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Abstract

Background: Transcription factors (TFs) are essential regulators of growth and development in eukaryotes. Basic-
helix-loop-helix (bHLHs) is one of the most significant TFs families involved in several critical regulatory functions.
Cryptochrome-interacting bHLH (CIB) and cryptochromes form an extensive regulatory network to mediate a
plethora of pathways. Although bHLHs regulate critical biological processes in plants, the information about
pineapple bHLHs remains unexplored.

Results: Here, we identified a total of 121 bHLH proteins in the pineapple genome. The identified genes were
renamed based on the ascending order of their gene ID and classified into 18 subgroups by phylogenetic analysis.
We found that bHLH genes are expressed in different organs and stages of pineapple development. Furthermore,
by the ectopic expression of AcCIB2 in Arabidopsis and complementation of Atcib2 mutant, we verified the
involvement of AcCIB2 in photomorphogenesis and abiotic stress response.

Conclusions: Our findings revealed that AcCIB2 plays an essential role in flowering time regulation and abiotic
stress response. The present study provides additional insights into the current knowledge of bHLH genes and
suggests their potential role in various biological processes during pineapple development.
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of TF family, which is widely distributed among eukaryotes
[3, 4]. bHLH proteins are characterized by a bHLH domain
of approximately 60 amino acid sequences with two con-
served regions, the basic region and a helix-loop-helix (HLH)
region [5]. The basic domain comprises 10 to 15 amino
acids, while HLH contains approximately 40 amino acids.
The basic region is found at the N-terminus of the domain
and modulates DNA binding, whereas the HLH region of
the domain facilitates dimerization through protein-
protein interaction [6]. Generally, bHLH TFs regulate
their target after forming homo or heterodimers by inter-
acting with bHLHs and other regulatory proteins [7, 8]. In
plants, bHLHs play crucial roles in gene expression during
regulatory and developmental processes, including tran-
scriptional regulation, chromosome segregation, general
transcriptional enhancement, hormonal signaling, wound-
ing, response to environmental cues, metabolism regula-
tion, flower and fruit development [3, 9-12].

In angiosperms, a successful transition from the vegeta-
tive phase to the reproductive stage, followed by
fertilization, is essential for seed formation. Plant starts to
flower in response to a plethora of environmental signals,
including photoperiod, which ensures their reproductive
success [13]. Plants encode numerous photo-receptors that
participate in light signaling and regulate many aspects of
growth and development [14]. Several photoreceptors have
been reported in plants, including cryptochromes, phyto-
chromes, phototropins, UV Resistance locus 8 (UVR8), and
Zeitlupe family members (ZTL, FKF1, and LKP2) [15-17].
CRYs are photolyase-associated blue-light receptors, and
they interact with different proteins in the presence of blue-
light to mediate a plethora of functions, such as inhibition
of hypocotyl elongation and flowering initiation [9, 18—20].
In Arabidopsis, three cryptochromes are encoded: crypto-
chrome 1 (CRY1), cryptochrome 2 (CRY2), and crypto-
chrome 3 (CRY3) [14, 17, 21, 22]. CRY1 participates in blue
light-dependent de-etiolation responses and inhibition of
hypocotyl elongation. It also acts redundantly with CRY2
and is partly involved in floral initiation [9, 14]. However,
the primary function of CRY?2 is the regulation of flowering
in response to blue light [18, 23, 24]. CRY3 is found in
chloroplasts and mitochondrion and reported to repair
UV-induced single-stranded DNA damage [14].

In response to blue-light, cryptochromes interact with differ-
ent proteins to regulate photomorphogenesis. Several pro-
teins are known to interact with cryptochrome, including
CRY2-interacting bHLH proteins (CIBs) [16]. CIBs belong to
BEE/CIB subfamily of bHLH and interact with cryptochrome
to regulate floral initiation by activating FLOWERING
LOCUS T (FT) [9]. CIBs act redundantly in the CRY-CIB
pathway to promote flower induction [9]. CIB1 was the first
among CIBs to be identified in plants that positively regulates
floral initiation [25]. Similarly, CIB2 and other CIBs also regu-
late flowering individually or after dimerization [9].
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Comprehensive characterization and functional ana-
lysis of bHLH TFs have been performed in several im-
portant crop plants, including Chinese cabbage and
Brassica [5, 7, 11]. However, no study of this essential
TF family is reported in pineapple, an economically cru-
cial perennial fruit crop belonging to Bromeliaceae.
Similar to other plants, pineapple also encodes several
bHLHs, including CIBs. Here, by performing a genome-
wide study, we identified 121 bHLH proteins and char-
acterized them comprehensively. Further, we also de-
scribed AcCIB2 (AcbHLHS8) functions by ectopically
expressing it and complementing the Arabidopsis cib2
mutant. Here we show that AcCIB2 is involved in flow-
ering time regulation and also participates in abiotic
stress response.

Results

Identification and characterization of pineapple bHLH
genes

We identified 121 AcbHLH proteins in pineapple and
named them based on the ascending order of their gene
ID. The bHLH genes of pineapple showed high similarity
to those in Arabidopsis. We further characterized the
pineapple bHLH proteins based on their molecular
weight, isoelectric point, amino acid, and open reading
frame (ORF) length, respectively (Additional Table S1).
The molecular weight of AcbHLH proteins ranged from
1.04 kDa to 345.97 kDa. AcbHLH17 (Aco001282) have a
higher molecular weight of 345.97 kDa, followed by
AcbHLH99 (Aco016776) with 92.57 kDa. AcbHLH15
(Aco001136) has the lowest molecular weight of 1.04
kDa among the pineapple bHLH proteins. The pineapple
bHLH proteins also have different isoelectric point
values, ranging from AcbHLH30 (Aco002151) with the
highest of 10.76, and AcbHLH53 recording the smallest
value of 4.73. Consistently, the pineapple bHLHs have
different ORF size, where AcbHLH17 has the most ex-
tended ORF sequence, while AcbHLH91 (Aco004138)
has the shortest ORF (Additional Table S1).

The exon-intron analysis suggests that most of the
AcbHLH possess introns, and with forty-nine introns,
AcbHLH17 had the maximum number of introns. How-
ever, AcbHLH18, AcbHLH45, AcbHLH64, AcbHLH70,
AcbHLH76 and AcbHLH83 were intronless. Besides,
twenty-eight AcbHLH genes did not have the UTRs, and
seven AcbHLH genes only had 5° UTR, and sixteen
AcbHLH genes had 3" UTR only (Additional Figure S2).

Phylogenetic analysis, chromosome location, and motif
analysis

The phylogenetic tree divided pineapple bHLH proteins
into eighteen groups (from I to XVIII) with their corre-
sponding Arabidopsis homologs (Fig. 1). Interestingly, all
the AcCIBs were in the group XII with Arabidopsis CIBs
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(Fig. 1). The pineapple CIB genes grouped with their
corresponding Arabidopsis homolog suggest that they
may have a similar biological function in photomorpho-
genesis and developmental responses.

We then studied the distribution of AcbHLHs on pine-
apple chromosomes and found that pineapple bHLH
genes are distributed unevenly on 23 linkage groups
(LG). Only two pineapple linkage groups, LG 22 and LG
24, do not possess bHLH genes. Few linkage groups have
a higher density of bHLH genes (up to 11 genes),
whereas few have only one, and all the AcbHLHs are dis-
tributed on different LGs (Fig. 2). These findings
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indicate that there is no direct correlation between
bHLH gene distribution and linkage groups length.

To further characterize the AcbHLH proteins, we re-
trieved the amino acid sequences from the bHLH do-
main region and aligned them (Additional Figure S3).
The pineapple bHLH domain analysis indicates that the
average length of the AcbHLH domain was approxi-
mately 50 aa, which ranged from 34 to 56 aa (Fig. 3,
Additional Table S4). Further, the study of conserved
motif distribution of AcbHLH superfamily using the
MEME program resulted in the identification of ten dif-
ferent motifs distributed among AcbHLH proteins
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Fig. 1 Phylogenetic tree showing the relationship between bHLH genes of pineapple and Arabidopsis. Different colors indicate different groups
Prefix ‘Ac’ indicates Ananas comosus and ‘AT’ refers to Arabidopsis thaliana. Red circles represent the pineapple CIB genes and the green

represents Arabidopsis CIB genes
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Fig. 2 Chromosomal locations of pineapple bHLH genes. The bHLH genes of pineapple were mapped to different chromosomes using
MapChart. Each AcbHLH is noted on the right side of its respective chromosome. Gene IDs in red represent pineapple CIB genes. The scale is in
megabases (Mb)

(Additional Figure S5). The numbers of these motifs in
bHLHs proteins were different, which could be respon-
sible for the functional diversity of AcbpHLH proteins.
The number of motifs on each AcbHLH ranged from 1
to 9. For example, AcbHLH34, AcbHLH46, AcboHLH47
and AcbHLH90 had only one motif whereas, AccHLH108
and AcbHLH60 had a maximum of 8 and 9 motifs, re-
spectively (Additional Figure S5). Moreover, the Pfam do-
main search indicated that some on the AcbHLH protein

possessed other domains in addition to the bPHLH domain.
For example, eight AcbHLHs (AcbHLH9, AcbHLH20,
AcbHLH23, AcbHLH60, AcbHLH70, AcbHLH99,
AcbHLH109, and AcbHLH120) have extra bHLH-MYC_
N domain downstream in addition to bHLH domain. The
structural information further suggests that pineapple
AcbHLHs genes have a close similarity with other re-
ported bHLH proteins, and may also be performing a
similar physiological function.
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Fig. 3 Sequence characteristics of the bHLH domains. Multiple sequence alignments were conducted with the bHLH domains of all pineapple
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Expression profile of pineapple bHLH genes in pineapple
We performed the expression profile analysis of pine-
apple bHLH genes using RNA-seq from various develop-
mental stages of different organs to understand their
possible functions in pineapple. The altered expression
patterns of the majority of AcbHLH in the selected sam-
ples suggest that the pineapple bHLH genes play different
roles in a specific organ or developmental stage. The ex-
pression profile of AcbHLH genes mainly clustered into
three different groups according to their expression pat-
tern. Low expressed bHLH genes were gathered together
in group I, highly expressed genes formed group II and
the moderately expressed genes formed group III (Fig. 4).

Overall, the majority of bHLH showed stage-specific
and organ-specific expression, suggesting the specificity
of bHLH proteins during pineapple development. Hier-
archical clustering into three distinct groups indicates a
correlation between biological function and the expres-
sion pattern at a particular stage and organ develop-
ment. Depending on the developmental requirements, the
expression of the AcbHLHs was a stage and/or organ-
specific. For example, AcbHLH113, a homolog of
ABORTED MICROSPORES (AMS), had relatively high
expression levels in the different stages of stamen develop-
ment, indicating that it might be playing a crucial role in
pineapple anther development (Fig. 4). Most of the pine-
apple CIB genes except AcCIB1 (AcbHLH71) were in
group II, displaying a high expression level in the stages of
flower and fruit development, suggesting that the pine-
apple AcCIB1 may not be the primary regulator of flower-
ing. The remaining CIBs, i.e. CIB2 (AcbHLHS), CIB3
(AcbHLH107), CIB4 (AcbHLH92) and CIB5 (AcbHLH12)
are in group II with highly expressed bHLH genes. Inter-
estingly, AcCIB2 showed a high expression in all the stages
of ovule, stamen development and had a relatively higher
expression in flower, suggesting that AcCIB2 may be play-
ing a crucial role in flower development (Fig. 4). These re-
sults indicate that AcbHLHs genes are expressed at
different stages of pineapple development and are essential
for growth and development.

AcCIB2 is a nuclear protein involved in
photomorphogenesis

To investigate the possible role of AcCIB2, we generated
transgenic plants of Arabidopsis that were ectopically ex-
pressing AcCIB2. The observation of 7-day old roots of
transgenic plants under a confocal microscope showed that
AcCIB2-GFP is a nuclear protein, and it localizes in the nu-
cleus (Fig. 5), which is in agreement with the previous find-
ings [23]. Generally, Col-0 plants start flowering in 23 to 26
days after transferring to the soil in a walk-in growth cham-
ber, but the Arabidopsis cib2 mutant begun to produce the
flower in 14 to 16 days (Fig. 6a). We found that the AcCIB2-
GEFP could complement the early flowering phenotype of
Atcib2, and complemented plants produce flower between
23 to 25 days after transfer to soil. While the plants ectopi-
cally expressing AcCIB2 do not show any significant differ-
ences in the flowering time and produced flower between 22
to 24 days, similar to wild-type plants (Fig. 6a).

To explore the reason behind the early flowering pheno-
type of cib2, we examined the expression of major flowering
related genes (CO, FT, and SOCI) and CRY-CIB genes
(CRY1, CRY2, CIB1, CIB4, and CIB5). We found that the ex-
pression level of SOCI and FT was significantly higher in the
cib2 mutant, whereas the expression of CO was reduced
compared to Col-0 plants (Fig. 6b). The complemented
plants of ¢ib2 mutant by AcCIB2 did not show any signifi-
cant change in the expression of selected genes compared to
wild type, suggesting that AcCIB2 may have a conserved role
in plants. However, the ectopic expression of the AcCIB2
changed the expression of CRY-CIB genes, and the expres-
sion of CRY1, CIBI and CIBS were significantly altered, sug-
gesting that the CRY-CIB genes may be working redundantly
in the pathways (Fig. 6b). Taken together, these results indi-
cate that the AcCIB2 is involved in photomorphogenesis and
may have a conserved function in plants.

Ectopic expression of AcCIB2 enhances abiotic stress
resistance

To better understand the role of AcCIB2 in response to
various abiotic stress, we checked the expression of
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AcCIB2 at different time points under osmotic (350 mM
Mannitol) stress and salt (150 mM NaCl) stress in pine-
apple plants. The quantitative RT-PCR shows that both
the osmotic and salt stress increased the expression of
AcCIB2, suggesting its potential role during abiotic stress
in pineapple (Fig. 7a). To further validate the involvement

of AcCIB2 in abiotic stress response, we grew different
AcCIB2 transgenic lines, including Atcib2 and wild-type
Arabidopsis plants on a media supplemented with Manni-
tol 300mM, 150 mM NaCl and 0.5uM abscisic acid
(ABA). In the germination assay, we found that the Atcib2
mutant displays susceptibility to salinity and osmotic
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AcCIB2-GFP

Fig. 5 AcCIB2-GFP localizes to the nucleus. AcCIB2-GFP localization in the nucleus of seven-day-old roots of transgenic Arabidopsis plants. GFP
fluorescence is represented in green and DAPI in blue channel, Scale bars =20 um

stress compared to wild-type plants. However, the trans-
genic plants expressing AcCIB2 resulted in better per-
formance in terms of germination and growth phenotype
during salinity, osmotic stress and ABA treatment (Fig. 7b).
Overall, these findings approve the role of cryptochromes
in abiotic stress response.

Discussion
Transcription factors regulate the expression of downstream
target genes, resulting in control of diverse biological pro-
cesses. A group of transcription factors contains a highly
conserved amino acid motif known as basic helix-loop-helix
(bHLH) domain. These bHLH proteins perform a myriad of
regulatory function in eukaryotic lineages and have been
studied in several plants [6, 11]. The bHLH transcription fac-
tors have been previously studied in several plant species, in-
cluding maize and potato [3, 4, 11, 26-28]. However, this
group of crucial transcription factor family is still unexplored
in pineapple. The availability of the sequenced genome of
pineapple serves as a great genetic resource for studying the
gene families [29]. Here, we identified 121 bHLH genes that
form a large family in pineapple. Generally, angiosperms
have more bHLH sequences in their genome and form a big
family; for example, in Arabidopsis, approximately 170
bHLH proteins are found [3]. Similarly, pineapple also pos-
sesses a large number of bHLH proteins suggesting their dis-
pensable role in the pineapple evolution and development.
Previous studies suggest that the two helices of the bHLH
domain fulfill the DNA binding prerequisite by forming the
homo or heterodimers between the bHLH proteins. In con-
trast, the basic region of most bHLH proteins interacts with
the DNA sequences such as E-boxes and G-boxes [6]. Besides,
approximately 77% of AcbHLH possessed the conserved glu-
tamic acid (E) at the 9th position in their basic region of the
domain (Additional Figure S3). This glutamic acid (E) directly
binds to CA nucleotide of the hexanucleotide sequence of the
E-box and/or G-box [6, 30]. Pineapple bHLH proteins also

share similar conserved domains and amino acid sequences
with the Arabidopsis proteins in the same cluster.

The exon and intron structure of genes is an important
feature to study evolutionary and functional divergence
within the same or closely related gene families [3]. We
found different exon-intron structures in AcoHLH super-
family, some of the genes have no introns in their struc-
ture, and some are intron rich, in contrast, some have few
numbers of introns (Additional Figure S2, Additional
Table S1). Consistently, a phylogenetic tree reveals the
functional relationship of proteins within a group and
serves as an excellent tool to study evolution [27, 31].
Phylogenetic analysis classified AcbHLHs into 18 sub-
groups (Fig. 1), the pineapple bHLH also formed a group
with their Arabidopsis homologs. AcCIB2 falls into group
XII with pineapple CIBs, Arabidopsis CIBs, and phyto-
chrome interacting factors (PIFs), suggesting that they
might have a similar function and are closely related via a
common ancestor. Members of group XII play a signifi-
cant role in photomorphogenesis [27], indicating the func-
tional and conserved evolutionary relationship of bHLH
proteins between pineapple and Arabidopsis. Interestingly,
bHLH transcription factors and cryptochromes are also
encoded by E. coli, liverworts, and ferns, indicating their
conserved nature [32, 33].

The gene expression patterns during different growth
stages and conditions could also be an indicator of gene
function [11].

One of the essential class of photo-receptors involved in
flowering initiation is cryptochromes (CRYs) and their
interacting proteins; cryptochrome-interacting bHLH pro-
teins (CIBs) [18]. Most of the photoreceptors signaling
mechanisms have been reported in Arabidopsis [15], and
recently in tomato [17]. CRY2-CIB network in plants de-
codes an excellent pathway for modulating light signal
during photomorphogenesis. In Arabidopsis, CRY2 inter-
acts with CIB1, CIB2, CIB4, and CIB5 to mediate growth



Aslam et al. BMC Genomics (2020) 21:735

Page 8 of 13

(a)

(b)

Fokk

- Hokok
-

Hokok
. o Hkk

Relative expression
o

M co
SOC1
FT
- CRY1
M CrY?2
CIBI
M ciB4
M CIB5

&
W

>

Fig. 6 AcCIB2 regulates the photomorphogenesis. a Photograph showing the early phenotype of Arabidopsis cib2 mutant and complementation of early
flowering phenotype of by AcCIB2-GFP. Plants were grown on the media plates for ten days, followed by transferring to soil in plastic pots and kept in a walk-
in chamber. Plants were then photographed after 20 days of the transfer. b Relative expression of critical flowering genes (CO, FT and SOCT) and CRY-CIB genes

(CRY1, CRY2, CIB1, CIB4 and CIB5) in Col-0, cib2 mutant, complemented (cib2 + 355:AcCIB2-GFP) and in AcCIB2 overexpressing (355:AcCIB2-GFP) lines. Gene
expression is represented in fold change of expression against Arabidopsis ef1a calculated by
replicate assays. Asterisks denote the statistical significance between control and treatment as judged by the Student’s t-test (** P < 0.001)

2728 Vertical bars represent the mean + SE of three biological

and development, especially flowering time regulation and
response to environmental cues. The finding that AcCIB2
expresses in the majority of developmental stages and could
be involved in flower development led us further to study
the function of AcCIB2. Previous studies also suggest that
CIBs interact with CRY2 and activate transcription of flower-
ing related genes in response to blue light [9, 18, 25]. In

agreement with these findings, we found that the null muta-
tion of CIB2 results in an early flowering phenotype. To
check whether pineapple CIB2 and Arabidopsis CIB2 have a
similar function, we complemented the Afcib2 mutant with
AcCIB2. Consistent with our hypothesis, AcCIB2 could com-
plement Atcib2 (Fig. 6a), suggesting that AcCIB2 has a simi-
lar biological function with AsCIB2.
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Fig. 7 a Relative expression of AcCIB2 in pineapple plants at different time points after osmotic (300 mM Mannitol), salt 150 (mM NaCl) and
phytohormone ABA (0.5 uM) treatment. AcCIB2 expression is represented in fold change of expression against pineapple efla calculated by
27BAC Vertical bars represent the mean + SE of three biological replicate assays. Asterisks denote the statistical significance between control and
treatment as judged by the Student's t-test (*** P < 0.001). b Overexpression of AcCIB2 results in resistance to abiotic stress. The phenotype of 3
days old cib2 mutant, complemented (cib2 + 355:AcCIB2-GFP) and in AcCIB2 overexpressing (355:AcCIB2-GFP) lines germinated under osmotic
stress (300 MM Mannitol), salinity stress (150 mM NaCl), and ABA 0.5 uM
.

J

Generally, six different genetic pathways control the resulting in flower formation [34]. Previous studies show
flowering, and they finally come together downstream at  that CIBs act redundantly to regulate flowering by pro-
floral integrators FT and SOCI1. The expression of FT  moting the transcription of some flowering genes, notably
and SOC1 induces the expression of floral identity genes  FT and SOCI [9, 18, 35]. We investigated the transcript
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level of FT, SOC1 and other CIBs in the Atcib2 and the
transgenic Arabidopsis plants with pineapple CIB2. Con-
sistently, the transcript level of FT and SOCI genes chan-
ged significantly in the mutant. The quantitative RT-PCR
data indicate that the mutation in CIB2 triggers the FT'
transcription resulting in early flowering (Fig. 6b). Besides,
the transcript levels of CIBs (CIBI, CIB4 and CIB5) were
also altered, indicating that CIBs act redundantly during
photomorphogenesis in plants.

Increasing evidence indicates that cryptochromes are
also involved in abiotic stress response through biosyn-
thesis of ROS [36]. Several findings suggest that in
addition to their established role in photomorphogenesis,
cryptochromes also react to numerous abiotic stress re-
sponses [36, 37]. This indicates that CIBs might also be in-
volved in abiotic stress response as they regulate
cryptochromes. In agreement, the quantitative RT-PCR
result showed a significant change of AcCIB2 transcript in
pineapple plants under osmotic and salt stress, validating
the idea that CIB2 plays a role in abiotic stress response
(Fig. 7a). Further, transgenic Arabidopsis plants also
showed resistance to salinity and osmotic stress (Fig. 7b).
The role of CRYs in stomatal development, opening and
closure during stress conditions has been well docu-
mented [38—40]. We also found that the transgenic plant
performed better under ABA treatment, supporting the
notion that CIB2 could be a regulator of abiotic stress re-
sponse in plants through CRY-CIB pathway.

Taken together, the present study provides a platform to
study the pineapple AcbHLH genes. Future studies with
the specific AcbHLHs that are involved in the particular
pathway will further clarify how AcbHLHs regulate the re-
sponse to biotic and abiotic stresses in pineapple.

Conclusion

In this study, a comprehensive investigation of bHLH
genes was performed, and 121 AcbHLH genes were identi-
fied in the pineapple genome. Pineapple bHLH genes were
further classified into 18 subfamilies. The AcbHLHs ex-
pression profiles suggest their diverse expression at differ-
ent developmental and in different organs. Besides, the
functional characterization of AcbHLH8 (AcCIB2) shows
the conserved functional role of bHLH genes in photo-
morphogenesis and response abiotic stress. Overall, this
study provides important information about the potential
functions of the AcbHLHs, especially the AcCIB2 role in
flowering, which is an essential trait for crop breeding.

Methods

Plant materials and growth conditions

Pineapple growth and treatments

Two-month-old tissue culture raised MD2 variety, a hy-
brid pineapple (Ananas comosus) variety from Pineapple
Research Institute Hawaii, was used for the experiments.
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The pineapple breeding group provided the starting ma-
terial for tissue culture in Fujian Agriculture and For-
estry University. The plants were reared in pots
containing soil supplements (peat moss: perlite = 2:1 v/v)
kept in a chamber at 30°C, 16 h light/8 h dark photo-
period under the light intensity of 60-70 umolm™*s™*
and 70% humidity. For osmotic (300 mM Mannitol), salt
(150 mM NaCl) and abscisic acid (0.5uM ABA) stress
treatments, pineapple plants were treated for 24, 48, and
72 h. The leaf tissues from the treated and control plants
were harvested and immediately frozen in liquid nitro-
gen and stored at — 80 °C for RNA isolation.

Arabidopsis growth and treatments

Arabidopsis thaliana L. ecotype (Col-0) was used as
wild-type and for transgenic plant generation, and the
T-DNA line (SALK_121700) of Arabidopsis cib2 mutant
was obtained from the Arabidopsis Biological Resource
Center (Columbus, OH, USA). The seeds were surface
sterilized and plated in circular 9 cm Petri dishes, as de-
scribed previously [41]. The plated seeds were then kept
for stratification in the dark at 4 °C for 48 h. After strati-
fication, the plates were moved to a growth chamber
and grown vertically at 22°C in a 16h light/8 h dark
photoperiod. All the experiments were performed from
the plant of T3 generation using three independent lines
of 35S:AcCIB2-GFP (AcCIB2 ectopic expression) and
Atcib2 + 35S:AcCIB2-GFP  (Atcib2 complementation)
plants. For abiotic stress treatment, wild-type, Atcib2
mutant, Atcib2 complemented line and AcCIB2 ectopic
expression lines were assayed for germination on Hoag-
land medium supplemented with or without salt (NaCl
150 mM), osmotic (Mannitol 300 mM), and phytohor-
mone 0.5 pM abscisic acid (ABA). To observe the ger-
mination phenotype, photographs were taken after 3 d.
All experiments were repeated at least three times.

Plasmid constructs and plant transformation

AcCIB2-GFP construct was generated by amplifying 1.3
kb CDS sequence, excluding the stop codon, from pine-
apple ¢cDNA and cloned to pENTR D-TOPO vector,
followed by recombination to pGWB505 destination
vector using LR clonase II (Invitrogen, Carlsbad, CA,
USA). The construct was confirmed by sequencing be-
fore transforming Agrobacterium tumifecians GV3101.
Finally, wild-type and mutant plants were transformed
by the floral dip method [42].

Identification, phylogenetic analysis and characterization of
bHLH in pineapple

The protein sequences of bHLH transcription factors from
Arabidopsis and pineapple were downloaded from TAIR
(http://www.arabidopsis.org) and Phytozome (https://phyto-
zome,jgi.doe.gov/pz/portalhtml). To identify the bHLH
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genes, we used the plant transcription factor database
(http://planttfdb.cbi.pku.edu.cn). We also downloaded the
HMM (Hidden Markov Model) profiles for bHLH (PF00010)
from Pfam database (http://pfam.xfam.org). The pineapple
genome was then searched using the HMM profiles by
BLAST-P with an e-value set at 0.01. Using the SMART tool
(smart.embl-heidelberg.de), the completeness and existence of
the core domain in all the sequences were then verified [43].
For phylogenetic analysis, multiple sequence alignments of
bHLH sequences from pineapple and Arabidopsis were gener-
ated using MUSCLE 3.7 [44] with default parameters. The
phylogenetic tree was constructed in MEGA 7 using
Neighbor-joining (NJ) method with default parameters and a
bootstrap value of 1000. The isoelectric point (pI) and molecu-
lar weight (MW) of bHLH proteins were predicted using
ExPASy (http://web.expasy.org/compute_pi/).

Chromosome location, gene structure and conserved motif
analysis of AcbHLH

The chromosome location information of AcbHLH
genes was collected from Phytozome and their loca-
tion on the 25 chromosomes were visualized using
MapChart software. Additionally, the AcbHLH
genes structure, number of exon and intron were
then analyzed to study the evolutionary and struc-
tural diversity of bHLH genes, the exon-intron
structure of AcbHLHs was illustrated using gene
structure and display server (GSDS) [45]. The con-
served motifs of pineapple bHLHs were predicted
using MEME program [46]. Parameters were set to
any number of repetitions, motif width of 10-200
residues, and searching for ten motifs, with all
other settings in default.

RNA-Seq analysis for different organs in pineapple

Total RNA isolated from various stages of develop-
ment of gynoecium, ovule, stamen, petal, sepal,
root, leaf and flower pineapple was used for library
preparation followed by RNA-seq as described pre-
viously [47]. Briefly, using Plant RNeasy Mini kit
(Qiagen, Strasse 1, Hilden, Germany) the total RNA
was isolated. The ¢cDNA library was prepared using
NEBNext UltraTM RNA library preparation kit
(NEB, Ipswich, MA, USA) following the manufac-
turer’s protocols. The quality of the libraries was
determined on the Agilent Bioanalyzer system and
sequenced on a HiSeq2500 sequencing instrument
using 150 bp paired-end protocol. After sequencing,
raw reads were filtered by removing the adapter se-
quences and low-quality sequences using TRIM
MOMATIC v0.3. The published pineapple genome
was used as the reference genome [29], and reads
were aligned to the pineapple genome by using
TopHat v2.1.1 [48]. Alignment results were
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processed using Cufflinks, and FPKM values were
calculated by using Cuffdiff (FC>2, FDR <0.05) fol-
lowing the method described previously [49]. The
abundance of pineapple bHLH transcripts was
expressed in FPKM (Additional Table S6), and a
heatmap was generated based on the log2 (FPKM+
1) using pheatmap package of R software.

Quantitative real-time qRT-PCR

After the RNA isolation from the desired plant sample,
TransGen c¢DNA preparation kit was used to prepare
c¢DNA using one pg of total RNA. The qRT-PCR was car-
ried out using 2X qPCR superMix (TransGen) in 20 pL re-
action volumes using Bio-Rad CFX96 Touch™ real-time
PCR machine (Bio-Rad, Singapore). The reaction condi-
tions for qRT-PCR included the following steps: 2 min at
95°C followed by 40 cycles of denaturation for 10s at
95 °C and annealing for 15 s at 60 °C, and extension for 15
s at 72 °C. At least three biological replicates were used for
each experiment with three technical replicates. The fold
change in the expression of genes was determined using
the Livak method (27*4€ ;), and the pineapple efla gene
was used as the internal control [50]. The primers used in
this study are listed in additional Table S7.

Microscopy

For confocal microscopy, the roots of 7-day-old Arabi-
dopsis seedlings were mounted on a slide and examined
under a TCS SP8 microscope (Leica).

Statistical analysis

A two-tailed Student’s t-test was used to analyze statis-
tical significance and results are represented as the mean
values + SE of three biological replicates.
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study.
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