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Abstract

Background: Whole genome sequencing is effective at identification of small variants, but because it is based on
short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which
utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for
increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-
based SV annotation software has seen little development, and currently available SV annotation tools do not
provide sufficient information for determination of variant pathogenicity.

Results: We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV
classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined)
databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs
with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are
calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s
phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If
available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the
user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by
the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance
pattern (INDELs, inversions, translocations, de novo, etc.).
nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We
evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample
NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately
filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had
previously demonstrated the diagnostic ability of OGM.

Conclusions: The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward
use of OGM in the clinical setting.
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Background
With the advent of the high-throughput short-read sequen-
cing (SRS) techniques, identification of molecular underpin-
nings of genetic disorders has become faster, more accurate
and cost-effective [1]. SRS platforms used for whole exome
(WES) or genome (WGS) DNA sequencing produce billion
of reads per run, typically limited in length to 100–150 base
pairs (bp) [2]. When WES started being used in clinical
diagnostic practice, it was reported to be effective in identi-
fying pathogenic genetic variants in approximately 30% of
cases [3–5]. Even with technological evolution and more
widespread practice, reports of diagnostic yields between 8
and 70%, depending on the disease [6] suggest that a large
fraction of cases remain undiagnosed. WGS was shown to
be more effective than WES in identifying single nucleotide
variants (SNVs; a change or variation of a single bp in the
genome) or small insertions and deletions (INDELs; inser-
tion or deletion of 1 to 50 bps) than WES [7, 8]. However,
both WES and WGS are ineffective in identification of
structural variants (SVs, insertion, deletion, duplication, in-
version, or translocation greater than 50 bps in size) or copy
number variants (CNVs; duplication or deletion SVs that
affect larger regions of the chromosome) because short
reads cannot span repetitive elements or provide contextual
information. Many algorithms have been designed for de-
tection of SVs in short-read-based sequences (69 of them
were compared in [9]). However, performance analyses
highlight their limitations such as low concordance, poor
precision, and high rate of false positive calls [9, 10]. An-
other benchmarking study comparing 10 different SV cal-
lers against robust truth sets showed that the total number
of calls made by the different algorithms varied by greater
than two orders of magnitude [11]. Region of genome ana-
lyzed (repeats vs. high-complexity regions), noise of data
(platform-specific sequencing or assembly errors), complex-
ity of the SV, and library properties (e.g. insert size) all
affect specificity, sensitivity and/or processing speed of the
various variant-calling algorithms [10].
Chromosomal microarray (CMA) is the established

method for high-accuracy detection of CNVs, but it can
only identify gains or losses of genetic material and is virtu-
ally blind towards identification of balanced rearrangements
such as inversions or translocations. CMA clinical applica-
tion is typically limited to CNVs above 25–50 kb, although
higher resolution CNV maps have been built and are being
used to design disease-specific paths to diagnostic detection
of smaller variants (e.g. [12]). Breakpoint resolution is lim-
ited by the density of probes on the array.
Novel approaches which analyze single, long DNA mol-

ecules hold the promise of detecting the previously in-
accessible SVs. Long-read sequencing (LRS) technologies
such as nanopore-based sequencing (Oxford Nanopore
Technologies) or single-molecule real-time sequencing
(Pacific Biosciences) have the potential to both detect

complex genomic rearrangements and increase SV break
point resolution [13, 14]. They have been critical to shed
light on the “dark” regions of the genome where short
reads had been insufficient for accurate assembly [15].
However, as LRS still isn’t in wide use, SV detection pipe-
lines have seen slower development than SRS-based algo-
rithms, and both quantity and quality of identified SVs
vary significantly between tools [16].
In parallel, a method not based on sequencing, optical

genome mapping (OGM, Bionano Genomics), provides
much higher sensitivity and specificity for identification of
large SVs, including balanced events, compared to karyo-
type, CMA, LRS and SRS [17–20]. For example, a compari-
son of OGM, PacBio LRS and Illumina-based SRS on the
same genome showed that about a third of deletions and
three quarters of insertions above 10 kb were detected only
by OGM [17]. For OGM, purified high-molecular-weight
DNA is fluorescently labeled at specific sequence motifs
throughout the genome (reviewed in [21]). The labeled
DNA is imaged through nanochannel arrays for de novo
genome assembly. Assembly and variant calling are per-
formed using algorithms provided by Bionano Genomics
and/or tools developed by the community, such as OMblast
[22] or OMtools [23]. OGM has been effective in identify-
ing pathogenic variants in patients with cancer [24–26],
Duchenne muscular dystrophy [27], and facioscapulohum-
eral muscular dystrophy [28, 29]. Importantly OGM has
allowed refinement of intractable, low-complexity regions
of the genome and discovery of genomic content missing in
the reference genome assembly [19].
Although, OGM is effective in identifying clinically rele-

vant SVs, the currently available SV annotation tools do
not provide sufficient variant information for determination
of variant pathogenicity. Here, we report the development
of an annotation tool in R language, nanotatoR, that pro-
vides extensive annotation for SVs identified by OGM. It
determines population variant frequency using publicly
available databases, as well as user-created internal data-
bases. It offers multiple filtration options based on quality
parameters thresholds. It also determines the percentage of
overlap of genes with the SV, as well as distance between
nearest genes and SV breakpoints, both upstream and
downstream. It offers an option for incorporating RNA-Seq
read counts, which has been shown to enhance variant clas-
sification [6], as well as user-specified disease-specific gene
lists extracted from NCBI databases. The final output is
provided in an Excel worksheet, with segregated SV types
and inheritance patterns, facilitating filtration and identifi-
cation of pathogenic variants.

Methods
Sample data sets
Optically mapped genomes for 8 different reference hu-
man samples were used to construct the internal cohort
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database for evaluating nanotatoR’s performance. All sample
datasets, including “Utah woman” (Genome in a Bottle Con-
sortium sample NA12878), “Ashkenazi family” (NA24143 [or
GM24143]: Mother, NA24149 [or GM24149]: Father, and
NA24385 [or GM24385]: Son), GM11428 (6-year-old female
with duplicated chromosome), GM09888 (8-year-old female
with trichorhinophalangeal syndrome), GM08331 (4-year-old
with chromosome deletion) and GM06226 (6-year-old male
with chromosome 1–16 translocation and associated 16p
CNV), were obtained from the Bionano Genomics public
datasets (https://bionanogenomics.com/library/datasets/). OG
M-based genome assembly and variant calling and annota-
tion were performed using Solve version 3.5 (Bionano Gen-
omics). Subsequently, samples were annotated with
nanotatoR to examine the performance.
Additionally, we tested nanotatoR’s ability to accur-

ately annotate the known disease variants in a previously
published cohort of 11 Duchenne Muscular Dystrophy
samples [27]. For this, internal cohort frequency calcula-
tions are based on these 11 samples. For gene expression
integration, NA12878 fastq files (RNA-Seq) were ob-
tained from Sequence Read archive (SRA) (Sample
GSM754335) and aligned to reference hg19, using STAR
[30]. Read counts were estimated using RSEM [31], re-
ported in Transcripts per Million (TPM).

nanotatoR input file formats
nanotatoR was written in R language. The nanotatoR
pipeline takes as input Bionano-annotated SV files, in
the format of either unmodified SMAP (BNG’s SVcaller
output) or text (TXT) files that retain information from
the SMAPs, but also append additional fields. The two
main differences between the input files are:

a) Enzyme: If a combination of restriction endonucleases
(Nt.BspQI and Nb.BssSI) are used for DNA labeling,
genome assembly and variant calling, the resultant SV
call sets from each enzyme are merged into a single
TXT file in an SMAP format (SVmerge function,
Bionano Genomics). If a single direct labeling enzyme
such as DLE1 is used for DNA labeling, the resultant
SV call set is kept in a single SMAP file format. Both
file types (SVmerge TXT and SMAP) can serve as
input files for nanotatoR.

b) Family: Depending on the availability of family
members, the SV-containing input files (TXT/
SMAP) contain additional information derived from
the Variant Annotation Pipeline (BN_VAP, Bionano
Genomics). For trio analysis (proband, mother,
father), BN_VAP performs molecule checks for SVs
identified in the proband (self-molecules) and
checks whether the SV is present in the parents’
molecules. For duo analysis (proband vs. control
-any family member or unrelated individual- or

tumor vs. normal) variants’ presence is evaluated in
self-molecules as well as the control sample mole-
cules. For proband-only analysis variants’ presence
is evaluated in self-molecules only.

nanotatoR functions
The annotations provided by nanotatoR are currently
subdivided into 5 categories described below: 1) calcula-
tion of SV frequency in external and internal databases;
2) determination of gene overlaps; 3) integration of gene
expression data; 4) extraction of relevant phenotypic in-
formation from public databases for 5) variant filtration.
Finally, all of the sub-functions are compiled into a Main
function.

Function 1: Structural variant frequency
Variant frequency is one of the most important filtration
characteristics for the identification of rare, possibly
pathogenic, variants. Because OGM is not sequence
based the average SV breakpoint uncertainty is 3.3 kbp
[20]. As a result, compared with SNV frequency calcula-
tions, frequency estimates for SVs pose greater difficulty,
due to the breakpoint variability between “same” struc-
tural variants identified by different techniques.

Function 1.1 - External databases nanotatoR uses 3
external databases: Database of Genomic Variants (DGV)
[32], Database of Chromosomal Imbalance and Phenotype
in Humans Using Ensembl Resources (DECIPHER) [33]
and Bionano Genomics control database (BNDB). The re-
spective functions are named: DGVfrequency, DECIPHER
frequency and BNDBfrequency. The 3 datasets are access-
ible through the nanotatoR GitHub repository (https://
github.com/VilainLab/nanotatoRexternalDB).
BNDB is provided by Bionano Genomics in a subdivided

set of 4 files based on the type of SVs (indels, duplications,
inversions, and translocations) for two different human
reference genomes (GRCh37/hg19 and GRCh38/hg38).
nanotatoR aggregates the variant files of the user-selected
reference genome (hg19 or hg38), into a single format
(e.g. TXT) used for frequency calculation. This action is
performed as part of the function BNDBfrequency with
the following input parameters: buildBNInternalDB =
TRUE, InternalDBpattern = “hg19” or InternalDBpattern =
“hg38”. The following steps are used to calculate the fre-
quency of a query SV in external databases:

1.1aVariant-to-variant similarity: Estimating the
frequency of a query SV first requires determining
whether the variant is the same as the ones found
in a database of interest. In order for the SVs to be
considered “same”, nanotatoR, by default, checks
whether two independent variants of the same type
(e.g. deletion) are on the same chromosome, have
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50% or greater size similarity, and if the SV
breakpoint start and end positions are within 10
kilobase pairs (kbp) for insertions/deletions/
duplications and within 50 kbp for inversions/
translocations. For example, if there is a deletion on
chromosome 1 with a breakpoint start at position
chr1:350,000 and end at chr1:550,000 on the
reference, all deletion variants in chr1:340,000–
560,000 with a size similarity of 50% would be
extracted from the database. Similarly, if the variant
was an inversion, nanotatoR would search for
variants of the same type and on the same
chromosome, with a breakpoint start between
chr1:300,000 and chr1:400,000 and breakpoint end
between chr1:500,000 and chr1:600,000. Currently
the 50% size similarity cutoff is not implemented by
default for inversions and translocations, as sizes
have only started to be provided in the SVcaller
output recently; however, users have an option to
run the size similarity, and future releases of
nanotatoR will perform the size similarity
calculations by default.
The percentage similarity parameters (DECIPHER
and BNDB functions: input parameter perc_
similarity; DGV function: input parameter perc_
similarity_DGV) and breakpoint start and end error
(DECIPHER and BNG functions insertion, deletion
and duplication: input parameter win_indel; DGV
function insertion, deletion and duplication: win_
indel_DGV; DECIPHER and BNG functions
inversion and translocation: win_inv_trans; DGV
function inversion and translocation: win_inv_
trans_DGV) are modifiable by the user.

1.1bVariant size and confidence score: Two
additional criteria are implemented to select for
high-quality variants in BNDB. Bionano’s SVcaller
calculates a confidence score for insertions, dele-
tions, inversions, and translocations. To calculate al-
lele frequency, nanotatoR takes into account the
BNDB variants above a threshold quality score of
0.5 for insertions and deletions (indelconf), 0.01 for
inversions (invconf) and 0.1 for translocations
(transconf). These thresholds can be modified by
the user. In addition, nanotatoR filters out SVs
below 1 kbp in size to decrease the likelihood of
false positive calls [20].

1.1cZygosity: Variants in BNDB are reported as
homozygous, heterozygous or “unknown” (DGV
and DECIPHER do not report zygosity). This is
used to refine frequency calculation for BNDB SVs:
nanotatoR attributes an allele count of 2 for
homozygous SVs and 1 heterozygous SVs.
Currently, nanotatoR overestimates the frequency
for variants that overlap with reference database

(BNDB) SVs for which the zygosity is unknown by
counting the number of alleles as 2. If the query SV
matches with multiple variants in the BNDB from
the same BNDB sample, nanotatoR counts these as
a single variant/sample, with allele count of 2 for
homozygous/unknown and 1 for heterozygous
matches.

1.1dFrequency calculations: for DECIPHER and
DGV, SV frequency is calculated by dividing the
number of query matched database variants (step
1.1a) by the total number of alleles in the database,
i.e. 2x the number of samples, which are diploid,
and multiplying with 100 to get percentage
frequency (Formula 1).

Formula 1: External public (DGV and DECIPHER) database SV
frequency calculation. Numerator: number of variants that pass the
similarity criteria (step 1.1.a). Denominator is twice the number of
samples, i.e. the number of alleles. This ratio is multiplied by 100 to
express the frequency as a percentage.

External DB SV frequency ¼ Number of matching variants step 1:1að Þ
2 X total number of samples

X 100

For BNDB two types of frequency calculations are
performed: filtered and unfiltered. For filtered frequency
calculations the following criteria must be met: 1.1a;
1.1b; 1.1c. For unfiltered variants frequency calculation
only 1.1a and 1.1c criteria are enforced. The resultant
number of identified counts is divided by the number of
alleles in BNDB (currently 468 for 234 diploid samples).
The result is multiplied by 100 to get a percentage
(Formula 2).

Formula 2: BNDB database filtered SV frequency calculation. The
variants that pass the similarity criterion (step 1.1.a) are filtered with size
threshold and quality score (step 1.1.b). The number of variants is
estimated as mentioned in step 1.1.c. Denominator is the number of
alleles. This ratio is multiplied by 100 to get the frequency in percentage.

Filtered SV frequency ¼ Number of matching filtered variants steps 1:1a; b; cð Þ
2 X Number of BNDB samples

X 100

Output: The output is appended to the original input file
in individual columns. For DECIPHER, this consists of a
single column termed “DECIPHER_Freq_Perc”. As DGV
provides information on number of samples in addition to
frequency, nanotatoR prints two columns: “DGV_Count”
(with the total number of unique DGV samples containing
variants matching the query SV) and “DGV_Freq_Perc”
(for the percentage calculated using Formula 1). For the
BNDB, in addition to “BNG_Freq_Perc_Filtered”, “BNG_
Freq_Perc_UnFiltered”, a third column reports “BNG_
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Homozygotes” (number of homozygous variants that pass
the filtration criteria).

Function 1.2 - Internal databases The internal cohort
analysis is designed to calculate variant frequency based
on aggregation of SVs for samples ran within an
institution or laboratory and provides parental zygosity
information for inherited variants in familial cases. The
function consists of two distinct parts:

1.2aBuilding the internal cohort database:
Individual (solo) SMAP files for each of the samples
are concatenated to build an internal database
(buildSVInternalDB = TRUE), which is stored in the
form of a text file. This step creates a unique
sample identifier (nanoID) based on a key provided
that ensures unique sample ID and encodes family
relatedness. The nanoID is written as NR < Family
# > . < Relationship #>. For example, the proband in
a family of three (trio) would be denoted as NR23.1,
with NR23 denoting the family ID and 1 denoting
the proband. For the parents of this proband, the
nanoID would be NR23.2 for the mother and
NR23.3 for the father. Currently, only trio analyses
are supported, future updates will include larger
family analyses. If multiple projects exist within the
same institution and are coded with project-specific
identifiers nanotatoR will append the project-
specific identifier in front of the nanoID (e.g. Pro-
ject1_NR23.1 and Project2_NR42.1).

1.2bCalculating internal frequency and determining
parental zygosity: For singleton analyses, the function
internalFrequency_Solo (for both DLE labeling and
SVmerge) calculates internal database frequency of
queried SVs based on the same principles explained in
section 1.1d (Formula 2) for BNDB frequency
calculations. However, additional filtration criteria are
implemented to increase the accuracy of frequency
estimation. SVs overlapping gaps in hg19/hg38 are
annotated in the output SMAPs as “nbase” calls (e.g.
“deletion_nbase”) and are likely to be false. nanotatoR
filters out “nbase”-containing SVs when estimating
internal frequency. For duplications, inversions, and
translocations nanotatoR evaluates whether chimeric
scores “pass” the thresholds set by the Bionano
SVcaller during de-novo genome assembly [34]
ensuring that SVs that “fail” this criterion are
eliminated from internal frequency calculations
(Fail_BSPQI_assembly_chimeric_score = “pass” or
Fail_BSSSI_assembly_chimeric_score = “pass”) for
SVmerge datasets, or
(Fail_assembly_chimeric_score = “pass”) for a single-
enzyme dataset. Lastly, nanotatoR checks whether the
SVs were confirmed with Bionano Variant Annotation

Pipeline, which examines individual molecules for sup-
port of the identified SV [34] (Found_in_self_BSPQI_-
molecules = “yes” or
Found_in_self_BSSSI_molecule = “yes”) for SVmerge
datasets, or (Found_in_self_molecules = “yes”) for a
single-enzyme dataset.

For family analyses (duos and trios), the
internalFrequencyTrio_Duo function is used to identify
parental/control sample zygosity based on the nanoID
coding using criteria described in sections 1.1.a/c (note
that, here, the default size similarity percentage used is
≥90% as inherited variants are expected to be virtually
identical). Zygosity information for the identified
variants is extracted and appended into two separate
columns (fatherZygosity and motherZygosity). This
functionality is available for both SVmerge (merged
outputs from 2 enzymes) and single enzyme labeling.
SVs with the same family ID as the query are not
included in the overall internal frequency calculation as
described in the previous paragraph. Five columns:
“MotherZygosity”, “FatherZygosity”, “Internal_Freq_
Perc_Filtered”, “Internal_Freq_Perc_Unfiltered”, and
“Internal_Homozygotes” are appended to each of the
annotated input files (nonrelevant fields contain dashes).

Function 2: Gene overlap
The gene overlap function (overlapnearestgeneSearch)
identifies known gene and non-coding RNA genomic lo-
cations that overlap with or are immediately upstream or
downstream from the identified SVs. This function takes
as input an SV-containing file (TXT or SMAP) and a
modified Browser Extensible Data (BED) file where hu-
man X and Y chromosomes are numbered as 23 and 24
respectively. The user has an option of either providing a
Bionano-provided modified BED file (inputfmtBed =
“BNBED”) or a BED file from UCSC Genome Browser or
GENCODE (inputfmtBed = “BED”). For the latter, nanota-
toR supports conversion of a BED file into BNBED stand-
ard with buildrunBNBedFiles function. The BED file is
used to extract location/orientation of genes and overlap
this information with SVs (overlapGenes function, called
from overlapnearestgeneSearch). The function calculates
the percentage overlap, by calculating its distance from
the breakpoint start (if the gene is partially upstream of
the SV) or breakpoint end (if the gene is partially down-
stream of the SV), and dividing it by the length of the gene
(calculated by nanotatoR from genomic coordinates infor-
mation in the BED file). By default, nanotatoR applies a 3
kbp gene overlap window (breakpoint start – 3 kbp;
breakpoint end + 3 kbp) to account for the typical OGM
breakpoint error [20] when searching for genes overlap-
ping insertions, deletions and duplications. For inversions
and translocations overlapping genes are limited to +/− 10
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kbp from the breakpoint start/end (both parameters are
user-selectable). For the nonOverlapGenes function (also
called from overlapnearestgeneSearch), genes located near,
but not overlapping with, SVs are reported along with the
corresponding distances from the SV. Genes are sorted
based on their distance from the SV breakpoints. The
default number of reported nonoverlap genes is 3 (also
user-selectable). The output produces 3 additional col-
umns: “OverlapGenes_strand_perc”, “Upstream_nonOver-
lapGenes_dist_kb” and “Downstream_nonOverlapGenes_
dist_kb”.

Function 3: Expression data integration
The SVexpression_solo/_duo/_trio functions for
singletons, dyads and trios respectively provide the user
with tools to integrate tissue-specific gene expression
values with SVs. The function takes as input a matrix of
gene names (first column) and corresponding expression
values for each sample, with the sample names as col-
umn headers (individual files can be merged by the
RNAseqcombine function for dyads/trios or RNAseqcom-
bine_solo function for singletons). The SVexpression_
solo/_duo/_trio function can take as an input read esti-
mation from any transcript quantification tool, provided
the input format mentioned above is followed.
To differentiate between sample types (probands and

affected/unaffected parents), we recommend the user
add a code (or pattern) to the file name. For example,
for the proband of family 23, the expression file name
would be Sample23_P_expression.txt, where P denotes
proband. Currently, by default nanotatoR recognizes “P”
as proband, “UM/AM” for unaffected/affected mother
and “UF/AF” for unaffected/affected father. A function
to encode more complex intra-family relatedness and
identify individual samples, termed nanoID, is in devel-
opment and will be available by default in the next re-
lease of nanotatoR.
Expression values for overlapping and non-overlapping

SV genes are extracted from the genome-wide expres-
sion matrix and appended into separate columns in the
overall SV input file. For example, an overlap of gene X
with a SV in the proband, with an expression value of
10, would be represented as gene X (10), and printed in
the “OverlapProbandEXP” column. The appended num-
ber of columns in the output is dependent on which
functions were run. For a trio analysis, 9 columns are
added: “OverlapProbandEXP”, “OverlapFatherEXP”, and
“OverlapMotherEXP” for overlapping genes, and a simi-
lar set for up- and down-stream non-overlapping genes
(e.g. “NonOverlapUPprobandEXP”, “NonOverlapDNpro-
bandEXP”). In case of dyads the number of columns
would be 6 (with the parent column being either mother
or father) and 3 for singletons.

Function 4: Entrez extract
The gene_list_generation function assembles a list of genes
based on the patient’s phenotype and overlaps it with gene
names that span SVs. User-provided, phenotype-based key-
words are used to generate a gene list from the following
databases: ClinVar [35], OMIM (https://omim.org/), GTR
[36], and the NCBI’s Gene database (www.ncbi.nlm.nih.
gov/gene). The input to the function is a term, which can
be provided as a single term input (method = “Single”), a
vector of terms (method = “Multiple”), or a text file
(method = “Text”). The output can be a dataframe or text.
The rentrez [37] and VarfromPDB [38] R-language pack-
ages are used to extract data related to each of the user-
provided phenotypic terms, from the individual databases.
For the Gene database rentrez provides the entrez IDs asso-
ciated with each gene, which are converted in nanotatoR to
gene symbols using org.Hs.eg.db [37], a Bioconductor pack-
age. For OMIM, rentrez provides the OMIM record IDs,
which are used to extract the corresponding disease-
associated genes from the OMIM ID-to-gene ID conver-
sion dataset (mim2gene.txt). For GTR, rentrez extracts the
GTR record IDs, which are then used to extract corre-
sponding gene symbols from the downloaded GTR data-
base. For ClinVar, VarfromPDB is used to extract genes
corresponding to the input term. All genes to which the
query keyword is attached, irrespective of their clinical sig-
nificance, are extracted; genes of clinical significance (i.e.
those for which Pathogenic/Likely Pathogenic variants are
reported) are further reported in a separate column. The
user also has the option to download the ClinVar and GTR
databases by choosing downloadClinvar = TRUE and
downloadGTR =TRUE, which may improve run times.
The user has an option to save the datasets (removeClin-
var = FALSE and removeGTR = FALSE) or delete the data-
base after the analysis is completed (removeClinvar =
TRUE and removeGTR =TRUE).
The output is provided in CSV format with 3 columns:

“Genes”, “Terms”, and “ClinicalSignificance”. The “Terms”
column contains the list of terms associated to each gene
and corresponding database from where the association
was derived. The “ClinicalSignificance” column contains
genes that have clinical significance (Pathogenic/Likely
Pathogenic variants) for the associated term, derived from
the ClinVar database. The output of entrez extract serves
as input for the subsequent variant filtration step.

Function 5: Variant filtration
The filtration function has two major functionalities:
categorization of variants into groups (such as de novo,
inherited from mother/father; potential compound
heterozygous; inversions or translocations) and integration
of the primary gene list (either provided by the user or
generated by nanotatoR as described in section 4) into the
input SV-containing file. In this function, genes overlapping
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and near SVs that are present in the primary gene list are
printed in separate columns. For genes that overlap with a
SV, the output is printed in columns termed “Overlap_PG”
(primary genes that are common with the genes that over-
lap SVs) and “Overlap_PG_Terms” (terms and database the
genes are being extracted from). Genes that are up/down-
stream of, but not overlapping with, the SV are divided into
“Non_Overlap_UP_PG”,“Non_Overlap_UP_Terms”, “Non_
Overlap_DN_PG”, and “Non_Overlap_DN_Terms”.
The final annotated SV calls are divided into multiple

sheets:

� All: contains all identified variant types and
annotations.

� all_PG_OV: Variants overlapping with the primary
gene list.

� Mismatch: Variant Type = “MisMatch” in SVmerge
output (available for dual enzyme labeling output
only) contains SV calls discordant between the two
enzymes datasets (e.g. one called a deletion and the
second an insertion).

By default, for the rest of the sheets, nanotatoR
performs self-molecule checks for all SV types (described
in section 1.2b, Found_in_self_ molecules = yes) and
chimeric score quality checks for duplications, inversions
and translocations (also described in section 1.2b, Fail_
BSPQI_assembly_chimeric_score = “pass”) and reports on
zygosity. (These two criteria are henceforth called “default
nanotatoR filtration”). For indel_dup, this comprises:

� For singleton studies (solo): Variant
type = “insertion”, “deletion”, “duplication”,
“duplication_split” or “duplication_inverted”.

� For dyads: indel_dup_notShared or
indel_dup_Shared respectively: Insertions, deletions
and duplications not present in a control sample,
mother or father
(Found_in_control_molecules = “no”) or present in a
control sample, mother or father
(Found_in_control_molecules = “yes”).

� For trios, insertions, deletions or duplications are
reported in:
◊ indel_dup_denovo if not present in the parents
(Found_in_parents_BSPQI_molecules/
Found_in_parents_BSSSI_molecules = “none” or
“-” for SVmerge or
Found_in_parents_molecules = “none” for single
enzyme).
◊ indel_dup_both if present in the proband, as
well as both parents (e.g.
Found_in_parents_molecules = “both”).
◊ indel_dup_mother and indel_dup_father if
inherited from only the mother or father,

respectively (e.g.
Found_in_parents_molecules = “mother” or “father”).
◊ indel_dup_cmpdHET if present in the
heterozygous state in parents. This output is a
combination of Indel_dup_mother and
Indel_dup_father datasets. The user can manually
inspect this list to find potential compound
heterozygote variants, i.e. 2 variants with genomic
coordinates overlapping with the same gene, one
present in the mother, the other in the father.

Finally, inversion and translocations are reported as
follows, for singletons, dyads, or trios:

� Variant Type = “inversion” or “inversion_paired” or
“inversion_partial” or “inversion_repeat”.

� Variant Type = “translocation_intrachr” or
“translocation_interchr” if within a single chromosome
or between two chromosomes respectively.

There is a total of 6 variant filtration functions, based on
enzyme type (SVmerge for dual-enzyme labeling or single
enzyme) and sample type (singleton, dyad, or trio). For ex-
ample, for a single-enzyme singleton dataset the function
is run_bionano_filter_SE_solo. Others are run_bionano_fil-
ter_SE_duo, run_bionano_filter_SE_trio, run_bionano_fil-
ter_SVmerge_solo, run_bionano_filter_SVmerge_duo, and
run_bionano_filter_SVmerge_trio. Variant filtration output
is an Excel file with each of the different output groups
represented as separate tabs. The output is written in
Excel file format using the openxlsx [39] package, with the
following default naming convention “Sample1_solo.xlsx”.

Main function
The main function sequentially runs the available
nanotatoR sub-functions by merging the outputs from
each step. There are in total 6 main functions depending
on the type of input: nanotatoR_main_Solo_SE; nanota-
toR_main_Duo_SE; nanotatoR_main_Trio_SE; nanota-
toR_main_Solo_SVmerge; nanotatoR_Duo_SVmerge and
nanotatoR_SVmerge_Trio. The Main function takes the
SMAP file, DGV file, BED file, internal database file and
phenotype term list as inputs and provides a single out-
put file in a form of an Excel spreadsheet. The output lo-
cation and file name are user-specified.

Results
The nanotatoR pipeline, written in R, integrates five
individual sub-functions based on the enzyme and the sam-
ple type. A visual representation of the steps is shown in
Fig. 1. nanotatoR passed all runtime and space criteria for
the Bioconductor repository (https://www.bioconductor.
org/developers/package-guidelines/), where it was accepted
in the April, 2019 cycle. The Bioconductor link for
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nanotatoR is https://bioconductor.org/packages/devel/bioc/
html/nanotatoR.html, and the latest version update is avail-
able at https://github.com/VilainLab/nanotatoR.
The output is in the form of an Excel workbook

subdivided into variant types and inheritance modes in
familial cases. The user has an option to either filter the
data based on input parameters or perform the filtrations
steps in the final Excel sheets. Theoretical examples of the
nanotatoR annotation process and output are illustrated
in Fig. 2 for various types of SVs.
To demonstrate the various functionalities of nanotatoR,

we present below the annotation results obtained from

previously described truth sets: a control trio mapped with
the single-enzyme technique, a control singleton sample
mapped with both DLE and two-enzyme techniques, and a
cohort of patients, for which we have previously established
the efficacy of OGM to identify the SV causing Duchenne
Muscular Dystrophy [27].

Example I: Annotation of a control trio single labeling
dataset
We used the so-called “Ashkenazi trio” reference data-
sets, mapped using the DLE labeling methodology, to
test the trio analysis function of nanotatoR (expression

Fig. 1 Workflow of the nanotatoR pipeline: The nanotatoR pipeline is divided into 3 layers. Input Layer: Takes as input the OGM text or Smap file.
Annotation Layer: The annotation layer comprises of five methods. The method that extracts the overlapping genes and the genes near (downstream and
upstream) takes as input a BED file, and calculates the overlap percentage and the distance between nearest genes and SV using chromosomal locations.
Next, the frequency calculation function calculates external and internal frequency taking DGV, DECIPHER and BNDB database as input for external
frequency calculation, while input solo files, merged to form the internal frequency database, are taken as input to calculate the internal frequency. If RNA-
Seq data is available, the expression count matrix is taken as input. Finally, output from all these methods as well as a primary gene list created from terms,
is integrated, filtered based on quality criteria and written into an Excel file. Output Layer: The output is an Excel workbook, with each tab representing
different SV types. The output files and number of tabs depend on the sample type and enzyme type: Singleton samples have 5 tabs for DLE and 6 tabs
for SVmerge; 6 tabs for DLE and 7 tabs for SVmerge are created for dyad analyses; Trio analyses have 9 tabs for DLE and 10 tabs for SVmerge
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data was not available for these samples). Bionano
SVcaller identified a total of 9387 SVs in the proband
(NA24385), shown in the last tab of the 9-tab report,
termed “all”. The complete, unfiltered nanotatoR output
file for NA24385 (GM24385) is available in Supplemen-
tary Table S1.

nanotatoR filtration and variant type annotation
After nanotatoR filtration (method described in
Function 5 Variant Filtration of Materials and Methods
section), 8804 variants (93.8%) remained of the original
9387. The variants were annotated based on criteria
described in Methods section 5. SVs were distributed as
shown in Fig. 3 (left pie chart). The vast majority
(8680) were in the “indel_dup” tabs; 114 (out of 279
unfiltered) inversions were reported in the “inv” tab,
and 0 (out of 84) translocations in the “trans” tab. All
the translocations called by the Bionano SVcaller in
this sample were in the categories “trans_interchr_
common” and “trans_intrachr_common”, which are
classified as likely false by the Bionano annotation
pipeline [34, 40].

Confidence and frequency filtration
To demonstrate the importance of frequency filtration
in identifying rare variants, a manual filtration was
performed using a 1% threshold for external databases
(DGV, DECIPHER and BNDB) and the internal cohort
database. A confidence threshold (0.5 for insertions and
deletions, 0.01 for inversions) was also applied. This
eliminated 89% of the variants, leaving a total of 1005
SVs, including 53 inv. variants and 952 indel_dup
(shown in top right pie chart, Fig. 3).

Inheritance annotation (Fig. 3, bottom right pie chart)
All inversion variants were inherited. Out of the 952
insertions, deletions and duplications, only 8 were de novo
(“indel_dup_denovo” tab), 794 found in both parents
(“indel_dup_both”), 68 in the mother only (“indel_dup_
mother”), and 82 in the father only (“indel_dup_father”).
These numbers can be used to evaluate pathogenicity of
the SVs. 150 SVs would be reported in the “indel_dup_
cmdHet” column (found in either the mother or father,
but not both), which can be manually inspected to identify
potential compound heterozygous SVs.

Fig. 2 nanotatoR annotates genes overlapping or near a SV: a The cartoon shows three hypothetical scenarios: one deletion in the region
upstream of Gene X (yellow) which may contain regulatory regions, indicated as solid purple in the reference genome (top) and lilac in the
patient’s genome (bottom); one insertion (green) into Gene Y (blue), and a complete deletion of Gene Z (coral in patient genome). RNA-Seq
reads are depicted as blue lines below the genes. b nanotatoR annotation snapshot: nanotatoR annotates the three variants with the overlapping
genes and percentage overlap, nearest genes upstream and downstream, distance to the breakpoints in kilobases, BNDB frequency, internal
frequency, overlap gene expression value (in transcripts per million or TPM), nearest genes expression in TPM and overlapping genes term from
NCBI databases
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SVs overlapping with the primary gene list
As these samples are those of healthy individuals, we
could not use a disease term to generate a gene list.
However, analysis of the genomes with OGM had
revealed a deletion variant affecting the UGT2B17 gene
in the son and the mother [41]. A 150 kb deletion on
chromosome 4q13.2 spanning the whole UGT2B17 gene
has been associated with osteoporosis [42]. To check
whether our tool can efficiently annotate the variant, we
used the term ‘osteoporosis’ to generate a primary gene
list. This yielded a list of over 307 genes of which only 4
had pathogenic or likely pathogenic variants in ClinVar,
highlighting the importance of this nanotatoR function
(Supplementary Table S2). The complete extracted gene
list can be used for gene discovery, while the pathogenic
list is most efficient to identify variants in genes known
to be associated with the proband’s phenotype. Note
that while UGT2B17 was accurately extracted into the
primary gene list by nanotatoR, as its association with
osteoporosis is reported in OMIM, it does not appear in

the list of genes with pathogenic variants, as no such
variant is currently reported in ClinVar.
169 SVs were found to be overlapping with the primary

gene list, and were shown in the “all_PG_OV” Tab.
A deletion in UGT2B17 gene is observed in both the

“indel_dup_mother” tab and the “all_PG_OV” tab, as
expected [41]. The SV overlaps with the UGT2B17 gene
and 4 pseudogenes UGT2B29P, AC147055.2, AC147055.3,
and AC147055.4 as illustrated in Figure S1.

Internal cohort frequency and zygosity calculations for the
UGT2B17 variant
To investigate the frequency of the variant in the 8-
sample internal cohort database, we first selected all var-
iants with within − 10 kb of start breakpoint and + 10 kb
of the end breakpoint (i.e. between hg19 genomic coor-
dinates chr4:69,362,091 and chr4:69,500,860). A total of
6 variants passed the filtration criteria (“GM24385_del_
totalData” tab in Table S3). Of these, 3 are from the
query family: one is the proband’s variant (all annotation

Fig. 3 Filtration and annotation of SV distribution in the NA24385 trio dataset: Out of the total 9387 variants found by SVcaller, 8804 passed the
nanotatoR filtration of “Present in self molecules” and “Pass chimeric score” conditions. Of these, 2787 were deletions (dark blue), 5837 were insertions
(light blue), 66 were duplications (grey), 114 were inversions (orange) and 0 were translocations (not shown), left pie chart. Note, nanotatoR outputs
deletions, insertions and duplications in a single excel sheet “indel_dup”. The number of variants was dramatically reduced after filtering for rare
variants and imposing a confidence threshold (top right pie chart). With a threshold of less than 1% internal frequency, DGV frequency, BNDB
frequency, and DECIPHER frequency and confidence thresholds of > 0.5 for INDELs, > 0.01 for inversions and > 0.1 for translocations, 1005 rare variants
remain. These were further categorized with nanotatoR by inheritance (bottom right pie chart). All 53 inversions were inherited. Of the 952 indel_dup
variants, only 8 were de novo, 794 are were identified as indel_dup_both (found in both mother and father), 68 are indel_dup_mother (found in only
the mother), and 82 are indel_dup_father. This annotation can be used to evaluate relevance of the variants to the condition studied
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shown in the “GM24385_Variant_UGT2B17” tab in
Table S3) and the other two are found in his mother. Of
the maternal variants, one has exactly same start and
end breakpoints as the proband’s. Bionano SVcaller also
called another variant in the mother with the same end
breakpoint, and a similar, but not identical, start break-
point. Both were retained as they have a size similarity >
90% with the proband’s variant. As described in
Methods section 1.2b, nanotatoR selects the variants that
pass size similarity and breakpoint criteria, and reports
the zygosity for each in the parents (“GM24385_del_ex-
ample_Zygosity” tab in Table S3).
In addition to the family, the variant was found in two

other samples of the internal cohort. The first was
heterozygous, the second homozygous, so the total number
of alleles carrying the SV was counted as 3. As the internal
control cohort was composed of 8 samples, of which 3
were part of the Ashkenazi family, the total number of
alleles in the internal cohort was calculated as 10 = 2 x (8–
3), where 2 is for diploid genomes, 8 is the total number of
samples in the cohort and 3 is the number of related
individuals. The final internal frequency thus is (3/10)
*100 = 30% (for both filtered and unfiltered, as all variants
passed the quality filters). Note that the nanotatoR
annotation process has detected the erroneous duplicate
call made by SVcaller in sample NA12878, where two
variants with identical characteristics were called under two
different SVIndex numbers (rows 6&7, totalData tab, Table
S3). Only one is taken into account for internal frequency
calculation, as shown in Table S3, where tabs “GM24385_
del_example_filter” and “GM24385_del_example_unfilt”
show the samples used for the calculations.
Next, we calculated the filtered and unfiltered frequency

(Formula 2, Function 1.1d) of the deletion overlapping
UGT2B17 in the Bionano reference database. We identified
a total of 58 variants in BNDB (“GM24385_data_all” tab in
Supplementary Table S4). Of these 33 (“GM24385_data_
filtered” and “GM24385_data_unfiltered” tabs of
Supplementary Table S4) passed the nanotatoR default
filtration criteria and were used for frequency calculation.
Twelve were homozygotes and 21 heterozygotes for a total
number of variant alleles of 43. The total number of
samples in BNDB is 234, hence the variant frequency is
calculated as (43/468) *100 = 9.18%. (Note that, here too,
the number of variants was the same before and after
filtration, yielding the same frequency value).

Run times
The SMAPs were annotated on an Intel core i7–6700
CPU with 16 GB RAM, Windows 10 system. It took ~
15min to annotate the trio sample (Supplementary
Table S5 has run time for each of the functions
individually). The runtime for nanotatoR is dependent

on number of variants as well as network speed (for
gene_list_generation function).
To generate the primary gene list for the trio sample,

we downloaded the ClinVar and GTR databases, using
the downloadClinvar = TRUE and downloadGTR =
TRUE parameters in the gene_list_generation function.
The gene_list_generation function took ~ 2min to run
for the sample. The time for this function is dependent
on the number of input terms, as well as the
computational/internet bandwidth available to the user.
To make this process faster, the input parameters
removeGTR and removeClinvar can be switched to
FALSE; nanotatoR will then use the pre-downloaded
database files for subsequent runs. It is recommended to
download these databases periodically as they get up-
dated frequently.
All the other databases (OMIM, DGV, DECIPHER,

BNDB) must be downloaded manually from the database
websites or from the nanotatoR database GitHub page
(https://github.com/VilainLab/nanotatoRexternalDB). For
this example, the internal frequency database was built
based on a cohort of 8 samples (time ~ 10min). The time
taken for database creation depends on the user’s cohort
size.

Example II: Annotation of a control singleton dataset
labeled with several enzymes
We also investigated the OGM datasets available for the
sample NA12878 to test the annotation effectiveness of
nanotatoR on multi-enzyme labeling and integration of
RNA-Seq data. OGM data is available for three labeling
enzymes Nt.BspQI, Nb.BssSI and DLE1. The Nt.BspQI
and Nb.BssSI SMAP outputs were merged using
SVmerge. 10,087 and 6814 SVs were reported by SVcal-
ler for single enzyme (DLE1) and SVmerge output re-
spectively (Fig. 4).
SV annotation for a single enzyme took approximately

28 min and 24 min for SVmerge data output. The time
taken for each of the functions is reported in
Supplementary Table S5. Currently, the expression data
aggregation function takes the longest time as it extracts
each of the genes overlapping the SVs and finds the
corresponding expression values from the RNA-Seq
datasets. The run time for this function largely depends
on the number of called SVs and the number of genes
that overlap with them. The complete nanotatoR-anno-
tated output Excel files can be found in Supplementary
Tables S6 and S7 for DLE1 labeling and SVmerge
(Nt.BspQI/Nb.BssSI) respectively.
For DLE1 labeling, out of the 10,087 variants called by

the SVcaller, 9584 (~ 5%) remained after default
nanotatoR filtration (“Present in self molecules” and
“Pass chimeric score”, see Methods function 5) (Fig. 4a).
As for the trio genomes, the vast majority of called SVs
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were indels, with a similar number of inversions (110)
and zero translocations. Further breakdown of the indel_
dup tab reveals 3207 deletions, 6218 insertions, and 49
duplications (Fig. 4b; left panel). For dual-enzyme label-
ing, fewer variants were called in the SVmerge dataset
(6814), of which ~ 9% were filtered out by nanotatoR de-
fault filtration. Of the remaining 6201, 5982 are “indel_
dup”, 219 “inv”, 0 “trans” and 11 mismatches. Breakdown of
the indel SVs between deletions, insertions and duplications
is shown in Fig. 4b, right panel). Proportions of insertions
and deletions are similar in the two data sets, while the dual
enzyme labeling called more duplications and inversions
than single-enzyme labeling in this example.
To validate the efficiency of nanotatoR in identifying

genes overlapping with SVs for NA12878, we looked for
four previously published variants [43]. The 4 deletion
variants identified in the study overlapped GSTM1,
LCE3B, LCE3C, CR1 and SIGLEC14 genes. nanotatoR’s
automated pipeline was able to identify the same type of
variant (deletions) involving the same genes in both the

single enzyme and SVmerge datasets. SV breakpoints
reported in the original publication and in the nanotatoR-
annotated data sets are shown in Supplementary Table S8;
SV type and gene names are highlighted in the all_PG_
OV tab in Tables S6 (DLE) and S7 (SVmerge).

Example III: Duchenne muscular dystrophy cohort
We have previously published validation of the OGM
technology to identify variants in the DMD gene in a
cohort of patients with Duchenne muscular dystrophy
[27]. We used the same cohort to test the nanotatoR
annotation pipeline. The gene_list_generation function,
using “Duchenne muscular dystrophy” as input for the
rentrez tool, used at high stringency, i.e. selecting only
genes with pathogenic or likely pathogenic variants in
ClinVar, yielded only one gene as expected for this
monogenic disorder. Table 1 shows that all of the
previously identified variants in DMD cases were
correctly annotated. Each of these types of variants was
placed in the correct final Excel output tab with

Fig. 4 Variant distribution for the singleton NA12878 sample. a Unfiltered and filtered variants distribution in DLE and SVmerge datasets: The total
number of unfiltered variants for NA12878 DLE are 10,087, out of which 9584 variants are filtered using nanotatoR criteria (found in self
molecules, passed chimeric score threshold). For NA12878 SVmerge, out of 6814 variants, 6201 pass the filtration. Mismatches were not
considered in this analysis but are shown in Table S7. b SV distribution in the NA12878 DLE and SVmerge filtered datasets: Deletions (dark blue),
insertions (light blue), duplications (grey) and inversions (orange) numbers are as shown in the pie charts. Bottom table shows distribution of SVs
by type in percentages. For DLE, the majority of the identified SVs were insertions (64.9%), followed by deletions (33.5%), inversions (1.1%) and
finally duplications (0.5%). While the total number of variants called is different between DLE and SVmerge, a similar pattern is seen in the
SVmerge dataset. Many more duplications and inversions were called in the dual labeling than single DLE labeling method
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corresponding frequencies, gene overlap and maternal
carrier status. (Annotation for all samples is shown in
Supplementary Table S9; columns used to create Table
1 are highlighted).
Note that, as most callers, Bionano SVcaller currently

identifies zygosity for X and Y chromosome variants in
an XY individual as homozygous rather than
hemizygous, which we corrected in Table 1. As a result
of the erroneous input, internal frequency is currently
overestimated for variants on the X chromosome.
Frequency calculations for SVs on the Y chromosome
are not affected.
Using nanotatoR, we were able to automate steps that

previously had to be taken manually to identify the
pathogenic SVs in the DMD gene in the data sets:
navigation to X chromosome location of the DMD gene,
selection of the type of the SV (deletion/insertion, etc..),
filtration by frequency, and curation of gene pathogenicity.
In addition to the previously reported SVs, with the help
of nanotatoR, we identified an additional deletion of
unknown significance in sample CDMD_1159 that had
previously been missed.

Conclusions
Structural variants play a major role in various genetic
diseases (reviewed in [44]). Due to the technical
limitations of short-read-based genome sequencing and
microarray techniques, identification of SVs is challenging.
Introduction of optical genome mapping and long-read-
based technologies promises to advance the field of SV
identification. Although there are tools available for anno-
tation of SVs (AnnotSV [45], Annovar [46]), they do not
take into account OGM criteria (such as self molecules or
chimeric score) for filtration. This has prompted the de-
velopment of nanotatoR to help researchers analyze OGM
SV datasets, with high efficiency and precision. The anno-
tation pipelines available for the OGM and LRS data are

currently suboptimal, with limited user-defined parame-
ters for frequency calculations in external databases, inter-
section with gene expression datasets, or filtration
through primary gene lists. These functions are critical for
clinical applications to evaluate SV pathogenicity. nanota-
toR, currently takes as input the SMAP/TXT variant file,
databases (internal and/or external), terms list, gene loca-
tion bed files, and expression values, to provide the user
with comprehensive SV annotations.
The field of genome-wide structural variation identifi-

cation is rapidly advancing with LRS and OGM con-
stantly evolving. However, currently both LRS and OGM
technologies have limitations in identification of SNVs,
large SVs > 5 kb (LRS) and small SVs < 1 kb (OGM) [17].
A combination of these various methods on the same
genome will likely be necessary for optimal resolution
and accuracy of SV detection [17, 47], which will require
the design of integrated platforms able to detect and
classify variants using multiple types of data sets. Simi-
larly, accurate determination of the pathogenicity of SVs
requires integration of multiple data sets (e.g. OGM and
gene expression) as well as tools capable of annotating
these various types of data sets. nanotatoR has this func-
tionality and was able to considerably reduce analysis
time compared to manual filtration of many steps. Fu-
ture development of nanotatoR will be focused around
adoption of variant annotation file (VCF) format as input
files, support for SV calls produced by LRS/SRS tech-
nologies, additional population frequency databases such
as gnomAD [48], integration of gene regulatory informa-
tion in the form of CHIP-seq and microRNA sequencing
data, and implementation of automated SV classification
based on ACMG guidelines [49]. We will also imple-
ment functions for annotation of somatic SVs for better
variant prioritization during analysis. In addition, we
plan to design a graphical interface for easy access and
wider adoption.

Table 1 Summary of nanotatoR annotation results of Duchenne muscular dystrophy patient cohort

Sample ID Overlap Gene Variant Type Clinical Significance Zygosity Internal Frequency DGV/BNDB Frequency

CDMD1003_P DMD Deletion Pathogenic Hemizygous 0 0/0

CDMD1155_P DMD Deletion Pathogenic Hemizygous 0 0/0

CDMD1156_P DMD Deletion Pathogenic Hemizygous 0 0/0

CDMD1159_P DMD
DMD

Deletion Deletion Pathogenic
Unknown

Hemizygous
Hemizygous

0
0

0/0
0/0

CDMD1131_P
CDMD1132_M

DMD Deletion Pathogenic
Carrier

Hemizygous
Heterozygous

22% 0/0

CDMD1157_P
CDMD1158_M

DMD Deletion Pathogenic
Non-Carrier

Hemizygous
n/a

11% 0/0

CDMD1163_P
CDMD1164_M

DMD Insertion Pathogenic
Carrier

Hemizygous
Heterozygous

0 0/0

CDMD1187_P DMD Inversion Pathogenic Hemizygous 0 0/0

Using nanotatoR we annotated variants that overlapped the DMD gene, evaluated the zygosity and calculated the internal (cohort size 11 samples) and external
(DGV/BNDB) frequencies. The details of the variants can be found in Barseghyan et.al. 2017 [27]
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Availability and requirements
Project name: nanotatoR
Project home page: https://github.com/VilainLab/nanotatoR
Operating system(s): Platform-independent
Programming language: R (version > = 3.6)
Other requirements: Rtools (https://cran.r-project.org/

bin/windows/Rtools/)
License: Modified BSD 3 (Berkley Software Distribution

version 3)
Any restrictions to use by non-academics: license

needed
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The online version contains supplementary material available at https://doi.
org/10.1186/s12864-020-07182-w.

Additional file 1: Figure S1. Deletion variant on chromosome 4
identified in sample NA24385: Cartoon of the chromosome 4 region
deleted in the NA24385 genome (a) and screenshot of the matching
UCSC genome browser output (b). Breakpoints coordinates are shown as
calculated by SVcaller in (a) and after including a method-average break-
point error of +/− 3 kb [69,369,091 and 69,493,860] in (b). This variant de-
letes the entirety of coding gene UGT2B17, as well as the 3 pseudogenes
UGT2B29P, AC147055.2 (or RP11-1267H10.2) and AC147055.4 (or RP11-
1267H10.1), and ~ 63% of pseudogene AC147055.3. c) nanotatoR snap-
shot: The nanotatoR output indicates the overlap genes, the strand from
which they are transcribed, and the percentage of the gene length over-
lapping with the deletion. It also displays the frequency (expressed as
percentage) of the variant in the internal and BNDB databases, and the
overlapping gene term with database info (osteoporosis found in the
OMIM database).

Additional file 2: Supplementary Table S1. NA24385 nanotatoR-
annotated structural variant results. Content of the various tabs is
detailed in the first tab (“LegendS1”) of the Excel workbook. SVs reported
in the indel, inv., and trans tabs have undergone the default nanotatoR
filtration (found in self molecules, passed chimeric score threshold).
Columns in each sheet of the workbook are either a direct output of
SVcaller or appended by nanotatoR, as indicated in column 3 of the
table. Details about SVcaller columns are available at https://
bionanogenomics.com/wp-content/uploads/2017/03/30041-SMAP-File-
Format-Specification-Sheet.pdf.

Additional file 3: Supplementary Table S2. Primary gene list
generated for NA24385 (GM24385) dataset filtration using the term
Osteoporosis. A total of 307 genes were extracted (the UGT2B17 gene is
highlighted). Columns show: Genes: Primary gene symbols. Terms: Query
term associated with each gene. Each cell shows the gene symbol and,
between parentheses, the query term and the database (Gene, OMIM,
GTR or ClinVar) from which each gene was extracted. Clinical
Significance: Only genes for which likely pathogenic or pathogenic
variants were found in ClinVar are displayed in this column. The
parentheses match the database order in column 2, displayed as (−, −,
Pathogenic/Likely Pathogenic) to indicate the information is from ClinVar
and not Gene or OMIM.

Additional file 4: Supplementary Table S3. Calculation of internal
frequency for the deletion variant overlapping UGT2B17 in sample
NA24385. Content of the tabs and column names is detailed in the first
tab (“LegendS3”) of the Excel workbook. The columns used to calculate
the filtered and unfiltered frequencies are highlighted in the
del_totalData tab.

Additional file 5: Supplementary Table S4. Calculation of BNDB
database frequency for the deletion variant overlapping UGT2B17 in
sample NA24385. Content of the tabs and column names is detailed in
the first tab (“LegendS4”) of the Excel workbook. The columns used to
calculate the filtered and unfiltered frequencies are highlighted in the
GM24385_data_all tab.

Additional file 6: Supplementary Table S5. Typical run times in
minutes for the various tasks for the control sample datasets. nanotatoR
functions are indicated in italics in Column 1. Processing times for the
Ashkenazi trio DLE labeling dataset (Example I) are shown in Column 1
(no RNA-Seq data was available for this sample). Processing times for the
singleton sample (Example II) DLE labeling and dual enzyme labeling
(SVmerge) are shown in columns 2 and 3 respectively.

Additional file 7: Supplementary Table S6. nanotatoR annotation of
structural variants in the DLE-labeled sample NA12878 dataset. Content
of the various tabs is detailed in the first tab (“LegendS6”) of the Excel
book. SVs reported in the indel, inv., and trans tabs have undergone the
default nanotatoR filtration (found in self molecules, passed chimeric
score threshold). Columns in each sheet of the workbook are either a dir-
ect output of SVcaller or appended by nanotatoR, as indicated in column
3 of the table. In the all_PG_OV tab, the cells containing the query genes
are highlighted in purple. Details about SVcaller columns are available at
https://bionanogenomics.com/wp-content/uploads/2017/03/30041-
SMAP-File-Format-Specification-Sheet.pdf

Additional file 8: Supplementary Table S7. nanotatoR annotation of
structural variants in the dual-labeled sample NA12878 dataset (SVmerge
output). Content of the various tabs is detailed in the first tab (“Leg-
endS7”) of the Excel book. SVs reported in the indel, inv., and trans tabs
have undergone the default nanotatoR filtration (found in self molecules,
passed chimeric score threshold). Columns in each sheet of the work-
book are either a direct output of SVcaller or appended by nanotatoR, as
indicated in column 3 of the table. In the all_PG_OV tab, the cells con-
taining the query genes are highlighted in purple. Details about SVcaller
columns are available at https://bionanogenomics.com/wp-content/up-
loads/2017/03/30041-SMAP-File-Format-Specification-Sheet.pdf

Additional file 9: Supplementary Table S8. Genes overlapping
deletion variants for NA12878. Chromosome and SV breakpoint start and
end are shown in: - NA12878 (Mak et.al. (2016) hg38 annotation):
Overlapping genes coordinates identified in the original paper by Mak
et al. 2016, with hg38 reference genome annotation. - NA12878 (Mak
et.al. (2016) hg19 liftOver): Overlapping genes coordinates identified in
the original paper by Mak et al. 2016, lifted over to hg19. - NA12878
(nanotatoR SVmerge annotation): Overlapping genes coordinates for
NA12878 labelled by BSPQI and BSSSI enzyme (SVmerge), as annotated
by nanotatoR. - NA12878 (nanotatoR DLE annotation): Overlapping genes
coordinates for NA12878 labelled by DLE1 enzyme (SVmerge), as
annotated by nanotatoR.

Additional file 10: Supplementary Table S9. Variant annotation for
DMD samples. Singleton samples CDMD_1003 and CDMD_1159 were
analyzed with single DLE labeling and are shown in the SingleLabel_Solo
tab. Singleton samples CDMD_1155, CDMD_1156, and CDMD_1187 were
analyzed with dual enzyme labeling and are shown in the
DualLabel_Solo tab. Mother proband dyads CDMD_1131, CDMD_1157,
and CDMD_1163 were analyzed with dual enzyme labeling and are
shown in the DualLabelDuo tab. The columns used for Table 1 are
highlighted. Columns in each sheet of the workbook are either a direct
output of SVcaller or appended by nanotatoR, as indicated in column 3
of the table in the first tab (“Legend S9”). Details about SVcaller columns
are available at https://bionanogenomics.com/wp-content/uploads/2017/
03/30041-SMAP-File-Format-Specification-Sheet.pdf.
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