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Differential gene expression analysis reveals
pathways important in early post-traumatic
osteoarthritis in an equine model
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Abstract

Background: Post-traumatic osteoarthritis (PTOA) is a common and significant problem in equine athletes. It is a
disease of the entire joint, with the synovium thought to be a key player in disease onset and progression due to
its role in inflammation. The development of effective tools for early diagnosis and treatment of PTOA remains an
elusive goal. Altered gene expression represents the earliest discernable disease-related change, and can provide
valuable information about disease pathogenesis and identify potential therapeutic targets. However, there is
limited work examining global gene expression changes in early disease. In this study, we quantified gene
expression changes in the synovium of osteoarthritis-affected joints using an equine metacarpophalangeal joint
(MCPJ) chip model of early PTOA. Synovial samples were collected arthroscopically from the MCPJ of 11 adult
horses before (preOA) and after (OA) surgical induction of osteoarthritis and from sham-operated joints. After
sequencing synovial RNA, Salmon was used to quasi-map reads and quantify transcript abundances. Differential
expression analysis with the limma-trend method used a fold-change cutoff of log2(1.1). Functional annotation was
performed with PANTHER at FDR < 0.05. Pathway and network analyses were performed in Reactome and STRING,
respectively.

Results: RNA was sequenced from 28 samples (6 preOA, 11 OA, 11 sham). “Sham” and “preOA” were not different
and were grouped. Three hundred ninety-seven genes were upregulated and 365 downregulated in OA synovium
compared to unaffected. Gene ontology (GO) terms related to extracellular matrix (ECM) organization, angiogenesis,
and cell signaling were overrepresented. There were 17 enriched pathways, involved in ECM turnover, protein
metabolism, and growth factor signaling. Network analysis revealed clusters of differentially expressed genes
involved in ECM organization, endothelial regulation, and cellular metabolism.

Conclusions: Enriched pathways and overrepresented GO terms reflected a state of high metabolic activity and
tissue turnover in OA-affected tissue, suggesting that the synovium may retain the capacity to support healing and
homeostasis in early disease. Limitations of this study include small sample size and capture of one point post-
injury. Differentially expressed genes within key pathways may represent potential diagnostic markers or therapeutic
targets for PTOA. Mechanistic validation of these findings is an important next step.

Keywords: Degenerative joint disease, Animal model, Synovium, Metacarpophalangeal joint, Osteochondral
fragment, RNAseq
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Background
Osteoarthritis (OA) is a chronic, degenerative disease of
joints that is characterized by pathology of the articular
cartilage, subchondral bone, and synovium. Gross lesions
typical of OA include cartilage fibrillation and erosions,
subchondral bone sclerosis, and synovitis [1]. The com-
plex interaction between these tissues and their relative
contribution to the onset and progression of idiopathic
OA is incompletely understood [1, 2]. However, in cases
of post-traumatic osteoarthritis (PTOA), an inciting
event (or events) is recognized that eventually leads to
clinical, radiographic, and histologic signs of disease [3].
It is widely recognized that OA is the most common
cause of chronic lameness in horses and places a signifi-
cant burden on the equine industry due to the cost of
treatment and loss of use of affected animals [4, 5]. The
general population prevalence of OA in horses has been
reported at 13.9% [6], although this markedly increases
with age [7]. However, a study of Thoroughbred race-
horses that died within 60 days of racing revealed that
33% had at least one full-thickness cartilage lesion in the
metacarpophalangeal joint, and that severity of cartilage
lesions strongly correlated with a musculoskeletal injury
leading to death [5]. The majority of horses in this study
were less than 3 years of age, emphasizing the import-
ance of PTOA in young equine athletes. Despite the im-
portance of this disease, the development of effective
tools for its early diagnosis and treatment remains an
elusive goal, in part due to a lack of knowledge regarding
the early progression of PTOA.
Altered gene expression represents the earliest dis-

cernable disease-related change, measurable before bio-
chemical markers of cartilage degradation, radiographic
changes, etc., and can provide valuable information
about disease pathogenesis as well as identify potential
therapeutic targets. However, to date, the majority of
studies examining global gene expression changes in
osteoarthritic joints compared to normal have used end-
stage diseased tissue [8–11], and therefore it is not
known if any of the reported differentially expressed
genes also play a role in early disease.
While cartilage lesions are traditionally considered the

hallmark of OA, the synovium is known to be a key
player in disease development and progression via its
role in inflammation [3, 12, 13]. In fact, evidence sug-
gests that pro-inflammatory mediators released by syno-
viocytes may be both a cause and consequence of
cartilage damage in OA, making the synovium a viable
target for therapeutic interventions [12]. Synovium also
offers an attractive option for tissue-based diagnostic
testing as it is easily collected via arthroscopy with min-
imal donor site morbidity. However, although histo-
logical changes have been described in experimentally-
induced [14] and naturally-occurring [12] OA, little is

known about how OA alters gene expression in syno-
vium. Existing reports of gene expression changes in
synovium at the time of surgical intervention after an in-
jury have specifically focused on inflammatory mediators
[15], but it is likely that genes involved in pathways
other than inflammation also play an important role in
PTOA. The aim of this work was to establish an ac-
curate profile of the earliest molecular events that
occur in the joint after the induction of PTOA in an
experimental equine model. This non-terminal meta-
carpophalangeal joint (MCPJ) chip model results in
mild, measurable morphological and histological
changes, and was specifically designed to recapitulate
the early stages of PTOA [16].

Results
Sequencing and clustering by multi-dimensional scaling
(MDS)
RNA of sufficient quantity and quality for sequencing
was extracted from 28 banked synovial samples (6
preOA, 11 OA, 11 sham). Sequencing yielded 15.7–29.4
million paired-end reads per sample (Additional file 1).
A total of 13,880 genes were expressed across all sam-
ples. After removal of surrogate variables, MDS showed
stratification on Dimension 1 between the OA samples
and the preOA and sham samples (Fig. 1). Sham and
preOA samples did not cluster separately and these data
were combined for all downstream analyses.

Differential expression (DE)
Initial DE analysis did not reveal any differences between
the preOA and sham samples; therefore, these were
combined into a single group, designated “non-affected”,
and compared to gene expression in the OA samples.
There were 762 genes DE (fold-change [FC] > |1.1|,
FDR < 0.05) between OA and non-affected samples
(Fig. 2, Additional file 2). Of these, 397 genes were up-
regulated in the OA samples, while 365 were downregu-
lated in the OA samples.

Functional annotation and pathway/network analysis
PANTHER reports a hierarchal organization of Gene
ontology (GO)-Slim terms overrepresented when com-
paring OA to non-affected samples. GO terms could be
assigned to 676 of the 762 DE genes. Among these, there
were a total of 56 overrepresented GO terms: 29 Bio-
logical Process terms falling within eight hierarchical
categories, 6 Molecular Function terms falling within
three hierarchical categories, and 21 Cellular Compo-
nent terms falling within eight hierarchical categories.
The terminal hierarchical overrepresented terms are
shown in Table 1.
Reactome assigned 450 of the 762 DE genes to 1360

pathways, of which 17 reached the designated level of
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statistical significance (false discovery rate [FDR] < 0.05)
(Table 2). Eleven of these enriched pathways fell gener-
ally into the category of extracellular matrix (ECM)
organization (“ECM organization”, “degradation of the
ECM”, “collagen degradation”, “ECM proteoglycans”,
“assembly of collagen fibrils and other multimeric struc-
tures”, “collagen formation”, “integrin cell surface inter-
actions”, “collagen biosynthesis and modifying enzymes”,
“collagen chain trimerization”, “non-integrin membrane-
ECM interactions”, “crosslinking of collagen fibrils”),
while four were related to protein metabolism (“O-glyco-
sylation of TSR domain-containing proteins”, “defective
B3GALTL causes Peters-plus syndrome”, “regulation of
insulin-like growth factor transport and uptake by
insulin-like growth factor binding proteins”, “post-trans-
lational protein phosphorylation”) (Fig. 3). For all path-
ways falling in these two broad categories, more than
75% of the DE genes were upregulated in the OA sam-
ples when compared to the non-affected samples (Add-
itional file 5). Enriched pathways relevant to ECM
organization were largely driven by upregulation of nu-
merous collagen sub-types and small extracellular matrix
proteins in the OA samples, as well as several matrix
metalloproteinases (MMPs) and ADAMTS (a disintegrin
and metalloproteinase with thrombospondin motif)

protein family members. MMPs, ADAMTS proteins,
and growth factors/growth factor receptors were prom-
inent drivers of the protein metabolism pathways. There
was substantial overlap of genes between enriched path-
ways. In fact, of the 84 unique DE genes assigned to the
17 significantly enriched pathways, only ten were found
only in a single pathway. Notably, while most DE genes
in the enriched pathways had a 1.5- to 3-fold expression
change between groups, MMP1, MMP9, and MMP13
exhibited much greater upregulation in the OA samples,
with 8.5-fold, 7-fold, and 12.7-fold increases in expres-
sion, respectively.
Of the 762 DE genes, 213 were assigned to one of 28

unique clusters by STRING using the Markov clustering
algorithm (Additional file 6). Nine of these clusters in-
cluded ten or more genes (Fig. 4). The two largest clusters
contained enough genes (33 and 27, respectively) to allow
GO term enrichment testing in PANTHER. Cluster 1 was
significantly enriched for biological process terms related
to endothelial regulation (cell signaling, regulation of
blood pressure and smooth muscle contraction), while
Cluster 2 was enriched for biological process terms related
to extracellular matrix organization and aminoglycan
metabolic processes. Functional annotation of the other
seven major clusters using PANTHER revealed functions

Fig. 1 Multi-dimensional scaling (MDS) plot showing clustering of samples based on normalized gene expression values (logCPM), with surrogate
variables (SVA) removed. OA = osteoarthritis samples, red; Sham = sham samples, blue, preOA = samples prior to induction of osteoarthritis, green.
Sham and preOA samples were combined for downstream analyses
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Fig. 2 Heatmap of 762 DE genes in 17 non-affected (combined sham and preOA) and 11 OA samples. A complete list of DE genes can be found
in Additional file 2
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related to cellular metabolism and homeostasis, vesicle
formation and transport, and angiogenesis. Cluster com-
position and functional annotation is shown in Table 3.

Discussion
Here we report differential expression of genes in an
equine model of early PTOA. There was a clear response
in synovial gene expression after disease induction when
compared to healthy synovium (both “preOA” and from
sham-operated joints). Within the 762 DE genes, over-
represented biological functions included those related
to angiogenesis, extracellular matrix organization, and
cell signaling. These functions were reflected in enriched
pathways, which included those involved in extracellular
matrix turnover, O-glycosylation of TSR domain-
containing proteins, and growth factor signaling. Simi-
larly, network and clustering analysis revealed major
clusters of DE genes involved in extracellular matrix
organization, endothelial regulation, synaptic vesicle for-
mation and transport, and cellular metabolism and
homeostasis. When considered together, these findings

suggest both expected catabolic activity and efforts at
healing and restoring homeostasis by the synovium in
early PTOA.
These results are in contrast to previously reported

gene expression data derived from end-stage disease.
Genes previously reported to be upregulated in late-
stage OA tissues (synovium, cartilage, and subchondral
bone) were enriched for pathways and processes related
to proteolysis, extracellular matrix disassembly, and col-
lagen catabolism, while downregulated genes were
enriched for pathways and processes related to cell pro-
liferation and cellular response to stimuli [9, 10, 17–22].
These differences may be due to the fact that late-stage
disease is dominated by gross tissue remodeling and
chronic inflammation, while early disease is more likely
to reflect initial responses to injury.
There are relatively few reports examining synovial

gene expression in naturally-occurring OA in any spe-
cies. Lambert et al. performed gene expression profiling
of synovial biopsy samples from human patients under-
going knee replacement [21]. When synovium graded as

Table 1 Overrepresented GO-Slim terms among DE genes

Genes in reference
list

Genes in analyzed
list

Fold
enrichment

Raw
p-value

FDR

GO-Slim Biological Process

Angiogenesis (GO:0001525) 30 8 8.28 1.84E-05 0.0025

Extracellular matrix organization (GO:0030198) 69 15 6.75 4.45E-08 2.66E-05

Cell morphogenesis (GO:0000902) 60 9 4.66 2.82E-04 0.023

Regulation of cell migration (GO:0030334) 70 9 3.99 7.79E-04 0.047

Regulation of cAMP-mediated signaling (GO:0043949) 118 12 3.16 7.76E-04 0.048

Transmembrane receptor protein tyrosine
kinase signaling pathway (GO:0007169)

197 18 2.84 1.48E-04 0.013

Cell adhesion (GO:0007155) 373 34 2.83 2.15E-07 6.43E-05

Actin cytoskeletal organization (GO:0030036) 179 16 2.78 4.26E-04 0.027

GO-Slim Molecular Function

Extracellular matrix structural constituent (GO:0005201) 53 12 7.03 6.82E-07 0.0002

Metalloendopeptidase activity (GO:0004222) 42 7 5.18 7.66E-04 0.043

Actin binding (GO:0003779) 148 20 4.20 3.11E-07 0.0002

GO-Slim Cellular Component

Collagen trimer (GO:0005581) 10 4 12.42 7.32E-04 0.015

Apical junction complex (GO:0043296) 11 4 11.29 9.73E-04 0.018

Collagen-containing extracellular matrix (GO:0062023) 33 10 9.41 6.16E-07 6.91E-05

Dendritic spine (GO:0043197) 27 5 5.75 2.91E-03 0.048

Supramolecular fiber (GO:0099512) 54 9 5.18 1.39E-04 0.0046

Actin cytoskeleton (GO:0015629) 225 25 3.45 3.28E-07 4.90E-05

Receptor complex (GO:0043235) 177 16 2.81 3.80E-04 0.0085

Integral component of plasma membrane (GO:0005887) 733 51 2.16 8.91E-07 7.99E-05

The reference list is Homo sapiens UniProt IDs and included 20,996 genes; the analyzed list is comprised of the UniProt IDs for 676 DE genes. FDR False discovery
rate (significance set at 0.05). A complete hierarchical list of overrepresented terms can be found in Additional file 3. These data are represented in graphical form
in Additional file 4
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grossly normal or reactive was compared to that graded
as inflamed, genes falling within pathways related to in-
flammation, ECM catabolism, and angiogenesis were up-
regulated, while those related to anabolism were
downregulated. Only 12 of the 58 genes reported differ-
entially expressed in that study were also differentially
expressed in our samples. However, notably, several
were regulated in opposite directions when compared to
our results, including ECM structural components
COL1A2, COL6A3, and ACAN (downregulated in
chronically inflamed synovium, but upregulated in our
OA samples) and inflammatory enzymes ALOX5 and
TBXAS1 (upregulated in chronically inflamed synovium,
but downregulated in our OA samples). More recently,
Zhu et al. used a co-expression network approach to
identify thirteen “hub genes” among genes differentially
expressed in human OA synovium when compared to
normal tissue [23]. These genes fell within pathways re-
lated to autophagy, apoptosis, phosphorylation, and in-
flammation, and none of them were found to be
differentially expressed in our samples. The lack of
consistency between our findings and those of these pre-
vious studies could be attributed to differences in meth-
odology (microarray versus RNAseq) or species (human
versus equine), but could reflect actual biological differ-
ences in disease stage, as both of these previous studies
were performed on tissue taken from joints with chronic
OA at the time of joint replacement.

The MMP family, as well as the related ADAMTS pro-
tein family and other matrix-degrading enzymes, have
long been associated with the onset and progression of
OA [9], although evidence suggests that some of these
proteins, including MMP-1, − 9, and − 13, may also play
a role in postnatal growth and development [24]. MMP-
13, in particular, is thought to play a central role in early
OA [25]. MMP-13 was found to be upregulated in cartil-
age from early naturally-occurring OA in humans [18]
as well as in cartilage and subchondral bone of rats as
early as 1 week post-surgery in induced OA models [26].
We found MMP-13 to be strongly upregulated in our
OA samples when compared to non-affected samples,
along with MMP-1 and MMP-9. Other MMPs and
ADAMTS were more modestly upregulated in the OA
samples. Interestingly, expression of MMP-13 in chon-
drocytes has recently been shown to be regulated by the
Notch signaling pathway via Runx2 [27], which is an es-
sential transcription factor for chondrocyte maturation.
In our samples, RUNX2 had a 1.8-fold higher expression
in the OA samples compared to the non-affected sam-
ples. Further, our DE gene set was enriched for a
RUNX2 regulatory pathway.
It should be acknowledged that although MMPs are

considered key players in the pathology of OA primarily
due to their catabolic effects on ECM components, they
also play an important role in normal tissue homeostasis,
as well as angiogenesis and wound healing [28]. Thus,

Table 2 Enriched pathways identified by Reactome among DE genes

Pathway Genes in reference list Genes in analyzed list P-value FDR

ECM organization (R-HSA-1474244) 329 63 2.70E-12 3.98E-09

Degradation of the ECM (R-HSA-1474228) 148 33 1.42E-08 1.05E-05

Collagen degradation (R-HSA-1442490) 69 21 4.32E-08 2.12E-05

ECM proteoglycans (R-HSA-3000178) 79 21 3.86E-07 1.42E-04

Assembly of collagen fibrils and other multimeric structures
(R-HSA-2022090)

67 19 5.32E-07 1.56E-04

Collagen formation (R-HSA-1474290) 104 24 7.12E-07 1.74E-04

Integrin cell surface interactions (R-HSA-216083) 86 21 1.46E-06 3.06E-04

Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 76 19 3.25E-06 5.99E-04

Collagen chain trimerization (R-HSA-8948216) 44 14 4.50E-06 7.34E-04

O-glycosylation of TSR domain-containing proteins (R-HSA-5173214) 41 13 1.01E-05 0.001

Non-integrin membrane-ECM interactions (R-HSA-3000171) 61 16 1.06E-05 0.001

Crosslinking of collagen fibrils (R-HSA-2243919) 24 9 6.58E-05 0.008

Defective B3GALTL causes Peters-plus syndrome (R-HSA-5083635) 39 11 1.32E-04 0.015

Regulation of Insulin-like Growth Factor transport and uptake by
Insulin-like Growth Factor binding proteins (R-HSA-381426)

127 22 1.43E-04 0.015

Post-translational protein phosphorylation (R-HSA-8957275) 109 19 3.66E-04 0.036

Phospholipase C-mediated cascade; FGFR2 (R-HSA-5654221) 25 8 4.71E-04 0.043

RUNX2 regulates genes involved in cell migration (R-HSA-8941332) 14 6 5.40E-04 0.046

FDR False discovery rate (significance set at 0.05), ECM Extracellular matrix, R-HSA-XXX Reactome pathway identifiers
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Fig. 3 Networks of enriched pathways for extracellular matrix organization and protein metabolism identified by Reactome among DE genes. A
complete list genes within these pathways can be found in Additional file 5

Fig. 4 Clustering of DE genes using the MCL algorithm in STRING. Clusters with ten or more genes that were functionally annotated (Table 3) are
circled and numbered. For clarity, DE genes that did not cluster with at least one other gene are not shown
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the ratio of these molecules to their tissue inhibitors
(TIMPs) may be more indicative of the balance between
catabolism and anabolism than the absolute expression
of MMPs [28]. TIMP expression has been reported in
synovium [9], but was not differentially expressed in our
samples. Although expression of TIMP was not elevated,
evidence of anabolic activity in our OA samples was
supported by enrichment in our DE gene set of an
insulin-like growth factor (IGF-1) regulatory pathway,
with IGF-1 and several of its binding proteins upregu-
lated in our OA samples compared to unaffected tissue.
IGF-1 is considered a key player in supporting cartilage
growth and development, including enhancement of
ECM synthesis [29].
A unique aspect of the equine model of PTOA used in

the present study is that it does not cause substantial
biomechanical instability of the joint, thus resulting in
mild pathology. This is in contrast to many commonly
used animal models across species, which destabilize the
stifle via transection of the cruciate ligament and/or
medial meniscus. Joint destabilization results in a rapid
onset and progression of disease. For example, in mouse
models utilizing anterior cruciate ligament transection
(ACLT) alone or in combination with partial resection
of the medial meniscus, both marked gene expression
changes in articular cartilage and subchondral bone and
histologic evidence of cartilage surface damage and pro-
teoglycan loss were noted only 1 week after surgery, and
by 6 weeks post-operatively significant macroscopic
damage was evident [26, 30]. This short time course is

useful from a research perspective, but does not accur-
ately reflect clinical disease. It is of note that our syn-
ovial gene expression findings at 16 weeks post-
operatively were very similar to those reported recently
by Ayturk et al. in a minipig ACLT model 5–14 days
post-operatively [31]. These similarities include upregu-
lation of aggrecan, MMP 1 and 9, ADAMTS16, and car-
tilage oligomeric matrix protein (COMP) and
downregulation of the fibronectin-binding protein myo-
cilin and the ECM protein vitrin. A slower course of dis-
ease onset and progression may be beneficial when
evaluating novel diagnostics and therapeutic interven-
tions for early PTOA.
Our study has a few limitations. There was a relatively

small number of samples, particularly in the preOA
group in which some samples were lost. However, this
was offset by the availability of paired sham samples
from all individuals, which allowed creation of a larger
“non-affected” sample set that was used in all analyses,
and the use of each horse as its own control. Another
limitation is that our gene expression data captures only
a single time point in the course of disease post-injury.
Ideally, samples would be collected at multiple points to
demonstrate changes over time and to determine
whether (and when) the catabolic response to injury has
overwhelmed the tissue’s anabolic response. The ability
to perform repeated sampling from the same individual
is a major advantage of this equine model and could be
done in future work. Paired cartilage biopsies could also
be collected in the region of the injury to confirm that

Table 3 Clusters identified in STRING among DE genes

Cluster Genes Functional Annotation

1 TBXA2R, FZD6, GPER1, GPSM2, CD247, CACNA1D, PTH2R, GPR68, S1PR3, ADRA1B, CYSL
TR2, QRFPR, NTS, GNA15, CD8A, PRKAR1B, ADCY5, MC4R, GPR31, PTGER3, GNGT2, GPR4,
LAT, DRD2, ADCY7, HTR1D, ADRA1D, VIPR1, EDNRA, CARD11, APLNR, PRKCQ, GNAO1

Smooth muscle contraction, blood pressure
regulation, cell signaling

2 ANGPT1, B3GNT3, COMP, UST, EPHB4, LRMP, MMP9, B4GALT1, CHST1, MMP11, TNFAIP6,
CHIT1, CHST2, TNN, TEK, MMP2, ACAN, DCN, MMP16, B3GALNT1, NID1, CNN2, MMP13,
CTSH, QPCT, MMP1, MMP3

Extracellular matrix organization, aminoglycan
metabolism

3 IGF1, IGFBP7, PRSS23, IGFBP5, ALB, ABCA7, VWF, DMP1, SERPINF2, IL6, IGFBP4, SPARC,
GRB10, LAMB1, LAMA2, ACTN1, STC2, APOA1

Protein and growth factor binding, signaling and
structural receptors

4 P4HA3, COL4A1, COL5A1, COL1A2, COL6A6, COL1A1, COL6A3, COL23A1, COL9A2,
PCOLCE2, COL6A5, FLT4, COL12A1, PDGFB, SERPINH1, COL4A4, COL4A2

Structural growth and development, collagen and
extracellular matrix organization

5 GSN, SNAP91, SH3GL3, SH3GL2, BIN2, SYNJ2, PTEN, ARRB2, DAB2, TRIP10, GJA1, HSPH1,
AMPH, HSPA8, RPS6KA1, DNM1

Vesicle formation and transport, response to cell
stimulus

6 DES, MYLK, ACTA2, ITGB7, TNNC2, CALD1, TNNI3, TPM1, ACTG2, MYH11, TPM2, ITGA1,
TPM4

Cytoskeletal organization

7 CLEC12A, FCER1G, CD93, DYNLL1, ANK3, CD53, CHRNB4, KIF1A, FRMPD3, KLC3, SPTB,
ATP8B4

Signal transduction and cellular component
localization

8 RDH12, ALDH1A3, CDO1, AOC3, ALDH1A1, GAD2, ABAT, ALDH1A2, AOX1, GGT7,
SDR16C5

Cellular metabolic processes and response to cell
stimulus

9 ADAMTS18, ADAMTS15, ADAMTS12, SBSPON, THBS2, ADAMTS9, SPON2, THBS1, ADAM
TS16, THSD4

Angiogenesis

Functional annotation determined by GO-Slim Biological Process terms in PANTHER. Cluster numbers correspond to those shown in Fig. 4. A complete list of
annotated clusters can be found in Additional file 6
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gene expression changes in synovium accurately reflect
global joint health rather than tissue-specific inflamma-
tion, although this supposition is already supported by
work showing correlation between expression of MMPs
and ADAMTS in synovium and cartilage from human
patients with naturally-occurring OA [9]. Finally, there
are inherent limitations in our approach of functional
annotation and pathway/network analysis. Gene ontol-
ogy and pathway assignments are often based on text-
mining, which limits annotation to published
information about gene-gene interactions, and may miss
novel interactions. We attempted to address this limita-
tion by eliminating textmining alone as a source of in-
formation for our STRING network analysis, but still
may have missed biologically relevant interactions. Fur-
ther, many DE genes fall within multiple functional an-
notation terms and pathways, which can complicate
interpretation of these findings. It is possible that some
of our overrepresented GO terms and enriched pathways
were identified by chance, although our findings are
consistent with other published literature in animal
models of OA. Validation of tissue gene expression via
quantitative polymerase chain reaction (qPCR) in an in-
dependent sample set as well as mechanistic investiga-
tions into the roles of differentially expressed genes in
the pathogenesis of disease would be important next
steps towards establishing the impact of our findings.

Conclusions
Differential gene expression analysis in an equine osteo-
chondral fragment model of PTOA revealed numerous
pathways that may be involved in the onset and early
progression of disease, reflecting a state of high meta-
bolic activity and tissue turnover. These include ex-
pected pathways related to ECM organization, but also
angiogenesis and growth factor signaling. This suggests
that the synovium may retain the capacity to support
healing and homeostasis in early disease, a finding sup-
ported by other recent work in a large animal model
[31], although further validation to confirm these find-
ings will be an important next step. This model may be
a valuable tool in the investigation of novel diagnostic
and therapeutic interventions for the early stages of this
economically important disease.

Methods
Animal model
This work used banked synovial tissue samples that were
collected from 11 adult horses during the course of a
previously published study (live animal work for that
previous study was carried out with approval from the
Institutional Animal Care and Use Committee at the
University of Minnesota, protocol #1002A78195) [16].
As described in that study, the experimental cohort was

comprised of six female and five castrated male Quarter
Horses (mean age of 5.6 ± 1.6 years), all of which were
adopted out according to University protocol at the end
of the study period. The model has previously been de-
scribed [16]; however, briefly, an osteochondral fragment
was created in one randomly chosen MCPJ at the prox-
imal dorsomedial aspect of the first phalanx. The frag-
ment was replaced in the fragment bed after creation so
that subchondral bone was not exposed to the opposing
cartilage surface. The opposite MCPJ was sham-
operated. After a 2 week recovery period, the horses
were treadmill-exercised for 14 weeks and then the
osteochondral fragment was removed (16 weeks after
creation). Synovial tissue samples were collected arthros-
copically from the MCPJ before (preOA) and 16 weeks
after (OA) experimental induction of OA as well as from
the sham-operated joints (sham) [16]. Specifically, syno-
vium was collected from the dorsomedial and dorsolat-
eral aspects of the MCPJ approximately 1 cm proximal
to the medial/lateral dorsoproximal eminences of the
first phalanx. Synovium samples were placed in RNAla-
ter (Qiagen, Valencia, CA) and stored at − 80 °C until
further processing.
Clinical, radiographic, histologic, and arthroscopic

characterization of the disease induced by this MCPJ
osteochondral fragment model has been extensively de-
scribed in the previously published work by Boyce et al.
[16]. However, a summary of these findings is relevant
to help contextualize the results of the current study. In-
jured (OA) joints had higher effusion scores than did
preOA or sham joints (which were not different from
each other). A transient lameness was observed in OA
joints that resolved by 16 weeks, although a positive re-
sponse to MCPJ flexion was persistent. Total
radiographic scores and enthesiophyte scores were sig-
nificantly higher in OA joints than preOA or sham joints
(which were not different from each other), although
radiographic changes were subjectively mild. Athro-
scopic scores were higher in OA joints than in preOA or
sham joints (which were not different from each other),
and this was primarily attributable to the presence of
cartilage wear lines opposite the osteochondral fragment.
Total histologic scores for synovium were higher in the
OA joints than in preOA or sham joints (which were
not different from each other), and this was primarily at-
tributable to an increase in vascularity. Collectively,
these changes were consistent with early PTOA.

RNA extraction and sequencing
Frozen samples were crushed to powder with a mortar
and pestle and placed in tubes containing ceramic beads
(Precellys® 2 ml Hard Tissue Homogenizing Ceramic
Beads CK28, Cayman Chemical, Ann Arbor, MI) and
TRIzol reagent (Invitrogen, Carlsbad, CA). Mechanical
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homogenization was performed for cell lysis (Precellys®
Minilys, Bertin Corp., Rockville, MD) prior to RNA ex-
traction on spin columns using the RNeasy Micro Kit
(Qiagen, Valencia, CA) per manufacturer instructions.
RNA concentration was measured using a NanoDrop
2000 spectrophotometer (ThermoFisher Scientific, Wal-
tham, MA), with 260/280 absorbance ratio evaluated for
evidence of contamination. Five preOA samples did not
have RNA of sufficient quantity and quality for sequen-
cing and were lost to further analysis, resulting in a total
of 28 samples. These samples were checked for RNA
quality number (RQN) on an AATI Fragment Analyzer
(Advanced Analytical Technologies, Inc., Ames, IA)
(Additional file 1). RNAseq libraries were prepared with
the TruSeq Stranded mRNAseq Sample Prep Kit (Illu-
mina, San Diego, CA). The libraries were quantitated by
qPCR and sequenced (100 base-pair, paired-end) on
three lanes for 101 cycles from each end of the frag-
ments on an Illumina HiSeq 4000 using a HiSeq 4000
sequencing kit version 1 (Illumina, San Diego, CA) at
the University of Illinois Roy J Carver Biotechnology
Center. Fastq files were generated and demultiplexed
with the bcl2fastq v2.20 Conversion Software (Illumina,
San Diego, CA). RNA sequences have been deposited
into the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GSE144031).

Data analysis

Alignment, gene level quantification, and surrogate
variable analysis Sequence reads were quality checked
using fastQC (Barbraham Bioinformatics, Cambridge, UK;
www.bioinformatics.barbraham.ac.uk/projects/fastqc/), then
adaptors were trimmed with Trimmomatic [32], and the re-
sults inspected with multiQC [33]. Quasi-mapping to NCBI’s
EquCab3.0 reference genome (Annotation Release 103) was
performed with Salmon [34] (version 0.11.3) with the --vali-
dateMappings, --rangeFactorizationBins 4, --gcbias, and
--seqbias options enabled. Transcript aggregation at the gene
level was performed with tximport [35].
Of the 29,196 genes identified in EquCab3.0, 15,177

genes were expressed in the synovial tissue at a level of
at least 1 count per million (cpm) in six samples, which
corresponded to the smallest group of samples (preOA).
These gene counts were retained, while genes with lower
abundance were filtered out. TMM normalization was
performed for these 15,177 genes with edgeR [36] using
the ‘cpm’ function (prior.count = 3) on log2-based counts
per million (logCPM) transformed count values (Add-
itional file 7). In order to account for unmodeled con-
founders, surrogate variable analysis (SVA) [37–39] was
performed utilizing the R package sva [40]. SVA allows
removal of unwanted sources of biologic or technical
variation while protecting the contrasts due to the

primary variable of interest in the model (in this case,
OA versus non-affected samples). This estimated eight
continuous quantitative variables that were utilized in
downstream differential expression analysis as covariates.
The surrogate variable effects were also removed from
normalized logCPM values for the purpose of
visualization (Additional file 8).

Differential expression testing The difference in li-
brary sizes between the smallest and largest was approxi-
mately 2-fold, so the limma-trend method [41, 42] was
selected to robustly model differential expression (DE)
comparing the three treatment groups (preOA, OA,
sham) plus the eight surrogate variables. Limma-trend is
similar to the more popular limma-voom but performs
as well or better than limma-voom if library sizes are
less than three-fold different between samples [41]. Fur-
ther ‘treat’ testing [43], implemented within the limma
package, was performed in order to simultaneously test
for significance relative to a biologically meaningful
threshold, set at log2(1.1)-fold change. The false discov-
ery rate (FDR) [44] was calculated to correct for multiple
testing using a significance level of q < 0.05.
Initially, three groups of interest were identified:

preOA, OA, and sham. DE analysis as described revealed
no DE genes between the preOA and sham groups.
Therefore, the analysis was repeated by combining the
preOA and sham samples, then comparing the 17 sam-
ples now designated “non-affected” to the 11 affected
OA samples.

Functional annotation and pathway analysis Annota-
tion information (gene symbol, gene name, and Entrez
gene ID) for each gene was collected using Bioconduc-
tor’s [45] AnnotationHub [46] web resource. Entrez gene
IDs were converted to FASTA protein sequences using
NCBI’s “Batch Entrez” web resource (https://www.ncbi.
nlm.nih.gov/sites/batchentrez), then input into the egg-
NOG database [47] to find consensus orthologues across
species, particularly for EquCab3.0 genes that have not
yet been manually curated by NCBI. UniProt gene IDs
could then be assigned for further functional annotation
analysis.
DE genes were input into PANTHER [48] (version

14.1) for gene ontogeny (GO) assignment. The PANT
HER Overrepresentation Test was performed to identify
enriched GO-Slim terms for molecular function, bio-
logical process, and cellular component within the gene
set [49]. For all tests, a Fisher’s exact test with FDR cor-
rection was used, with significance set at FDR p < 0.05.
Pathway analysis of DE genes was performed using the

Reactome Pathway Knowledgebase [50]. This program
employs a hypergeometric test, correcting the resultant
probability score for FDR, for which significance was set

McCoy et al. BMC Genomics          (2020) 21:843 Page 10 of 12

http://www.bioinformatics.barbraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/sites/batchentrez
https://www.ncbi.nlm.nih.gov/sites/batchentrez


at p < 0.05. As an alternative approach to network ana-
lysis, STRING v11 [51] was used to perform gene clus-
tering with a Markov clustering (MCL) algorithm with a
minimum required interaction score of 0.9 and the infla-
tion factor set at 1.4. Clusters containing at least 10
genes were functionally annotated with GO terms using
PANTHER.
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