor tyrosine kinase
activity in the TERTHigh population, and enriched gene
sets associated with ribosome components, mitochondrial
proteins, the electron transport chain and hepatocyte
metabolic activities in the TERTLow population. However,
the paper did not further explore the relationships be-
tween these enriched pathways.
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After conversion of the GESTIA matrix (Additional file 6)
to a directed weighted network (Fig. 3a), the assembly iden-
tified one super module consisted of two sub-graphs, with
the GO_CELL_CYCLE functioning as a hub between them.
We hereby define “GESTIA analysis” to refer to the whole
processes of calculating GESTIA matrix, filtering and as-
sembly of the super-module(s). Further demonstrations of
the interactions between BIOCARTA_MAPK_PATHWAY
and HALLMARK_ XENOBIOTIC_METABOLISM (Fig.

3b) and between GO_CELL_CYCLE and GO_MITO-
CHONDRIAL_MEMBRANE_PART (Fig. 3c) show that
GESTIA analysis correctly detected the upstream/down-
stream relationships within these two pair of pathways.
Notably, most of the genes in GO_MITOCHONDRIAL_
MEMBRANE_PART do not form an interaction network,
but GESTIA analysis still detects the relationships, which is
mainly caused by the regulatory effects of Prkaca and
Prkacb in GO_CELL_CYCLE on the Nduf gene family in

Fig. 2 Demonstration of the similarities and upstream/downstream relationships between oncogenic pathways and DNA repair pathways. a. The
heatmap of the Jaccard Index matrix of oncogenic pathways and DNA repair pathways. Fonts in blue represent oncogenic pathways, fonts in
pink represent DNA repair pathways. b. The heatmap of the GESTIA scores between oncogenic pathways and DNA repair pathways. The color set
and orders of the rows and columns are the same as in a. c. The undirected weighted network constructed using the Jaccard Index matrix as an
adjacency matrix. The weights of the edges are proportional of the Jaccard Index scores in the matrix. Blue represent oncogenic pathways, pink
represent DNA repair pathways. d. The directed weighted network constructed using the GESTIA matrix as an adjacency matrix. Negative values
were filtered out because of the symmetry of the matrix. The color set are the same as in c
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GO_MITOCHONDRIAL_ MEMBRANE _PART (Fig. 3c).
We further checked the source of the interactions between
Prkaca/Prkacb and the Nduf gene family, and we found that
Prkaca/Prkacb exhibits inhibitory effects on the Nduf genes
in the Endogenous Cannabinoid Signaling Pathway
(hsa04723). Although the mRNA level of Prkaca and
Prkacb was not significantly changed, the genes Adcy6 and
Adcy9, which catalyze the synthesis of cAMP, were up-
regulated (adjusted p-value 0.049 and 0.095), increasing the
activation of Prakaca and Prakacb, which would conse-
quently inhibit the Nduf genes, consistent with the up-

regulation of GO_CELL_CYCLE and the down-regulation
of GO_MITOCHONDRIAL_MEMBRANE_ PART.
We then calculated the GESTIA matrix for the signifi-

cantly enriched (adjusted p-value < 0.05) hallmark gene sets
comparing remission BCR-ABL− stem cells against remis-
sion BCR-ABL+ stem cells from another published work
[20] and converted the GESTIA matrix (Additional file 7) to
a weighted interaction network (Fig. 3d). Of the 13 enriched
gene sets, 9 showed significant upstream/downstream rela-
tionships in a super module. The network clearly shows two
distinct sub-networks: one is the signaling network of PI3K,

Fig. 3 Assembly of enriched pathways from two real datasets based on GESTIA scores. a. The directed weighted network constructed using the
GESTIA scores of the enriched pathways in Lin et al. 2018. Red vertices represent pathways that were up-regulated, and blue vertices represent
down-regulated pathways. b. Visualization of the gene interactions between BIOCARTA_MAPK_PATHWAY and HALLMARK
_XENOBIOTIC_METABOLISM (from MSigDB). Red vertices represent the genes in the first of the two pathways; the yellow ones represent genes in
the second. To avoid overcomplicating the figure, we only showed the part of the figure where the two pathways interact with each other. c.
Visualization of the gene interactions between GO_CELL_CYCLE and GO_MITOCHONDRIAL_ MEMBRANE_PART (from MSigDB). The color set of
the vertices is the same as in b. d. The directed weighted network constructed using the GESTIA scores of the enriched pathways in Giustacchini
et al. 2017. The color set of the vertices is the same as in a
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AKT, mTOR, TNF-alpha, E2F and G2M check point; the
other is the adipogenesis gene set and the network of oxida-
tive phosphorylation, fatty acid and xenobiotic metabolism.
The gene sets of G2M check point and DNA repair are the
terminal vertices of the network, which is consistent with
the elevated cell cycle/proliferation and DNA repair activ-
ities in remission BCR-ABL− stem cells. Taken together,
GESTIA analysis identified the upstream/downstream rela-
tionships of the enriched pathways and revealed the orches-
trated regulation of pathways.

Assembly of the refined pathways/modules based upon
GESTIA scores
As revealed by Donato et al. 2013, unrelated pathways
may gain significant p-value due to the overlapping
genes with genuinely affected/causal pathways. The pro-
posed “crosstalk analysis” can identify and filter these
false positive and redundant pathways, at the same time
create functional modules. Assembling the filtered path-
ways and newly created functional modules may gener-
ate a more concise and accurate map of how these
pathways/modules interact with each other.
Since the examples presented in Donato et al. 2013 were

well annotated with detailed explanation of the rationality
of the results, we followed the works and applied GESTIA
on both the unfiltered and filtered pathway analysis re-
sults. Figure 4a and b shows the assembled pathways and
modules identified in the first example in Donato et al.
2013, which profiled the transcriptome of mice’s white fat
tissue during transition into resembling brown fat tissue.
The vertices in red are the pathways that were known to
be unrelated to this biological process, while the green
ones are supported by experimental evidences, and the
blank ones are uncertain. Applying GESTIA analysis on
the enriched pathways without crosstalk analysis keeps all
of the three known related pathways, and excluded Par-
kinson’s Disease, Cardiac Muscle Contraction, Lysosome,
and Complement and Coagulation Cascades, first two of
which are known to be unrelated pathways (Fig. 4a). In
Donato et al. 2013, crosstalk analysis shortened the list of
the significantly enriched pathways and produced four
additional functional modules. GESTIA analysis of these
filtered pathways and functional modules shows there are
at least two distinct super-modules in this context, involv-
ing the three known related pathways/modules and one
previously uncertain module: Cytokine-Cytokine receptor
interaction (Fig. 4b). The other two uncertain modules
were left out in this assembly, which indicates that there
were no significant upstream/downstream relationships
between them and other pathways/modules. This is prob-
ably because the current pathway collections are still in-
complete, hence there are unprofiled pathways which may
link these two modules with other pathways/modules.

We also applied GESTIA analysis on the second example
in Donato et al. 2013, which described cross talk analysis re-
sults of an experiment on cervical ripening. Figure 4c shows
the GESTIA analysis result of the significantly enriched
pathways without crosstalk analysis. The crosstalk analysis
produced an independent functional module, extracted
from the three pathways: ECM Receptor Interaction,
Amoebiasis, and Focal Adhesion, named “Integrin Medi-
ated ECM Signal” (Fig. 4d). Interestingly, the GESTIA ana-
lysis of the filtered pathways/modules (Fig. 4d) maintains
the basic topological structure in Fig. 4c, with the replace-
ment of the false positive pathway Small Cell Lung Cancer
by Leukocyte Transendothelial Migration, and an additional
downstream pathway Dilated Cardiomyopathy, which is la-
beled in red because of the lack of evidences. However, the
strong GESTIA score between Dilated Cardiomyopathy
and Leukocyte Transendothelial Migration led us to investi-
gate the possibility of real involvement of this Dilated Car-
diomyopathy pathway. We plotted the gene interactions
between Dilated Cardiomyopathy pathway and Leukocyte
Transendothelial Migration pathway (Additional file 8),
which clearly showed three sub-modules in Dilated Cardio-
myopathy pathway separated by Leukocyte Transendothe-
lial Migration pathway. The three sub-modules correspond
to 1. Sarcomere, 2. ECM-receptor interaction, and 3. Sarco-
plasmic Reticulum derived calcium signaling. Each of these
three sub-modules contains significantly changed genes,
suggesting that they may all be involved in the process.
The ECM-receptor interaction module has been
detected by crosstalk analysis, as shown in Fig. 4d at
the upstream of the super-module. The other two sub-
modules are related to the muscle contraction, which
was reasonable since 10 to 15% of the uterine cervix is
constituted of smooth muscle [10].

Discussion
Transcriptome profiling has spurred a move from func-
tional analysis of single genes to pathways that contain
multiple related genes. Numerous pathway analysis tools
have been developed; these identify the most signifi-
cantly impacted pathways by enrichment of orchestrated
up/down regulation of genes in the pathway, providing
stronger evidence for investigating the biological mecha-
nisms than looking at the change of single gene’s expres-
sion level. Like individual genes, individual pathways
also interact with each other, and the upstream/down-
stream pathways might be perturbed synergistically if
there is an upstream change in the biological context.
Therefore, it is possible that future pathway analysis will
be able to interrogate the coordinated changes in mul-
tiple upstream/downstream pathways, assembling the
orchestrated pathways into super functional modules
and rendering better interpretations of the molecular
mechanisms underlying the transcriptome profiles.
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GESTIA score, as we present here, is able to quantify the
upstream/downstream relationships of pathways/modules.
Coordinately changed pathways/modules with upstream/
downstream relationships will yield strong and significant
GESTIA scores between each other, which enables the as-
sembly of pathways/functional modules based on GESTIA
scores. Other than breaking the pathways into sub-
modules, GESTIA takes the gene interaction information
to glue the pathways/modules together, which adds more
rationality to the pathway/module analysis results and con-
sequently helps to interrogate the mechanistic insights.
The input of GESTIA is two sets of genes. In theory,

users can feed GESTIA with any gene sets, as long as they
contain more than 5 genes. For instance, users can define

their own pathways like “Mitochondria Activity”, then apply
GESTIA on this user-defined pathway with other known
pathways to assess the upstream/downstream relationships.
The source of the input gene sets can be pre-defined gene
sets (significantly enriched by pathway analysis, for in-
stance), or gene sets constructed from co-expression ana-
lysis, or gene sets from module analysis from protein-
protein interaction network, or any other methods that
yield biological meaningful gene sets. This feature makes
GESTIA highly flexible with input data. The output of
GESTIA algorithm is a score estimating the upstream/
downstream relationship between two pathways. The GES-
TIA scores can be arranged into a matrix, which can then
be assembled into a directed graph. We call this directed

Fig. 4 Assembly of pathways/modules with/without crosstalk analysis. a. Assembly of the enriched pathways from the fat remodelling study of
Donato et al. 2013. b. Assembly of the pathways/modules after filtering by crosstalk analysis on the fat remodelling study. c. Assembly of the
enriched pathways from the cervical ripening study of Hassen et al. 2009. d. Assembly of the pathways/modules from Hassen et al. 2009 after
filtering by crosstalk analysis. Green vertices are pathways/modules that are known to be related to the study. Red vertices are obvious false
positive pathways/modules. White vertices are uncertain pathways/modules
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graph “super-module” since it uses pathways as nodes. To
distinguish the single GESTIA algorithm and the whole
analysis starting from single GESTIA score calculation,
matrix construction and super-module assembly, we call
the later “GESTIA analysis”. The fundamental goal of GES-
TIA analysis is to elucidate the static upstream/downstream
relationship between pathways, so that we can construct a
weighted, directed pathway interaction network which is
similar to gene interaction network despite that the nodes
in the network are pathways.
The design of GESTIA score makes it favor the direct

upstream/downstream relationships, especially the
downstream genes in one pathway that directly affect
the upstream genes in the other. The pathways that have
intense interactions but do not exhibit such “tail to
head” interactions will get low GESTIA scores. On the
other hand, filtering by p-value will ensure that those
strong GESTIA scores are generated from true up-
stream/downstream relationships, not by certain topo-
logical structures of the pathways (e.g. in pathway A, one
gene controls ten genes; in pathway B, ten genes control
one gene; if the interactions between A and B are ran-
dom, then it is more likely to calculate a high positive
raw GESTIA score for A over B. This kind of strong
GESTIA score will ultimately be filtered by p-value).
We introduced pseudo vertices during the calculation of

the null distribution, which may lack real biological mean-
ings. However, the newly created pseudo vertices preserve
the topological structures of both of the pathways, and at
the same time, maintains the number of inter-pathway
gene interactions (those arrows that start from one path-
way and end in the other). We tested the raw influence
score calculation on multiple pathway pairs with different
topologies and with overlapping genes, with/without cre-
ating pseudo vertices. The raw influence scores remain
the same with/without pseudo vertices, indicating that al-
though the pseudo vertices did not serve as nodes with
biological meanings, they did preserve the topological fea-
tures of the two pathways. For the convenience of calcula-
tion, we decided to use this way of splitting the intersected
gene sets in null distribution calculation.
Since the GESTIA score assesses the static pathway inter-

actions, in theory we could apply GESTIA once and for all
for every gene set of pathways, however, this would be too
time consuming, although calculation of 10 to 20 input gene
sets by GESTIA only takes a short period of time, which is
sufficient for users to test GESTIA on their own interested
pathways. Nevertheless, calculation of the GESTIA matrix of
pathways from popular databases is still ongoing; the result
for 179 KEGG pathways can be found at: https://github.
com/yanshen2953/GESTIA/tree/master/PathwaysSetResult .
Since the GESTIA score calculation is based on a global

network delineating all the possible gene interactions, the
accuracy of this network may influence the result of the

GESTIA score. With the accumulation and curation of
pathway databases, this global network will be rapidly im-
proved and, consequently, GESTIA will provide better es-
timation of the pathway relationships.
To generate a concise and accurate assembly of path-

ways/modules, another important factor is the accuracy
of the pathway/module analysis itself. Take the crosstalk
analysis result as an example, before filtering by crosstalk
analysis, there are obvious false positive pathways in the
list. These false positive pathways usually carry func-
tional modules which grant the false positives upstream/
downstream relationships with other genuine pathways
with high possibility, resulting in inaccurate and redun-
dant assembly of the pathways/modules. To date, there
are numerous algorithms and tools to analyze pathway
enrichment and generate functional modules, including
construction of functional modules based upon
protein-protein interaction networks or co-expression
networks. GESTIA can be applied on top of these tools’
results and organize the pathways/modules into
directed networks, which is helpful for the validation of
the pathways/modules and the understanding of the
molecular mechanisms.
For the weakness of GESTIA, firstly, the relationships

between pathways are far more complex than just up-
stream/downstream relationships, but GESTIA can only
assess a small sub-set of the pathway relationships (which
is the upstream/downstream relationships). However, un-
like the cooperative relationships (which can be assessed
by extensively studied co-expression gene analysis) or
functional relations (which can be assessed by algorithms
like CSEA), the upstream/downstream relationships be-
tween pathways are far less quantitively studied (at least to
our knowledge). Secondly, GESTIA analysis does not
optimize the gene members of the pathway gene sets, like
the crosstalk analysis proposed by Donato et al. 2013 do,
nor does it construct new gene sets de novo from co-
expression data or interactome data. Therefore, the quality
of the super-modules produced by GESTIA analysis
greatly relies on the quality of the input gene sets, i.e.
whether the pathway gene set represents the real func-
tional module in a certain study. Refinement of the path-
way gene set can improve the quality of output of
GESTIA analysis, as shown in Fig. 4. Thirdly, we currently
only constructed the global gene interaction network for
human. Assessment of the upstream/downstream rela-
tionships of pathways in other organisms may suffer from
the inaccuracy of the gene interactions underlying the glo-
bal network, which we do not recommend.

Conclusions
GESTIA can be applied to a broad range of pathway/mod-
ule analysis result, not just from transcriptome analysis,
since the current GESTIA algorithm does not incorporate
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gene expression changes. It can assemble the candidate
pathways/modules to form a topological structure, which
reflects the internal biological relationships based on gene
interactions. Additional tools to visualize such gene inter-
actions between the pathways are also available in the R
package that implements GESTIA. We hope that GESTIA
may help researchers to get one additional step closer to
understanding the molecular mechanism from the path-
way/module analysis results.

Methods
Combining gene interactions into a global network
Due to the fact that genes often interact with other genes
beyond a specific pathway, it is necessary to build a global
network before assessing the interactions between path-
ways, otherwise the interactions of pathways will be lim-
ited to only the shared genes. To build a comprehensive
gene interaction network, we combined 285 KEGG path-
ways. Currently, KEGG includes metabolic and non-
metabolic pathways, which are totally different in express-
ing the correlations between genes. In metabolic path-
ways, the proteins (encoded by certain genes) often act as
enzymes in biochemical reactions, so the substrates of the
proteins are often metabolites. In contrast, in non-
metabolic pathways, the proteins may directly modify the
target proteins (phosphorylation, ubiquitination etc.), or
bind to the target genes’ promoter/enhancer (as a tran-
scription factor), then influence the expression of the tar-
get gene, or act as a epigenetic modifier that activates/
suppresses the expression of certain genes. Due to these
differences, some of the existing tools which built their
own gene interaction networks excluded the metabolic
pathways (e.g. CrossTalkZ, SPATIAL). In our study, we
extracted the gene interactions of solely signalling path-
ways from KEGG by a R function, “KGML2igraph,” picked
from the package “NetPathMiner”. We then converted the
gene IDs into gene symbols and removed the isolated
genes. The loops defined as “edges for which the two end-
points are the same vertex” within the igraph object was
then removed using the function “simplify” from the R
package “igraph”. Then, the igraph object was used as the
global network in GESTIA calculation.

Calculation of the raw GESTIA score
The purpose of the GESTIA score is to assess the up-
stream/downstream relationships of two pathways, which
is essential to interrogate which of the two pathways has
more of an impact on the other, and to what degree. Nor-
mally, if one gene can impact another gene (through acti-
vation, inhibition, induction, repression, etc.), we would
conclude that the former is upstream of the later. Here,
we extend this upstream/downstream notion from genes
to pathways. For pathways, if the impact of the genes in
pathway A on the genes of pathway B is more than the

genes of B on A, we will conclude that A is upstream of B.
Hence, we define the GESTIA score to be the normalized
relative impact of pathway A on pathway B, so that if the
normalized impact of A on B is higher than B on A, then
GESTIA score will be positive, and vice versa. The input
of GESTIA algorithm are two gene sets representing two
pathways.
Next, we designed the algorithm to quantify the impact

of one pathway on the other. Consider two pathways that
do not have any overlapping genes but that do have inter-
actions (e.g. Figure 1b). Since the genes in the two path-
ways reside in a comprehensive gene-gene interaction
network, each gene in pathway A (e.g. red vertices in Fig.
1b) may or may not be directly upstream of the genes in
pathway B (e.g. yellow vertices in Fig. 1b). Here we only
consider the direct dominant effects of genes in A, for the
indirect dominant effects will be accounted by the down-
stream genes in A. For example, in Fig. 1b, MAP 2 K2
does not directly impact IRS2, but its impact will be
accounted in MAPK1’s impact. To achieve this adjust-
ment of MAPK1’s impact, we assigned each gene with a
weight to indicate its relative position in the network of
the pathway. We then used this weight to adjust the influ-
ence scores of the downstream genes (e.g. MAPK1) to ac-
count for the indirect influence (e.g. the impact of MAP 2
K2). The weight of each gene in A is defined as the pro-
portion of the downstream genes of genei in A:

wAi ¼ nd
n − 1

Where wAi is the weight of genei in pathway A, nd is
the number of genes that are downstream of genei in
pathway A, and n is the number of genes in A. n-1 ex-
cludes genei in the count number. A similar definition
can be applied to wBi.
The weight we introduced for each gene is dependent

on the relative position of the gene in the topology of the
pathway. The downstream genes in the pathway will have
smaller weights. The simplest scenario, in which pathway
A is upstream of pathway B, would be that the down-
stream genes in A are directly upstream of the upstream
genes in B. For example, if both A and B are linear, the
ideal scenario is that the tail of A is upstream of the head
of B. Therefore, we adjusted the influence score by timing
1-wAi to favor the downstream genes (e.g. MAPK1 in Fig.
1b), which also accounts for the impact of the upstream
genes (e.g. MAP 2 K2 in Fig. 1b).
Currently, we do not have a comprehensive estimation

of the strength of each gene’s impact; therefore, all of the
impacts (edges in the network, e.g. Figure 1b’s edges) have
a common weight which is 1. Hence, the impact of a gene
in A (GeneAi) on the whole pathway B is defined as the ad-
justed sum of its direct impact on B. For the same reason
mentioned in the previous paragraph, we wanted to favour
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the “tail upstream of head” situation; therefore, the
weights of genes in B (wBi) were used to adjust each indi-
vidual influence score before taking the sum, so that the
genes impacted by GeneAi in B would be given higher
weights if they were the “head” genes. Taken together, the
influence score of GeneAi on B is given by the following
formula:

InfluenceScoreAi ¼ 1 −wAið Þ�DDs GeneAi;NetABð Þ∙wT
B

Where A and B are the two gene sets for calculation,
DDs stands for “Direct Downstream,” which returns a 0-
or-1 vector indicating whether the genes in B is directly
downstream of GeneAi. NetAB is the network extracted from
the global network based on the genes in A and B. wAi is
the weight of GeneAi. wB is the vector of each gene’s weight
in B. “T” means transpose. The dot product of DDs and
transposed wB will give us the sum of the weights of B’s
genes that are directly downstream of GeneAi.
The ImpactScoreAi basically takes the sum of the weights

of genes in B that are directly downstream of GeneAi, then
uses the relative position of GeneAi to adjust the score. As
suggested in the formula, we did not count the weights of
the indirect downstream genes in B. If we include all the
weights of the downstream genes in B, the information of
the relative position of genes in B will be used more than
once, which will introduce bias to favor the impact on
those genes with higher weights in B.
The influence score of A on B is then defined as the

sum of the influence score of each gene in A on B:

InfluenceScoreA ¼
Xm

i¼1

1 −wAið Þ�DDs GeneAi;NetABð Þ∙wT
B

Where m is the number of genes in A.
The raw GESTIA score is then defined as:

GESTIAA − B ¼ InfluenceScoreA − InfluenceScoreB

¼
Xm

i¼1

1 − wAið Þ�DDs GeneAi;NetABð Þ∙wT
B

−
Xn

j¼1

1 −wBj
� ��DDs GeneBj;NetAB

� �
∙wT

A

We defined the raw GESTIA score of A on B as a sub-
traction of B’s influence score from A’s. This is based on
the consideration of the complexity of two pathways’ in-
teractions, where A may affect B, but at the same time, B
may also affect A. In this situation, although A and B may
intensively interact with each other, it is not certain which
one of them acts the upstream of the other. Therefore, a
subtraction of B’s influence score from A’s shows how
much greater the strength of A’s impact on B is than that
of B on A. At the same time, this definition also results in
the symmetry of GESTIAA-B and GESTIAB-A:

raw GESTIAA − B ¼ − raw GESTIAB − A

Calculation of the empirical null distribution
Although the raw GESTIA score describes the relative
impact of one pathway on the other, it is still possible
that this impact is no more than the result of random ef-
fects. To remove the random effects, we first calculated
the null distribution of the relative influence score of the
two pathways, A and B. Since different pathways have
different topological structures and different interactions
between pathways, we applied random permutation on
the edges that cross the pathways (starting from one
pathway and ending at the other) by randomly select the
starting genes and the ending genes while fixing the dir-
ection of the permutated edges to be the same with ori-
ginal one. For example, in a case wherein one edge
originally starts from A and ends in B, the permutation
was done by randomly selecting the starting gene from
A and the ending gene from B (Fig. 1d). However, this
permutation becomes difficult to implement when there
are shared genes between the two pathways, since the
change of the interactions related to the shared genes
will also modify the topological structure of the path-
ways. We therefore created pseudo-vertices in the sub-
network by duplicating the shared genes and their inter-
actions, then split the sub-network into two non-
overlapping pathways. (Fig. 1d). Then, we permutated
the edges across the two newly formed pathways without
disturbing the topological structures inside each path-
way. Finally, we calculated the GESTIA scores of these
randomly permutated sub-networks (permImpactScoreA),
which forms the empirical null distribution. The relative
influence scores are then normalized by subtracting the
mean of the permutated relative influence scores:

normalized InfluenceScoreA ¼ InfluenceScoreA
−mean permInfluenceScoreAð Þ

The p-value was estimated by the chance of permInfluen-
ceScoreA – permInfluenceScoreB to be more significant than
raw GESTIAA-B. For pathways that do not interact at all,
the GESTIA score will be 0 and p-value will be 1.

Calculation of the normalized GESTIA score
We subsequently define the normalized GESTIA score
to be:

normalized GESTIAA − B ¼ normalized InfluenceScoreA
− normalized InfluenceScoreB

Note that permInfluenceScoreA does not equal to per-
mInfluenceScoreB. This subtraction of two influence
scores means that normalized GESTIA score is an esti-
mation of the differences of the impact of pathway A on
B and B on A.

Yan et al. BMC Genomics          (2020) 21:748 Page 11 of 12



Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07148-y.

Additional file 1: Figure S1. Visualization of the gene interactions
between PID_ERBB2_ERBB3_PATHWAY and REAC
TOME_SIGNALING_BY_ERBB2. (DOCX 258 kb)

Additional file 2: Figure S2. Visualization of the gene interactions
between REACTOME_PI3K_EVENTS_IN_ERBB2_SIGNALING and REAC
TOME_SIGNALING_BY_ERBB2. (DOCX 394 kb)

Additional file 3. R code for constructing global network. (TXT 2 kb)

Additional file 4: Matrix Data 1. JI matrix for Fig. 2a. (XLS 2 kb)

Additional file 5: Matrix Data 2. GESTIA score matrix for Fig. 2b. (XLS
3 kb)

Additional file 6: Matrix Data 3. GESTIA score matrix for Fig. 3a. (XLS 1
kb)

Additional file 7: Matrix Data 4. GESTIA score matrix for Fig. 3d. (XLS
5 kb)

Additional file 8: Figure S3. Visualization of the gene interactions
between KEGG_DILATED_CARDIOMYOPATHY and
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION. (DOCX 741 kb)

Additional file 9. Additional discussion of the related issues. (DOCX 15
kb)

Abbreviations
GESTIA: GEne Set Topological Impact Analysis; ORA: Over Representative
Analysis; FCS: Functional Class Scoring; PTB: Pathway Topology Based;
GO: Gene Ontology; GSEA: Gene Set Enrichment Analysis; SPIA: Signaling
Pathway Impact Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes;
MSigDB: Molecular Signature DataBase

Acknowledgements
We are very grateful for the discussion with Jie Ren from the Beijing Institute
of Genomics, who gave valuable opinions for this paper. We thank Xiaoquan
Qi of the Institute of Botany, Chinese Academy of Sciences for ideas in this
thesis. In addition, we thank Yan Yan of the Chinese Academy of Agricultural
Sciences for her many support during this research.

Authors’ contributions
S.Y. and X.C.1 provided ideas for this article. X.C.1 designed the R package.
S.Y. organized the data and contributed the construction of the global
network. X.C.1 calculated the GESTIA matrix of KEGG pathways. S.Y., X.C.2 and
X.C.1 wrote and revised the article. M.T. guided the work. S.Y. and X.C.1

contributed equally. All authors have read and approved the manuscript.

Authors’ information
Shen Yan and Xu Chi contributed equally.

Funding
This work was supported by the Ministry of Science and Technology of
China (Grant No. 2018ZX09201009). This grant supported the cost of the
labour put into this research, and the cost of the computing resources.

Availability of data and materials
All data generated or analysed during this study are included in this
published article and its supplementary information files.
The code generated in this study have been submitted to the Github (http://
github.com/yanshen2953/GESTIA) under the afl-3.0 license.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Agronomy, Sichuan Agricultural University, Chengdu 611130,
Sichuan, China. 2Beijing Institute of Genomics, Chinese Academy of Sciences,
Beijing 101300, China. 3China National Center for Bioinformation, Chaoyang,
Beijing 101300, China. 4Department of Dermatology and Venereal Disease,
Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

Received: 12 April 2020 Accepted: 13 October 2020

References
1. García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway

analysis: state of the art. Front Physiol. 2015;6:383.
2. Nguyen T-M, Shafi A, Nguyen T, Draghici S. Identifying significantly impacted

pathways: a comprehensive review and assessment. Genome Biol. 2019;20(1):1–15.
3. Zyla J, Marczyk M, Domaszewska T, Kaufmann SH, Polanska J, Weiner 3rd J

Gene set enrichment for reproducible science: comparison of CERNO and
eight other algorithms. Bioinformatics 2019, 35(24):5146–5154.

4. Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global
functional profiling of gene expression. Genomics. 2003;81(2):98–104.

5. The Gene Ontology Consortium. The gene ontology resource: 20 years and
still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–8.

6. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.

7. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C,
Romero R. A systems biology approach for pathway level analysis. Genome
Res. 2007;17(10):1537–45.

8. Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a
systematic approach for finding significant pathways dominated by key
genes. BMC Syst Biol. 2012;6(1):56.

9. Mohamed A, Hancock T, Nguyen CH, Mamitsuka H. NetPathMiner: R/
bioconductor package for network path mining through gene expression.
Bioinformatics. 2014;30(21):3139–41.

10. Donato M, Xu Z, Tomoiaga A, Granneman JG, Mackenzie RG, Bao R, Than
NG, Westfall PH, Romero R, Draghici S. Analysis and correction of crosstalk
effects in pathway analysis. Genome Res. 2013;23(11):1885–93.

11. McCormack T, Frings O, Alexeyenko A, Sonnhammer EL: Statistical
assessment of crosstalk enrichment between gene groups in biological
networks. PLoS One. 2013;8(1):e54945.

12. Bokanizad B, Tagett R, Ansari S, Helmi BH, Draghici S. SPATIAL: a system-level
PAThway impact AnaLysis approach. Nucleic Acids Res. 2016;44(11):5034–44.

13. Ogris C, Guala D, Helleday T, Sonnhammer ELL. A novel method for
crosstalk analysis of biological networks: improving accuracy of pathway
annotation. Nucleic Acids Res. 2017;45(2):e8.

14. Mansoori F, Rahgozar M, Kavousi K. FoPA: identifying perturbed signaling pathways in
clinical conditions using formal methods. BMC Bioinformatics. 2019;20(1):92.

15. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 2000;28(1):27–30.

16. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for
understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590–5.

17. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database hallmark gene set collection. Cell
systems. 2015;1(6):417–25.

18. Chi X, Sartor MA, Lee S, Anurag M, Patil S, Hall P, Wexler M, Wang X-S:
Universal concept signature analysis: genome-wide quantification of new
biological and pathological functions of genes and pathways. Briefings
Bioinformatics 2019 (bbz093).

19. Chi X, Sartor MA, Lee S, Anurag M, Patil S, Hall P, Wexler M, Wang X-S.
Universal concept signature analysis: genome-wide quantification of new
biological and pathological functions of genes and pathways. Briefings in
Bioinformatics. 2020;21(5):1717–32.

20. Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG,
Sopp P, Norfo R, Rodriguez-Meira A, Ashley N, et al. Single-cell
transcriptomics uncovers distinct molecular signatures of stem cells in
chronic myeloid leukemia. Nat Med. 2017;23(6):692–702.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Yan et al. BMC Genomics          (2020) 21:748 Page 12 of 12

https://doi.org/10.1186/s12864-020-07148-y
https://doi.org/10.1186/s12864-020-07148-y
http://github.com/yanshen2953/GESTIA
http://github.com/yanshen2953/GESTIA

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Development of the GEne set topological impact analysis (GESTIA)
	Measurement of the upstream/downstream position of two pathways by GESTIA score
	Assembly of the enriched pathways based on GESTIA scores
	Assembly of the refined pathways/modules based upon GESTIA scores

	Discussion
	Conclusions
	Methods
	Combining gene interactions into a global network
	Calculation of the raw GESTIA score
	Calculation of the empirical null distribution
	Calculation of the normalized GESTIA score

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

