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Abstract

Background: The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of
complex traits, such as obesity. Although the development of obesity is influenced by environmental factors,
underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the
genetic background and the gene expression pattern can provide further insight into this response, but we lack
robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse
population.

Results: We established an automated and reproducible integrative workflow to analyse complex traits in the CC
mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow
to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these
results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene
expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and
female mice exhibit different responses and coping mechanisms.

Conclusion: Integration of the data showed that different genes but similar pathways are involved in the genetic
susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet
induced obesity are different in female and male mice. The clear distinction we observed in the systemic response
to the high-fat diet challenge and to obesity between male and female mice points to the need for further
research into distinct sex-related mechanisms in metabolic disease.
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Background
The Collaborative Cross (CC) is a multiparent genetic
reference panel (GRP) of recombinant inbred lines (RIL)
of mice derived from eight different founder strains. The
CC resource was developed to facilitate the study of the
genetic basis of complex traits, and serve as a uniquely
powerful resource for the mapping and integration of
various phenotypic and genotypic data [1]. CC lines have
been shown to be highly variable for traits related to
both normal physiology and disease and have been used
successfully in multiple system genetics studies. The CC
panel has been the catalyst for the development of a var-
iety of bioinformatics tools for haplotype inference and
reconstruction, and genetic mapping [2–4].
Based on a recent report, people with overweight or

obese phenotype account for almost two thirds of the
population in the USA [5]. The latest estimates in Euro-
pean Union countries show that 30–70% of the adult
population are overweight and 10–30% are obese. Some
medical associations classify obesity (defined as BMI ≥
30) as a disease. The development of obesity is affected
by various environmental factors such as excess high fat/
carbohydrate enriched food consumption and sedentary
lifestyle. However, underlying genetic mechanisms are
involved in determining the host response to these fac-
tors with the rate of heritability of body mass index
(BMI) ranging from 40 to 70% in various studies. The
CC panel is an experimental population that aids with
the dissection of the genetic mechanisms underlying sus-
ceptibility to complex traits, such as obesity. Chromo-
somal regions that are involved in the susceptibility or
resistance to the trait can be mapped as quantitative trait
loci (QTL) with high precision. QTL mapping results
can be strengthened and enriched through integration of
RNA-seq data to identify gene expression differences in
susceptible versus resistant individuals.
High-throughput sequencing technologies produce mil-

lions of reads in a relatively short time, overcoming the
limitations of previous technologies and unravelling previ-
ously inaccessible complexities in the transcriptome.
However, the overall high complexity of the produced
datasets, due to their large size and low signal-to-noise ra-
tio, hinders the interpretation of the underlying informa-
tion. Most recent analytical methods depend on individual
tools that users must download, install and use on their
physical drives. The process of deciding which bioinfor-
matic tool accommodates the needs of researchers (de-
pending on the experimental approach, the scientific
question of interest, as well as the computational needs)
can be time-consuming and requires expertise.
Our main aim, was to develop an easy-to-use, scalable

and cost-effective workflow for the integrative analysis of
genotyping and RNA-seq data from CC mice, offering
cross-platform portability to different high-end computing

configurations. We then opted to use this workflow to as-
sess the underlying QTL that influence genomic suscepti-
bility to high-fat diet induced obesity in mice and the
hepatic gene expression response of the mice to high-fat
diet and obesity.
The tools used in each step of the developed workflow

are connected through Python scripts, are archived in our
public GitHub repository and can be fully modified. The
Python scripts are constructed in a user-friendly manner,
so that inexperienced users are required to input only the
basic parameters (such as the paths to input files, indexes
and annotation files) and the whole process is executed
automatically, assuming default parameters. More advanced
users can apply different sets of input commands or fully
modify the scripts according to their requirements.
All bioinformatic tools comprising this workflow have

been containerised using Docker containers, resulting in a
portable infrastructure that can be executed on physical
drives or cloud servers. The main advantage of container-
isation is that it is no longer required to install numerous
pieces of software, with complex dependencies, download-
ing instead a pre-built and ready-to-run image file, con-
taining all necessary software and their required
dependencies. Another advantage is that applications are
run in an isolated and sanitised container environment,
where all dependencies are configured for optimal per-
formance, preventing conflicts with other installed pro-
grams in the hosting environment. Containerisation
ensures the standard operation and performance of appli-
cations, not affected by system updates or programming
errors from the host end, making the process transparent
to the end-user and consistenly fully reproducible. Fur-
thermore, each Docker container can be used as a stand-
alone version of the tool making the workflow scalable
and adaptable to the individual needs of the researcher.
A question that arises is to what extend the start-up, de-

ployment and instantiation of containers performed by the
Docker daemon affect the overall performance and the com-
putational cost of a workflow. An IBM research study sug-
gests that the overhead for CPU and memory performance
introduced by Docker containers is negligible, and that con-
tainerised applications perform equally or better when com-
pared to virtual machine technology [6]. Regarding the
containerisation of genomic pipelines, it has been suggested
that Docker containerisation has a negligible impact on the
execution performance of common genomic pipelines, espe-
cially when tasks (such as the alignment of reads to a refer-
ence genome) are generally very time consuming [7].

Methods
Experiments
Breeding and housing
The Collaborative Cross mouse lines are novel and
highly genetically diverse mouse resource population
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derived from a genetically diverse set of eight founder
mouse strains (A/J, C57BL/6 J, 129S1/SvImJ, NOD/LtJ,
NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ), de-
signed specifically for complex trait analysis, with the
aim to overcome the limitations of previously available
resources [8]. A cohort of CC lines was developed and
currently is housed at conventional environmental con-
ditions at the small animal facility of Tel-Aviv University
(TAU) between generations of G27 to G64 of inbreeding
by full-sib mating [9]. The CC lines have been main-
tained and bred by our team at TAU since 2006 as de-
scribed in the 2008 paper by Iraqi and colleagues [10].
The study was approved by the Institutional Animal
Care and Use Committee (IACUC), with the approval
numbers M-12-025 and M-14-007.
Mice were weaned at 3 weeks old, housed separately by

sex, with a maximum number of five mice per cage, fed
with standard rodents’ chow diet (TD.2018SC, Teklad
Global, Harlan Inc., Madison, WI, USA, containing % Kcal
from Fat 18%, Protein 24%, and Carbohydrates 58%) and
water ad libitum. All animals were housed at the TAU ani-
mal facility at conventional open environment conditions,
in clean polycarbonate cages with stainless metal covers,
and bedded with wood shavings, at light:dark cycles of 12:
12 h, and constant room temperature of 220c (±2). Due to
genetic variations between CC lines, breeding rate, the
number and sex of litters in each cycle might vary. There-
fore, the CC lines were assessed based on litter availability,
while making our best efforts to scan as many of the CC
lines as possible with representation of both sexes.

Study cohort The study cohort consisted of 540 mice,
from 60 different CC lines that were generated, maintained
and studied at the TAU small animal facility. Forty-three of
lines had representation of both sexes. A subgroup of 84
mice from 43 CC lines, with 20 lines with representation of
both sexes, was selected for RNA sequencing.

Dietary challenge
At the age of 8 weeks old, the baseline body weight was
recorded. The average body weight (±SE) of females was
18.92 g (±0.27) and of males 22.92 g (±0.24) [11]. There-
after, the mice were switched to a high-fat diet (HFD)
(TD 88137 Harlan Teklad, Madison, WI, USA; contain-
ing 42% of calories from fat and 34.1% from carbohy-
drate, primarily sucrose) starting the dietary challenge
for a period of 12 weeks with free access to food and
water. During the experiment, mice welfare and health
status were monitored daily. The experiment was termi-
nated (euthanasia) for mice that showed deteriorating
health, manifested in phenomena such as limited move-
ment, heavy weight loss (about 10% between the weekly
weigh measures and over 20% of the initial body weight),
apathy and lack of physical activity, interrupted

equilibrium (physical instability), breathing difficulty, ex-
ceptional behaviour (high aggressiveness / loneliness),
and extremely high glucose levels (> 400 mg/dL).

Phenotyping Mice were weighed at the beginning of
the HFD challenge and bi-weekly thereafter for the fol-
lowing 12 weeks. Mice that gained less than 10 g to their
initial body weight over the dietary challenge period
were considered “Normal”, while those that gained over
10 g of body weight were considered “Obese”. The me-
dian weight at the beginning of the dietary challenge and
the median body weight gain for each CC-line are pre-
sented in Supplementary Table 1. At the end of the 12-
week dietary challenge, an intraperitoneal glucose toler-
ance test (IPGTT) was performed after 6 h of fasting to
evaluate the diabetic stage of the mice. By using the
method of glucose IP injection, the gut effect was
bypassed and the glucose stimulated insulin secretion
was lower compared to oral administration of glucose.
The IPGTT lasted 180 min, with glucose levels measured
at different time points before and after the glucose ad-
ministration. Glucose tolerance was calculated as the
total area under the curve between the initial and end
time point of the test, for each CC line, separately for fe-
males and males. Mice that reached the end time-point
of IPGTT with glucose levels under 400 mg/dL were
considered “Nondiabetic”, while mice with glucose levels
over 400 mg/dL were labelled as “Diabetic”. The
complete CC line, sex, baseline body weight at the start
of the dietary challenge, body weight gain after 12 weeks
of dietary challenge, and blood glucose levels at 180 min
after the IPGTT challenge data included in the analysis
are presented in Supplementary Table 2.

RNA extraction After overnight recovery from the IPGT
T, mice were sacrificed by cervical dislocation, and their
livers were collected and stored in liquid nitrogen (−
80 °C). RNA extraction was performed using the QIAGEN
commercial kit (Cat.No.73404). Quality control of RNA
samples was performed with 2100 BioAnalyzer (Agilent).
The RNA Integrity Number (RIN) was used to estimate
the integrity of the total RNA sample, samples with RIN
above 7.0 passed the quality control test.

RNA-seq libraries RNA-seq libraries were prepared
using the TruSeq Stranded mRNA library preparation
kit (Illumina). Libraries were pooled and sequenced on
the Illumina HiSeq 2000 and 2500 sequencers with Illu-
mina v3 sequencing chemistry. Paired-end sequencing
was performed by reading 50 bases at each end of a frag-
ment. Overall, each sample consisted of 24M to 37.5M
RNA-sequencing fragments with an average of 31.5M
fragments.
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RNA-seq analysis The base images for the Docker con-
tainers were pulled from the repositories of Biocontai-
ners and Rocker [12]. For the purposes of differential
expression testing and QTL analysis we developed Docker
containers with integrated R v.3.4.2 and all the required
packages installed (such as Bioconductor, EdgeR and
HAPPY). The Docker images also contained ready-to-run
R scripts set on the default parameters so that users un-
familiar with R programming can perform the analyses
using R packages otherwise unavailable as stand-alone
versions (EdgeR and HAPPY), while advanced users can
modify the scripts in a sanitised Docker container envir-
onment. In order to run the workflow we developed, the
user is required to install the docker engine locally and
then pull the images from the Docker Hub repository.
This task is relatively fast and requests minimal program-
ming knowledge in comparison to the skills needed for
downloading and installing a combination of several
pieces of third-party software, while configuring their im-
plicit dependencies and libraries.

Quality control For quality assessment of the reads we
used the FastQC tool [13], which is the golden standard
for quality control workflows. We did not incorporate a
trimming tool in our workflow as aggressive trimming of
reads has been suggested to alter RNA-seq expression
estimates and the soft-clipping performed by HISAT2
makes read trimming not strictly necessary [14]. How-
ever, we provide a docker container with Trim Galore!,
which is a tool that makes use of the publicly available
adapter trimming tool Cutadapt [15] and FastQC for op-
tional quality control [16].

Mapping of reads Mapping of the reads was performed
using the HISAT2 tool, which is a fast and sensitive
alignment program for mapping RNA-seq reads [17].
The high efficiency of HISAT2 is based on the indexing
scheme it utilises (employing two types of indexes based
on Burrows - Wheeler transform and the Ferragina-
Manzini index), allowing the tool to perform alignments
very fast and with equal or better accuracy than any
other method currently available. HISAT2 supports ge-
nomes of any size and has low memory requirements
(approximately 4.3 GB of RAM for the human genome).

Assigning sequence reads to genomic features For the
purpose of assigning reads to genomic features (such as
genes, exons, promoters and genomic bins) we used the
software program FeatureCounts (v1.5.0-p1), from the
Subread stand-alone package [18]. FeatureCounts is con-
siderably faster than existing methods and has excep-
tionally low memory requirements, while being one of
the top-ranking software in accuracy.

DE testing The DE testing was performed with the R
package EdgeR [19] using a modified Rscript from Su
[20]. The Rscript was run through a Docker container that
employs R version 3.3.0 and has been built with Biocon-
ductor version 3.4 and all the required packages installed.
The normalisation (for library size, gene length and se-
quencing depth) was performed on the raw count matrix
produced by FeatureCounts using the Trimmed Mean of
M-values (TMM) [21], which is set as the default normal-
isation method. A negative binomial generalized linear
model (GLM) was fitted to the data and the testing pro-
cedure for determining differential expression was per-
formed using quasi-likelihood (QL) F-test. The P-value
adjustment was performed using the Benjamini-Hochberg
method and in order to restrict the false discovery rate
(FDR) to 0.05, all the genes with adjusted P-values less
than 0.05 were selected. The filtering of the gene list
(threshold default values: adjusted P-value 0.05 and
|log2FC| ≥ 1) was performed with a custom python script.

Functional analysis The functional pathway analysis
was performed with the BioInfoMiner platform [22].
BioInfoMiner exploits biological hierarchical vocabular-
ies through statistical and network analysis to detect and
rank significantly altered processes and the hub linker
genes involved. For our analysis we utilised Gene Ontol-
ogy (GO) [23] and MGI Mammalian Phenotype Ontol-
ogy [24]. BioInfoMiner maps the genes on a genomic
network created from semantic data and prioritises them
based on topological properties after minimising the im-
pact of semantic noise (bias) through different types of
correction. This analysis accomplishes the systemic in-
terpretation of the complex cellular mechanisms de-
scribed in the input gene lists, while at the same time it
prioritises genes with central functional and regulatory
roles in important cellular processes, underlying the
studied phenotype. The correction for potential semantic
inconsistencies of the selected vocabulary is imple-
mented by linking the annotation of each gene with the
ancestors of every direct correlated ontological term,
consequently restoring the sound structure of an onto-
logical tree. The BioInfoMiner platform is available on-
line at the website https://bioinfominer.com.

Genetic mapping
Genotyping
All CC lines were genotyped with high-density SNP
markers using the MDA (620 K SNP markers), MUGA
(7.7 K markers) and MegaMUGA (77 K markers) geno-
typing arrays based on the Illumina infinium platform.
All SNPs with heterozygous or missing genotypes in the
8 CC founders or not common between the arrays were
filtered out, leaving 170,935 SNPs. The SNPs were
mapped onto build 37 of the mouse genome. A descent

Binenbaum et al. BMC Genomics          (2020) 21:761 Page 4 of 13

https://bioinfominer.com


probability distribution was computed using the HAPPY
HMM for each of the 170,935 SNPs intervals. The geno-
type status of the CC lines using the MUGA SNP was
presented in CTC 2012 report [9, 25].

QTL mapping
The QTL mapping was based on the haplotype mosaic re-
construction with HAPPY. We developed two automated
containerised R scripts using the mapping methodology
proposed by Durrant and colleagues [26]. The first script
uses the probability distribution of descent as calculated
by the HAPPY algorithm to test for association between
the reconstructed haplotype for each CC line at each locus
and the median body weight gain at different time points.
The second script estimates confidence intervals (CI) for
each QTL through simulation of a QTL with a similar
logP and strain effects in the neighbourhood of the ob-
served QTL peak. We used the SNPtools R package to ex-
tract the genes inside the 95% CI for each QTL [27].

Results
Data stratification
It is well documented that obesity and obesity-related health
complications are affected by gender, and that sex-specific
differences have a genetic basis and cannot be solely attrib-
uted to differential hormonal regulation [28]. Gender-

specific differences in adiposity as well as fat distribution, in
addition to the distinctive genetic basis and hormonal regula-
tion of men and women, may result in sex-specific patterns.
In order to assess the presence of confounding factors,

we performed a multi-dimensional scaling analysis, using
the EdgeR R package. According to the MDS plot (Fig. 1)
the points cluster into two groups, not on the basis of
the differences between the two conditions (“Normal” vs
“Obese”) but on the basis of sex. This finding led to the
conclusion that the observed separation in the principal
component analysis performed, was the result of gender-
specific differences, meaning that a straightforward ap-
proach would be prone to confounding biases.
In order to partition the samples into non-overlapping

groups, we performed a stratified sampling dividing the total
sample population into four strata, considering the sex and
diabetes status of the mice. Of the total 85 samples, 21 sam-
ples were categorised in the Male-Nondiabetic group, 21
samples were categorised in the Male-Diabetic group, 36
samples were categorised in the Female-Nondiabetic group
and 5 samples in the Female-Diabetic group. One sample
(DT 123) was not used in the analysis due to missing data.

QTL analysis
We performed haplotype association analysis, using the
median value of the weight gain in the 12 weeks of the

Fig. 1 Multidimensional scaling (MDS) plot visualising the level of similarity of individual cases in the dataset. Male samples are represented with
red, while female samples are represented with black labels
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HFD challenge. We mapped one QTL on chr3 for fe-
male mice and one QTL on chr5 for male mice, desig-
nated as ObFL and ObML for obesity female locus and
obesity male locus, respectively. Details on the position
and size of each QTL are given in Table 1. We per-
formed functional analysis with BioInfoMiner on the
genes extracted from each of the QTLs using the Gene
Ontology and MGI Mammalian Phenotype Ontology
vocabularies.

Female mice body weight gain
In female mice, prioritised genes included Sgms2 and
Hadh that were found to be involved in various pro-
cesses, such as increased energy expenditure (MP:
0004889), decreased susceptibility to diet-induced obes-
ity (MP:0005659) and increased circulating free fatty acid
level (MP:0001554). Interestingly, Sgms2 deficiency in
mice increases insulin sensitivity and ameliorates high-
fat diet-induced obesity and Hadh−/− mice, while having
a disrupted β-oxidation pathway, are also protected from
diet-induced obesity [29, 30]. Other prioritised genes are
Lef1, Dkk2 and Egf, which are all involved in the Wnt
signaling pathway (GO:0016055). Non-canonical Wnt
signaling has been shown to contribute to obesity-
associated metabolic dysfunction by increasing adipose
tissue inflammation [31].

Male mice body weight gain
In male mice the most highly prioritised gene is
Ppargc1a, which is found to be involved in various
enriched processes both in GO and in MGI Mammalian
Phenotype Ontology, including decreased muscle weight
(MP:0004232), regulation of muscle tissue development
(GO:1901863) and lipid modification (GO:0030258).
Ppargc1a is a transcriptional co-activator that regulates
genes involved in energy metabolism through its inter-
action with Pparγ. In human GWAS analysis a single
nucleotide variant of Ppargc1a (rs8192678) has been as-
sociated with susceptibility to obesity and insulin resist-
ance [32]. Another important gene prioritised through
both vocabularies, is Cckar, found involved in processes
such as abnormal small intestinal transit time (MP:
0006002) and abnormal intestinal cholesterol absorption
(MP:0002645). Rats with a naturally occurring mutation
in Cckar (Otsuka Long-Evans Tokushima Fatty (OLETF)

rat) develop diabetes and obesity [33]. Prioritised gene
Sod3 is involved along with Ppargc1a in: response to re-
active oxygen species (GO:0000302), increased suscepti-
bility to injury (MP:0005165), and abnormal cytokine
secretion (MP:0003009). Over-expression of Sod3 in
high-fat diet fed mice has been shown to block diet in-
duced obesity [34]. Med28 is involved in the regulation
of muscle cell differentiation (GO:0051147). Med28 is
one of the subunits of the Mediator complex, which acts
as a transcription factor co-activator and plays an im-
portant role in muscle metabolism by enhancing the
transcriptional activity of Ppargc1a and Pparα [35].
Lastly, Slit2 is also prioritised and shares enriched terms
with Ppargc1a, such as regulation of smooth muscle cell
migration (GO:0014910) and response to organonitrogen
compound (GO:0010243). Slit2 has been shown to regu-
late metabolic function and thermogenic activity and im-
prove glucose homeostasis in diet-induced obese mice,
mainly through Ucp1 [36], which has been found highly
under-expressed in male obese mice, in comparison to
female obese mice in our analysis.

RNA-seq analysis
DE analysis was performed on the Male-Nondiabetic
and Female-Nondiabetic groups separately. In order to
perform the statistical differential expression tests we di-
vided the samples into two subgroups, 10 samples were
categorised in the Male-Nondiabetic-Obese group (the
male case group), 11 samples were categorised in the
Male-Nondiabetic-Normal (the male control group) 12
samples were categorised in the Female-Nondiabetic-
Obese group (the female case group) and 24 samples in
the Female-Nondiabetic-Normal group (the female con-
trol group). Differences in library size were addressed by
TMM normalisation.

Female nondiabetic normal vs female nondiabetic obese
As a first step we tried to assess the DE genes within the
two genders, performing the DE tests between control
and case groups of the same gender. The Female-
Nondiabetic-Normal samples (control group) versus the
Female-Nondiabetic-Obese samples (case group) DE
genes list consisted of 1382 DE genes. Using BioInfoMi-
ner for the enrichment analysis we obtained two priori-
tised gene list of 23 DE genes from GO and 21 DE genes

Table 1 Positions of QTLs associated with obesity

QTL Trait Chr logP 50% CI 90% CI 95% CI Number
of genes
in 95%
CI

Position Width (Mb) Position Width (Mb) Position Width (Mb)

ObFL ΔBW0–12 3 4.50 131.91–132.64 (0.72) 130.56–133.58 (3.02) 129.67–134.08 (4.41) 58

ObML ΔBW0–12 5 4.37 51.08–55.46 (4.38) 45.78–61.14 (15.35) 44.01–62.37 (18.36) 120

Chr chromosome, logP negative 10-base logarithm of P value, ΔBW0–12 body weight change from week 0 to week 12. Positions and widths of the simulation-
based 50, 90, and 95% CIs are given
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from MGI Mammalian Phenotype. Seven genes were
common in both gene lists. Processes that were highly
enriched in DE genes in female mice include digestion
(GO:0007586), regulation of insulin secretion (GO:
0050796), response to lipid (GO:0033993), fatty acid bio-
synthetic process (GO:0006633), increased energy
expenditure (MP:0004889), decreased susceptibility to
diet-induced obesity (MP:0005659), abnormal glucose
tolerance (MP:0005291) and decreased circulating leptin
level (MP:0005668). Top prioritised, linker genes in
female mice include Lepr and Ppargc1a that were under-
expressed in obese females and Pnlip, Pyy, and Ins2 that
were over-expressed in obese females. Lepr functions as
a receptor for leptin, an adipose secreted hormone that
regulates energy expenditure, satiety, lipid and glucose
metabolism and immune system activation. Pancreatic
lipase is normally secreted from the pancreas and is effi-
cient in the digestion of dietary fats. Inhibition of Pnlip
may prevent HFD induced obesity in mice. Orlistat, an
inhibitor of Pnlip was the first FDA-approved anti-
obesity therapeutic drug in treating diet-induced obesity
[37]. Increased pancreatic expression of Pnlip has been
observed in mice induced by fasting via the PPARα-
FGF21 signalling pathway [38]. PYY is synthesised and
released from specialised cells found predominantly
within the distal gastrointestinal tract and regulates ap-
petite. Transgenic mice with increased circulating PYY
are resistant to diet-induced obesity [39]. Ins2 ectopic
expression in the liver has been observed before in mice
subjected to HFD [40]. We hypothesise that Pyy may be
expressed ectopically in the liver in the same way as Ins2
in response to the HFD.

Male nondiabetic normal vs male nondiabetic obese
The DE genes list for the Male-Nondiabetic-Normal
samples (control group) versus the Male-Nondiabetic-
Obese samples (case group) consisted of 1589 DE genes.
We performed functional analysis on this list and ob-
tained two prioritised gene lists of 24 DE genes from
GO and 22 genes from MGI Mammalian Phenotype.
Ten of the genes from the two prioritised gene lists were
common in both. Enriched pathways in male mice are
overwhelmingly related to muscle and cardiac muscle
processes: impaired muscle contractility (MP:0000738),
abnormal skeletal muscle mass (MP:0004817), myopathy
(MP:0000751), cardiac muscle hypertrophy (GO:
0003300). A second category of enriched processes in-
volves ion transport (GO:0006811). Top prioritised
linker genes in male mice include Nos1, Ryr1, Des, Ttn
all under-expressed in obese males while Ryr2 is over-
expressed. Ryr1 is mainly expressed in skeletal muscle.
The encoded protein functions as a calcium release
channel in the sarcoplasmic reticulum. However, there is
a number of studies suggesting that RyRs are widely

expressed and have been linked with inositol 1,4,5-tris-
phosphate receptors in hepatocytes [41]. Downregula-
tion of Ryr1 could lead to reduced release of Ca2+ from
the sarcoplasmic (muscle cells) and the endoplasmic
reticulum (hepatic cells) into the cytoplasm and there-
fore hinder muscle contraction as well as the regulation
of mitochondrial metabolism and glycogen degradation
[42, 43]. Des encodes a muscle-specific class III inter-
mediate filament, which is important to help maintain
the structure of sarcomeres and has been linked with
hepatic fibrosis due to obesity [44]. Titin is an essential
component of skeletal and cardiac muscles, but it has
been suggested in recent studies that titin isoforms are
expressed in non-muscle tissues including the liver, with
an essential role in maintaining cellular organisation and
contributing to signal transduction [45]. Ryr2 is primar-
ily expressed in cardiac muscle. Ryr2 channels are asso-
ciated with mitochondrial metabolism, gene expression
regulation and cell survival, in addition to their role in
cardiomyocyte contraction. A recent study links Ryr2 to
insulin release and glucose homeostasis, suggesting that
the upregulation of Ryr2 might be a coping mechanism
in response to stress [46]. Nos1 produces nitric oxide
(NO), which has multiple biological functions. Downreg-
ulation of Nos1 in obesity and diabetes is largely attrib-
uted to insulin resistance [47].

Male vs female comparisons
Finally, in order to assess the DE genes between the two
genders we performed DE tests between groups that
belonged to different genders. The DE genes list for the
Male-Nondiabetic-Normal samples versus the Female-
Nondiabetic-Normal samples comparison, consisted of
1923 genes. Functional analysis produced two prioritised
gene lists consisting of 28 genes from GO and 25 genes
from MGI Mammalian Phenotype, with 9 common
genes. As for the DE genes for the Male-Nondiabetic-
Obese samples versus the Female-Nondiabetic-Obese
samples, the genes list consisted of 1940 DE genes.
Functional analysis produced two prioritised gene lists
consisting of 40 genes from GO and 22 genes from
MGI, with 8 common genes. Between the two groups
482 DE genes are shared while 1441 genes are uniquely
DE in the Male-Nondiabetic-Normal versus the Female-
Nondiabetic-Normal samples and 1458 genes are
uniquely DE in the Male-Nondiabetic-Obese versus the
Female-Nondiabetic-Obese samples.
The 482 DE genes that are common in the two com-

parisons are enriched in genes that are involved in pro-
cesses such as the epoxygenase P450 pathway (GO:
0019373), long-chain fatty acid metabolic process (GO:
0001676), negative regulation of gluconeogenesis (GO:
0045721), increased circulating gonadotropin level (MP:
0003362), and regulation of NF-κB import into nucleus
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(GO:0042345). Functional analysis of these 482 DE
expressed genes produced 21 prioritised genes from GO
and 20 prioritised genes from MGI Mammalian Pheno-
type. Of these 8 genes were common in both lists. Cav1,
Egfr, Gstp1, Gcg, and Nox4 are consistently over-
expressed in male versus female mice both in the non-
obese and obese comparisons. Caveolin-1 regulates
hepatic lipid accumulation and glucose metabolism and
plays an important role in metabolic adaptation [48].
Hepatic glucagon action has been associated with elevated
fatty acid oxidation and might act protectively against non-
alcoholic fatty liver disease (NAFLD) [49]. Esr1, Il1b and
Ptgs2 are consistently over-expressed in female versus male
mice in both comparisons. Ptgs2 is involved in inflammation
in fat and drives obesity-linked insulin resistance and fatty
liver [50]. Tph1 is under-expressed in non-obese males and
over-expressed in obese males in comparison to females. In
contrast, Ryr2 is over-expressed in non-obese males and
under-expressed in obese males in comparison to females.
Tph1 is involved in the synthesis of serotonin, which is
known to modulate appetite, energy expenditure and
thermogenesis. Tph1-deficient mice fed a high-fat diet are
protected from obesity, insulin resistance and NAFLD [51].
Functional analysis of the 1441 genes that were uniquely

DE in the Male-Nondiabetic-Normal versus the Female-
Nondiabetic-Normal comparison produced enriched pro-
cesses like abnormal bone volume (MP:0010874), increased
mesenteric fat pad weight (MP:0009298), unsaturated fatty
acid and lipid metabolic process (GO:0033559, GO:
0006629), regulation of hormone levels (GO:0010817), and
a number of terms related to inflammatory processes, such
as abnormal IgG2a level (MP:0020176), increased suscepti-
bility to autoimmune diabetes (MP:0004803) and small in-
testinal inflammation (MP:0003306). The list of prioritised
genes consisted of 21 genes from GO and 23 genes from
MGI, with 9 overlapping genes. Genes involved in inflam-
matory processes, such as Il2, Il4, Il10, and Il1r1, were pre-
dominantly over-expressed in female mice. Vdr and Lepr
were also over-expressed in females. Males had over-
expressed Mrap2 and Oprm1. Mrap2 encodes a protein
that modulates melanocortin receptor signalling. Mice defi-
cient in Mrap2 exhibit severe obesity and a mutation in this
gene may be associated with severe obesity in human pa-
tients [52].
Finally, functional analysis of the 1458 unique DE

genes from the Male-Nondiabetic-Obese versus the
Female-Nondiabetic-Obese comparison resulted again in
enriched immune response related processes (GO:
0006955) and positive regulation of inflammatory re-
sponse (GO:0050729) with related genes also predomin-
antly over-expressed in obese females. The list of
prioritised genes consisted of 34 genes from GO and 20
genes from MGI Mammalian Phenotype, with 4 overlap-
ping genes. Genes related to immunological processes

include Ifng, Il6, and Tnf. Other enriched processes were
muscle system processes (GO:0003012) and abnormal
muscle contractility (MP:0005620), abnormal adrenaline
level (MP:0003962), abnormal blood pH regulation (MP:
0003027), digestion (GO:0007586) and decreased gluca-
gon secretion (MP:0002711). Genes involved in these
processes were predominantly under-expressed in male
mice, for example, the Mc2r and Pyy. Notably, both Ins1
and Ins2 are also highly over-expressed in obese female
mice compared to an almost zero level of expression in
male mice. Mc2r belongs to the MCR family that plays
an important role in appetite and energy regulation via
leptin signalling. Increased MCRs expression in the liver
has been associated with muscle tissue damage and po-
tentially exerts a protective effect through metabolic
regulation [53]. The common prioritised genes identified
by both GO and MGI Mammalian Phenotype ontologies
have been used to produce two heatmaps of male versus
female comparisons which are presented in Fig. 2.

Discussion
Obesity encompasses a complex array of traits closely re-
lated to the development of type 2 diabetes, metabolic
syndrome and associated with comorbidities such as car-
diovascular disease, hypertension, atherosclerosis and vari-
ous cancers. In this study we have used a systems biology
approach to examine genetic susceptibility and hepatic
gene response to obesity in CC mice. The CC panel is a
unique resource with wide genetic diversity that enables
complex trait genomic mapping at a very high resolution.
Moreover, it provides the opportunity to study differences
in genetic expression in a diverse genetic reference popu-
lation under controlled environmental conditions.
To facilitate this analysis, we developed a unified, auto-

mated workflow using Docker containers that can be
simultaneously deployed on different computation infra-
structures and can facilitate cross-platform collabor-
ation. This is achieved by creating an identical insulated
and stable operating environment that can be precisely
controlled resulting in consistency overtime, without the
worry of conflicting dependencies, UNIX compatibility
issues and system updates. Docker containers can be
used effectively to address some of the major setbacks of
microarray and next generation sequencing technologies.
The fast start-up time of Docker containers opens up
the ability to chain together the execution of multiple
containers and the development of sophisticated work-
flows for genomic analyses.
This work takes into consideration the overall analytical

performance of the workflow as well as computational
cost. Our aim was to develop an automated, accurate, and
computationally efficient analytical process, while keeping
the computational requirements at a minimum. Exploiting
the minimal performance loss introduced by the Docker
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engine we developed a modular architecture for the inte-
grative analysis of QTL and RNA-seq data that can be run
on a personal computer (with approximately 4 GB of
RAM or higher). For the aforementioned purpose the bio-
informatic tools have been picked according to their over-
all effectiveness and their computational cost as described
in the methods. The workflow we propose requires no
more than 4.3 GB of RAM, 10GB of physical drive and
can run a top-down analysis of 20GB of input data in less
than 3 h (these values may change depending on whether
multiprocessing or multi-threading are used).
Using our workflow, we mapped two QTLs related to

the body weight gain phenotype, one on chromosome 5
for male mice and one on chromosome 3 for female
mice. The QTL on chromosome 5 has already been de-
scribed as significant in relation to the percentage of
body fat, in response to an atherogenic diet, where
Ppargc1a was suggested to be a candidate gene through
comparative genomics and haplotype analysis [54].
There has also been evidence that suggests Ppargc1a ac-
tivity may be significantly influenced by sex, although

results to that direction have been contradictory with
the rs8192678 allele influencing the risk of developing
obesity in men but not in women, while in female mice
Ppargc1a expression is estrogen regulated and has a pro-
tective effect against obesity-induced oxidative damage
[55, 56]. In our analysis Ppargc1a is under-expressed in
obese versus normal females. Additional genes involved
in pathways closely related to the obesity phenotype
highlighted by our analysis as potential candidates that
play a role in male mice susceptibility to obesity are
Cckar, Sod3, Med28, and Slit2.
QTLs on chromosome 3 have been previously described

to be involved in the percentage of body fat and heat loss,
without the introduction of a high fat diet [57, 58]. To our
knowledge, this is the first time that the two mapped QTL
are described in a sex specific context. It is notable that
while the QTL and DE do not overlap significantly, they
converge at the functional level, pointing to potentially
common regulatory mechanisms. For example, in female
mice there is a single differentially expressed gene located
inside the QTL on chr3, Cyp2u1, a hydroxylase that is

Fig. 2 Heatmap graphical representation of Male Obese mice versus Female Obese (right). The genes (y axis) are derived from the union of the
prioritised lists produced
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involved in the metabolism of long chain fatty acids. How-
ever, the two gene lists derived from the QTL and differ-
ential expression analysis share a high number of
common relevant enriched pathways, such as increased
energy expenditure (MP:0004889), decreased susceptibility
to diet-induced obesity (MP:0005659) and increased circu-
lating free fatty acid level (MP:0001554).
The comparison of male and female DE results (pre-

sented in supplementary Tables 3 and 4) showed that
male and female mice have completely different mecha-
nisms of response to HFD induced obesity. Sex differences
in glucose metabolism have been previously described in
mouse strains. Males have been found to be more prone
to developing insulin resistance and obesity than females
after being fed a high-fat / high carbohydrate diet. In
addition, the same study showed that estrogen contributes
to insulin sensitivity in females, and testosterone exacer-
bates insulin resistance in C57BL/6 J mice [59].
In our results, ectopic expression of Pyy and Ins2 in

the liver appear to be coping mechanisms utilised by fe-
male obese mice but not males. We also observed extra-
pancreatic expression of Pnlip in female obese mice. A
hepatic to pancreatic switch that occurs in a compensa-
tory mode under stress conditions has been previously
described [60]. Under-expression of Lepr indicates liver
resistance to leptin, which leads to impaired hepatic in-
sulin sensitivity, regulation of lipid metabolism and glu-
cose homeostasis in female obese mice [61, 62]. Our
findings regarding the cases of male nondiabetic obese
mice when compared with male nondiabetic normal
mice indicate that obesity in the male population heavily
affects genes related to the skeletal and cardiac tissues,
which agrees with previous studies connecting obesity
with impaired muscular structure and function, as well

as abnormal regulation of insulin secretion and glucose
homeostasis [46, 63, 64]. Diet induced obesity has been
shown to alter skeletal muscle fiber types in male but
not in female mice [65].
A direct comparison of DE genes in female versus

male mice subjected to HFD (the complete lists of DE
genes of Male-Nondiabetic-Normal vs Female-
Nondiabetic-Normal and Male-Nondiabetic-Obese vs
Female-Nondiabetic-Obese, are available in Supplemen-
tary Tables 5 and 6, respectively) confirms gender spe-
cific differences in the responses of both resistant and
susceptible individuals. Male mice appear to undergo
and respond to oxidative stress induced by the HFD by
over-expressing antioxidant enzymes such as Gstp1 and
Nox4 (Fig. 3). They also respond to the metabolic stress
they undergo by over-expressing metabolism modulating
genes, such as Cav1 (Fig. 3). Additionally, as illustrated
in Fig. 3, female mice over-express genes involved in the
regulation of the inflammatory response, such as Il1b, in
comparison to male mice. A previous study of the sex-
dependent inflammatory response of HFD fed mice has
shown that male mice tend to develop low-grade sys-
temic inflammation, while female mice are protected
through expansion of their population of anti-
inflammatory T lymphocytes [66]. As systemic low-
grade inflammation caused by obesity is believed to play
a role in insulin resistance, it is of great interest to fur-
ther look into sex-dependent inflammatory responses
and coping mechanisms.
Our work addresses data integration from analytical

platforms at the genomic and trancsriptomic level, but
we expect that our findings can be extended to accom-
modate broader integration schemes and result in a var-
iety of computational genomic analysis pipelines.

Fig. 3 Heatmap graphical representation of the most highly prioritised genes that are common in Male vs Female comparisons and their
respective ontologies based on GO produced by BioInfoMiner. Genes marked blue are overexpressed in Female mice while genes marked red are
overexpressed in Male mice
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Moreover, our findings highlight the potential of Docker
technologies for the development of prototype analytical
workflows that suit the individual needs of different re-
search objectives. As a future step in this project, we
plan to develop a fully automated, dockerised workflow
to perform eQTL analysis on Collaborative Cross mice,
which is a significantly more computationally demanding
task and will greatly benefit from the possibility of fast
and reliable remote deployment.

Conclusions
We observed that the genetic mechanisms which under-
lie susceptibility and response to HFD induced obesity
differ in female and male mice. This clear distinction in
the systemic response to the HFD challenge and obesity
between male and female mice points to the need for
further research into distinct sex-related mechanisms in
metabolic disease in humans as well.
Moreover, the integration of data using ontological

functional analysis, which showed that different genes
but similar pathways are involved in the genetic suscep-
tibility and are disturbed in diet induced obesity, demon-
strate the importance of integrating genomic and
transcriptomic data at the level of signaling pathways ra-
ther than focusing on genes. This way the collective
background biological knowledge is meaningfully utilised
to systemically interpret results at the genomic scale.
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