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Abstract

Background: Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house
over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of
DNA variations is an important step in the efficient use of these resources. While technologies have improved and
costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known
for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple
samples from an accession need to be evaluated to recover available alleles.

To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal
rye (Secale cereale L,).

Results: Using the amplicon sequencing approach 95 rye accessions of different improvement status and
worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for
sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed
quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were
recovered including those found only in a low percentage of seed.

Conclusions: We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity,
probing allele diversity, and recovering previously hidden variation.

A large extent of within-population heterogeneity revealed in the study provides an important point for consideration
during rye germplasm conservation and utilization efforts.
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Background

Plants can be made more resilient, yields stabilized, and
nutritional components enhanced through selection and
combination of gene variants that control these traits.
Crop improvement is therefore dependent on the exist-
ence of genetic variability for the trait in question. For
the past 10,000 years humans have been selecting and
combining genetic variants to improve crops. However,
most of the history of crop development was carried out
without a knowledge of genetics or DNA, and thus mod-
ern cultivars have a relatively narrow genetic base,
resulting from bottleneck-like effects of domestication
and breeding practices [1-3]. Therefore, the allelic vari-
ability existing within contemporary cultivars or breed-
ing programs may be insufficient for successful
identification of gene variants for satisfactory productiv-
ity and resilience of the crop.

Useful alleles conferring important traits that have
been lost in modern cultivars may still exist in nature.
Plant genetic resources (PGR), such as landraces and
wild relatives of crop plants, possess a much higher gen-
etic diversity. While not high yielding and having often
undesirable agronomic characteristics, they were shown
to contain gene variants that can improve performance
of successful modern cultivars [4—7].

Luckily, the value of PGR as a reservoir of gene vari-
ants was recognised over a hundred years ago [8] and
nowadays there are over 1700 ex situ germplasm collec-
tions worldwide, maintaining about 7.4 million acces-
sions. Approximately 62% of these accessions are
landraces and wild species [9]. Unfortunately, in most
cases little is known about the extent and structure of
genetic diversity within a given collection. The available
data is often limited to passport information, and some
phenotypic measurements or DNA marker-based genetic
diversity assessment for a subset of accessions. Such in-
formation is not sufficient to make an informed choice
of PGR for inclusion into a breeding program. Therefore
the utilisation of primitive, exotic germplasm in crop im-
provement is limited [5, 9, 10].

To fully profit from the allelic variation of PGR,
methods for efficient and reliable screening of hundreds
of accessions to discover useful gene variants are needed.
Rapid development of next generation sequencing
(NGS) technologies resulted in the establishment of vari-
ous approaches, which can be used for high-throughput
assessment of genic variation within gene sequences
such as whole genome resequencing (WGS) [11-13] and
exome capture [14—16]. Unfortunately, these approaches
are not yet applied in many species owing to factors in-
cluding genome size, polyploidy, and associated costs of
sequencing and capture probe development. While a fu-
ture can be envisioned where comprehensive genomic
data is available for every accession of every important
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crop, the current state of technology and funding means
that material is prioritized, and compromises made. In-
sofar as evaluation of WGS data provides information
useful for understanding population genetics and evolu-
tion, it is expected that only a small fraction of base
pairs of a genome are controlling key agronomic traits
[17]. Targeting candidate genes and their regulatory ele-
ments provides a tremendous reduction in data col-
lected. Indeed, many studies have revealed quantitative
trait loci and associated candidate genes that can be used
to identify orthologous sequences in other plants [18].
An alternative to whole genome or exome capture se-
quencing is amplicon sequencing. In this approach, se-
lected genomic regions are first amplified by PCR and
then subjected to massively parallel sequencing. Com-
pared to WGS or exome capture, amplicon approaches
allow acquisition of a much higher coverage of the se-
lected target bases pairs at a lower sequencing cost. This
is because the total yield of the sequencing reaction, in
terms of raw bases, is distributed to fewer unique bases
of each sample in the pool (e.g. [19]). One application of
amplicon sequencing is the simultaneous genotyping of
hundreds of unique samples independently by employing
strategies to barcode, or index, each sample uniquely
[20]. In addition to this approach, the high sensitivity of
current sequencing technologies enables “ultra deep”
methods whereby nucleotide variants can be identified
in samples containing pools of mixed genotypes. One
example is the detection of rare somatic mutations in
human samples [21]. Another example is the use of
amplicon sequencing to measure intrahost virus diver-
sity. Researchers showed that a rare Zika virus variant
could be detected if present at >3% in a mixed sample
when sequencing coverage was at least 400x [22]. In
plants, experiments can be designed to discover rare nu-
cleotide variants present at very low frequencies by
screening large populations where genomic DNA has
been pooled prior to PCR amplification and sequencing.
Screening throughputs are increased and assay costs are
reduced, making screening thousands of samples prac-
tical. This has been used for recovery of induced point
mutations in TILLING by Sequencing assays [23]. Here,
genomic DNAs from different lines harboring induced
mutations are pooled, subjected to target-specific PCR
and the PCR products are then pooled and sequenced.
The method has been used to recover rare mutations in
genomic DNA samples pooled from 64 to 256 fold.
These studies suggest that variant calling accuracy is im-
proved when using multiple variant calling algorithms
[23-26]. The approach has been adapted for recovery of
natural variation in Populus nigra, Manihot esculenta
Crantz (cassava), and Oryza sativa L., whereby DNAs
from different accessions were pooled together prior to
PCR and variant discovery. In P. nigra, PCR products
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were prepared from pooled genomic DNA from 64 ac-
cessions to identify variants in lignin biosynthesis genes
in 768 accessions [27]. In cassava, DNA from up to 281
accessions were pooled prior to sequencing for variants
in starch biosynthesis pathway-related genes and herbi-
cide tolerance genes in 1667 accessions [28]. In rice,
pooling of DNAs prepared from 233 breeding lines was
followed by sequencing for variants in starch synthesis
genes [29]. Pooling of multiple samples from the same
species has also been used in studies where WGS has
been applied. There are many variations to this method-
ology that has been termed Pool-seq [30]. This includes
cases where, contrary to TILLING assays, multiple indi-
viduals with similar genotypes are pooled together to es-
timate population allele frequencies. In such
applications, sequencing coverages can be reduced to
save costs, but are insufficient to find rare alleles in one
or few individuals in the pool. Sequencing intra-species
pools has also been described such as in metagenomics
studies [31].

Rye (Secale cereale L.) is an outcrossing cereal, popular
in Europe and North America, and an important source
of variation for wheat breeding due to its high tolerance
to biotic and abiotic stresses [32]. Genetically rye is a
diploid (n=7), with a large (ca. 8 Gbp) and complex
genome [33, 34]. There are over 21 thousand rye acces-
sions in genebanks worldwide, approximately 35% of
them are landraces and wild species [9]. Several studies
on genome-wide diversity in rye were published to date
[35-38]. It was shown that accessions from genebanks
are genetically distinct from modern varieties, which
highlighted the potential of PGR in extending the vari-
ability in current rye breeding programs [35, 36, 38, 39].
To date neither NGS-based targeted amplicon sequen-
cing, nor any other method of gene variant discovery
was applied to rye genetic resources.

Abiotic and biotic stress resistance, and yield consti-
tute the key targets in rye breeding [40, 41]. Although
the number of well characterized rye genes is very lim-
ited [42], there are important candidate genes related to
abiotic and biotic stress resistance and grain quality to
consider. MATE] (multidrug and toxic compound extru-
sion, also known as AACT1 - aluminum activated citrate
transporter), is a gene involved in aluminum (Al) toler-
ance of rye. Al-toxicity is one of the main constraints to
agricultural production on acidic soils, which constitute
ca. 50% of the arable land on Earth [43]. Rye is one of
the most Al-tolerant cereals, with the degree of tolerance
depending on the allelic variant of MATEI [44]. TLPs
(taumatin-like proteins) are a family of pathogenesis-
related (PR) proteins, involved in fungal pathogen re-
sponse in many plant species [45]. FBA (fructose-bipho-
sphate aldolase) is one of the key metabolic enzymes
involved in CO, fixation and sucrose metabolism. FBA
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genes were found to have an important role in regula-
tion of growth and development, and responses to biotic
and abiotic stresses, such as chilling, drought and heat
[46, 47]. GSP-1 (grain softness protein) genes, belonging
to the prolamine superfamily of seed storage proteins,
encode precursor proteins, which after post-translational
processing give rise to arabinogalactan peptide AGP and
the grain softness protein GSP-1 [48]. Secaloindolines,
products of genes Sina (not analyzed in this study) and
Sinb, are main components of friabilin - a starch-
associated protein fraction of cereal grains [49]. The
wheat orthologues of Sina and Sinb, called Pina and
Pinb, are key determinants of grain texture, an import-
ant breeding trait directly influencing the end-use [50].
PBF (prolamin-box binding factor) is an endosperm spe-
cific transcription factor involved in the regulation of
protein and starch synthesis [51]. It binds to the
prolamin-box motif occurring in promoter regions of
multiple cereal seed storage proteins. In barley, SNPs lo-
cated in PBF were associated with crude protein and
starch content [52], while in wheat, mutating the home-
ologous PBFs using TILLING resulted in a markedly de-
creased gluten content and high content of lysine [53].

Exploration of genic variation in outcrossing, genera-
tively propagated crops, such as rye, maize (Zea mays),
sugar beet (Beta vulgaris), broccoli (Brassica oleracea
var. italica), or carrot (Daucus carrota), is a particularly
demanding task. Natural, random-mating populations of
such species are heterozygous and heterogeneous, with
multiple alleles of a locus being present [54]. Such popu-
lation structure has important implications for the de-
sign of NGS-allele mining experiments. Firstly, due to
high levels of heterozygosity, a higher sequencing cover-
age is needed even when sequencing non-pooled sam-
ples to ensure reliable nucleotide variant calling.
Secondly, due to the heterogeneity of accessions, a large
enough number of individuals of a given accession needs
to be included in the screen to obtain a faithful repre-
sentation of within-accession variability and to success-
fully recover rare variants. Many potentially useful and
interesting alleles may go undiscovered with current ex-
perimental designs.

To address this, a low-cost, high-throughput, and reliable
amplicon sequencing approach suitable for assessment of
genic variation in heterozygous and heterogeneous rye ac-
cessions was developed. Rather than pool DNA from differ-
ent accessions, ultra deep amplicon sequencing was used to
evaluate intra-accession heterogeneity while also providing
information on novel genetic variation. DNA pools were
created that contain 96 plants per accession. These were
subjected to pooled amplicon sequencing in six target genes
implicated in biotic and abiotic stress resistance and seed
quality: MATEI1, TLP, FBA, PBF, Sinb, and GSP-1. Three
variant calling algorithms (GATK HaplotypeCaller [55],
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SNVer [56] and CRISP [57]) were used to identify putative
variants at frequencies as low as one heterozygous event
per 96 plants assayed in each pool. A subset of variants was
independently validated and the functional effect of each
variant was evaluated in silico. Common and rare variants
were recovered, including variants predicted to affect pro-
tein function that are present in only a small fraction of
seed representing an accession. This data provides prelim-
inary knowledge on the levels of variant allele frequencies
in accessions representing different germplasm groups: wild
species, landraces, historical and modern cultivars.

Results

DNA sequencing, mapping and coverage

Pooled amplicon sequencing using Illumina sequencing
by synthesis 2 x 300 paired end reads on 95 accessions
and six genes produced a mean coverage of 13,948x and
mean mapping quality of 58.65. Mean coverage per acces-
sion pool varied approximately 10 fold, between 2924x
and 30,275x. Analysis of sequencing coverage at each nu-
cleotide revealed that 94.2% of the experiment produced
20 or more reads to support a rare variant present at 5%
in the DNA pool (Additional file 1: Table S1).

Evaluation of variant calling algorithms and predicted
effects of nucleotide changes

Variant calling was first performed on each pool using
HaplotypeCaller in GATK (v.4.0) with ploidy set to 192
in order to recover rare alleles. This resulted in 4115
called variants, of which 3682 were single nucleotide
polymorphisms, 192 insertions, and 241 deletions. Evalu-
ation of the Variant Call Format (VCF) file, allowed cal-
culation of the frequency of a specific allele within the
DNA pool created from the 96 seeds that were sampled
to represent an accession. This is referred to as VAF
(Variant Allele Frequency), to distinguish the measure-
ment from AF (Allele Frequency) - the frequency of the
allele within the set of 95 accessions analyzed in the
present study. Data was plotted to evaluate the distribu-
tion of the mean VAF for each variant and the number
of accessions harboring each discovered allele (Fig. 1).
Private variants occurring in only one accession were
identified at both low and high VAFs (Fig. 1). The per-
centage was highest, however, at the lowest VAFs - 75 %
of private alleles have a VAF of 0.026 (represented at
2.6% in the accession pool) or lower (Additional file 2:
Figure S1).

Variant calling was next carried out using SNVer and
CRISP producing 1570 and 3261 variant calls, respect-
ively. Similar to data produced with GATK, the highest
percentage of variants are represented in the lowest
VAFs (75% at 0.034 or lower for CRISP and 0.088 or
lower for SNVer, Additional file 3: Figure S2). Private
variants were also enriched at lower VAFs (Additional
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Fig. 1 Scatter plot of Variant Allele Frequency (VAF) data from GATK
HaplotypeCaller. VAF is plotted on the x-axis. Black dots represent
every predicted variant. The number of accessions predicted to
harbor the variant is plotted on the y-axis. Data is plotted on the z-
axis to separate different variants that share the same VAF and
number of accessions. The percentage of the total data from VAF 0
to a specific frequency is overlaid in red. For example, 75% of all

predicted nucleotide variants have a VAF of 0.05 or lower

file 2: Figure S1). In total, 895 variants were common be-
tween the three methods (Fig. 2). Within these common
variants, the mean VAF and the number of accessions
carrying the variant differed between the three algo-
rithms used.

The effect on gene function of putative variants was
evaluated with SNPeff and SIFT. This resulted in 695
putative deleterious variants from GATK, 171 from
SNVer and 578 from CRISP, with 74 putative deleterious
variants common to all three algorithms (Table 1, Add-
itional file 4: Table S2, Additional file 5: Figure S3).
Deleterious alleles with a high maximum VAF (the high-
est VAF reported in an accession) and present in only
one accession were recovered along with alleles with a
high maximum VAF that were present in 90 or more ac-
cessions (Additional file 4: Table S2). Alleles with a max-
imum VAF less than 0.4 were also identified, suggesting
the presence of rare alleles segregating within an acces-
sion. In the GATK data set, for example, 29 of the 74
predicted deleterious common variants have a maximum
VAF between 0.047 and 0.391 and are found in 1 to 21
accessions (Additional file 4: Table S2, Additional file 6:
Figure S4).

Within target genes, 18 to 443 polymorphic positions
were detected consistently by the three algorithms, cor-
responding to one SNP or InDel every 8-10 bp of se-
quence for five of the analyzed genes (Additional file 7:
Table S3). For the sixth gene, Sinb, this frequency was
markedly lower, with one SNP per 25 bp. The number of
putatively deleterious variants per gene ranged from 11
(GSP-1) to 21 (MATEI), corresponding to one deleteri-
ous variant every 40 to 80bp, with exception of Sinb,
where only three deleterious variants were identified in
447bp of coding sequence. Previous data on genic
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predicted by GATK, SNVer and CRISP, respectively

Fig. 2 Common and unique variants called by GATK, SNVer and CRISP. The Venn diagram shows the overlap of variant calls for the three
algorithms (interior image). Eight hundred and ninety-five variants were commonly identified. The outer image is a Circos plot of the common
variants. Only the PCR amplified regions of gene targets are displayed (track 1). Gene models are shown on track 2 with exons and introns
represented by thick and thin black lines, respectively. Tracks 3, 4, and 5 show the position and frequency (indicated by bar height) of variants

variation was available solely for MATEI (a total of 112
unique variants from 26 sequences deposited in Gen-
Bank as of 22th June 2020) and Sinb with seven unique
variants reported (Liu et al., 2017). The present study
identified 62 new variants in MATEI coding sequence,
including seven putatively deleterious, and 15 new vari-
ants in Sinb, including all three putatively deleterious
variants. Most new variants identified in MATEI and
Sinb were private or rare (median of the number of ac-
cessions with a given variant equaled two in MATE]I and
one in Sinb).

Table 1 Missense, nonsense and silent changes with different
variant calling methods

GATK SNVer CRISP Common variants
Missense 1183 336 868 164
Nonsense 14 7 9 2
Total 1770 602 1322 348

The presence of predicted variants was first assayed
using Sanger sequencing of Sinb amplicons in a single
individual plant from each of eight accessions, with the
aim of evaluating variant prediction while keeping
Sanger sequencing costs low. Twelve variants were pre-
dicted in this set. Only variants reported by all three al-
gorithms for the tested accession, and where the lowest
VAF was greater than 0.295 were validated (Add-
itional file 8: Table S4). Because allele frequencies were
calculated from a pooled DNA sample, it was concluded
that lower frequency alleles likely represent alleles that
are not present in every seed of an accession. Subse-
quent validation assays were carried out whereby mul-
tiple plants from each accession were assayed
independently. In CAPS and Sanger sequencing assays
on MATEI, PBF, and Sinb amplicons, 13 out of 16
tested variants were recovered when sampling between
six and 27 plants (Table 2). Observed allele frequencies
calculated from the number of plants harboring the
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Table 2 CAPS and Sanger validation of variants in multiple single plants of an accession
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Gene Pos? Ref® Alt Method RE used Acc? GATK® SNVer® CRISP® VAFobs No. plants?
MATE] 170 A G CAPS Not/ D2 0.880 0587 0819 079 26[11]
MATE] 170 A G CAPS Not/ E12 0.875 0592 0783 0.70 27[8]
MATET 210 A G CAPS Taql H5 0.172 0.079 0276 038 25[15]
MATE] 364 G C CAPS Mbol H5 0307 0.137 0393 024 25[8]
PBF 310 C T CAPS Mnll D2 0292 0.206 0.165 044 25[14]
PBF 310 C T CAPS Mnll E12 0.120 0.059 0.059 0.10 25[5]
PBF 517 G A CAPS Mbol D2 0286 0262 0.180 044 27[12]
PBF 517 G A CAPS Mbol E12 0016 0.104 0.065 0.09 27[5)
PBF 532 C T CAPS Foki D2 0.104 0.096 0.138 0.00 26[0]
PBF 532 C T CAPS Foki E12 0536 0405 0472 043 25[14]
PBF 666 C T Sanger na" F8 0401 0371 0359 058 25[11]
PBF 810 C T Sanger na F10 0.042 0.022 0.068 0.00 6[0]
PBF 810 C T Sanger na F11 0214 0074 0216 0.16 16(5]
PBF 846 G C Sanger na F8 0.094 0053 0.104 0.10 25[5]
PBF 847 G A Sanger na F8 0.094 0.064 0.100 0.08 25[4]
Sinb 211 A G CAPS Foki H5 0026 0.183 0.111 0.00 25[0]

“nucleotide position

Breference sequence

variant sequence

daccession code

€algorithm predicted allele frequency (VAF)

fobserved allele frequency

9numbers in brackets indicate the number of heterozygous individuals
Pnot applicable

tested sequence difference varied from the frequencies
predicted from the amplicon sequencing data. Seven vari-
ants had observed VAF closest to GATK predictions, two
variants were closest with SNVer and four with CRISP.
The three variants not recovered by CAPS or Sanger as-
says had frequencies reported by GATK below 0.15. Fail-
ure to recover low frequency alleles may have resulted
from testing an insufficient number of individuals.

Phylogenetic relationships between populations and
comparison of VAF distributions

The relationship between accessions was evaluated by cre-
ating a Neighbor Joining (NJ) tree based on Nei’s genetic
distance (Fig. 3). This resulted in accessions divided into
six clusters (I-VI), with cluster I containing mostly culti-
vars, including the majority of modern cultivars analyzed.
Nevertheless, a coincidence of the clustering with improve-
ment status could not be observed. The accessions: S. syl-
vestre (abbreviation B6 in Fig. 3), S. strictum subsp.
kuprijanovii (F8) and S. strictum subsp. africanum (B7),
were indicated as the most divergent of the analyzed set,
which is in agreement with results of previous genome-
wide analyzes of rye germplasm [34, 35, 58]. Conversion of
VAF values to genotyping scores was used to evaluate clus-
tering. Different ranges of VAF were used to define hetero-
zygous variants. This resulted in a changed clustering of

the populations at each range tested (Additional file 9:
Figure S5). Results of principal coordinates analysis, based
on the VAF- derived Nei’s genetic distance matrix (Fig. 4),
are in agreement with the outcome of NJ clustering. The
accessions: S. sylvestre (B6), S. strictum subsp. kuprijanovii
(F8), S. strictum subsp. africanum (B7), and the sample of
historical variety Imperial (B4) are very distant from the
rest, while within the group of the remaining accessions
several subgroups can be observed, which correspond to
clusters indicated in the NJ tree (Fig. 3).

Private variants occurred in all germplasm groups in-
cluded in the study: modern cultivars, historic cultivars,
landraces and wild accessions. In the group of com-
monly identified variants, the number of private variants
per accession coincided with the domestication status:
private variants were most frequent in wild accessions
(five to seven per accession), followed by landraces with
approximately two variants per accession, and historic
and modern cultivars with less than one private variant
per accession. Private variants in wild accessions also
had the highest VAF values (mean 0.4-0.45, median
0.22-0.28). Ten of the private variants detected in wild
accessions were putatively deleterious: five in the PBF
gene, four in MATEI and one in GSP-1. In the
remaining germplasm groups mean VAF and median
VAF did not exceed 0.12 and 0.007, respectively. The
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Fig. 3 Neighbor Joining tree based on Nei's genetic distance calculated from VAF values, showing genetic relationships between 95 rye
accessions. VAF values reported by GATK for 895 variants detected in common by tree algorithms were used. To simplify the output, accessions
are referred to by the 96 well plate coordinates, which are also included in the accession list (Additional file 11: Table S5). Numbers in brackets
indicate private alleles identified in the respective accession. Colors indicate improvement status: light blue — modern cultivar, dark blue - historic

number of private variants varied from 0 (32 accessions)
to 25 in S. sylvestre (B6) (Fig. 3). Among the cultivated
rye (S. cereale subsp. cereale) accessions, the highest
number of private variants (7) was observed in a land-
race from Bosnia and Herzegovina (C2) and also in a S.
cereale subsp. cereale accession of unknown improve-
ment status from Israel (E4).

VAF values were used to prepare combined strip/vio-
lin plots in order to qualitatively compare accessions.
Several distinct patterns of allele frequency distribution
were observed (representative examples shown in Fig. 5).
Based on the results of two-part Wilcoxon test of pair-
wise comparisons of VAF distributions, rye accessions
were grouped into 20 clusters ranging in size from 1 to

16 (Additional file 10: Figure S6). Five accessions, char-
acterized by a high proportion of variants with high VAF
values, were consistently recognized as markedly differ-
ent from the rest: S. sylvestre (B6), S. strictum subsp.
kuprijanovii (F8), historic cultivars Imperial (B4) and
Otello (G12), and landrace R1040 (F6) (Additional file 11:
Table S5).

Discussion

To evaluate the distribution of frequencies of alleles
within a landrace or cultivar, we chose to sample 96
plants from each accession of rye selected for our study.
This allows the recovery of i) sequence differences com-
pared to the reference sequence used that are fully
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Fig. 5 Combined strip/violin plots of GATK VAF values for variants predicted in common by GATK HaplotypeCaller, SNVer and CRISP. Horizontal
bars indicate median values. Representative accessions are shown. Combined strip/violin plots for all 95 accessions included in the study are
presented in Additional file 10: Figure S6
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homozygous (those with an allele frequency of 1), ii) het-
erozygous variants present in all pooled plants, and iii)
variants of lower frequencies that are not present in
every seed in the seed stock used to represent an acces-
sion. To streamline the approach, tissue from each plant
was collected and pooled prior to DNA extraction. The
experiment was designed such that an allele found in a
single plant could be identified. High coverage values
were found in all DNA pools suggesting that each pool
was suitable for PCR amplification and sequencing. De-
viations in coverage values, therefore, likely resulted
from differences associated with the quantification,
normalization and pooling of PCR products. Such varia-
tions were recently reported in a study comparing to-
mato, cassava and barley amplicon sequencing data sets
[26]. The study revealed that minor coverage improve-
ments could be achieved through the addition of extra
quantification methods. Alternative approaches to in-
crease read coverage at all nucleotide positions include
increasing sequencing yields by adjusting the number of
samples in an experiment and/or the number of target
genes (amplicons) used in a single sequencing run. As
sequencing costs drop, it may prove more cost effective
and faster to simply produce more base pairs of data per
experiment than to fine-tune the other experimental
parameters.

Many applications employing next generation sequen-
cing of genomic DNA involve the evaluation of sequence
variations in diploid samples. Even in optimized diploid
conditions, a balance is struck between maximizing allele
calling sensitivity to reduce false negative errors and re-
ducing the sensitivity in order to lower false positive er-
rors. For example, when using GATK HaplotypeCaller
with settings for diploid samples, Li et al. reported that
more than 80% of false positive errors in diploid rice
were at an allele frequency below 40% [59]. When se-
quencing non-pooled samples, setting an allele fre-
quency threshold of >40% for heterozygous variants
therefore reduced false positive errors. In non-pooled
samples, the choice of mapping software and variant
calling software can also affect predicted SNPs. Yao and
colleagues used whole exome capture wheat data sets
and seven variant calling tools to define putative true
variants that were identified by all tools [16]. Using this
set, the authors concluded that mapping with BWA
mem outperformed Bowtie2. Variant callers showed
variable performance with GATK Haplotype Caller out-
performing SNVer and Samtools/mpileup performing
best. Independent validation of SNPs by Sanger sequen-
cing was not carried out. Optimizing variant calling may
be more challenging in highly pooled samples. Algo-
rithms such as GATK HaplotypeCaller, SNVer and
CRISP provide parameter settings to call low frequency
variants. Yet, optimal parameters still need to be
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determined. For example, evaluation of six SNP calling
algorithms in tomato TILLING samples pooled either 64
or 96 fold revealed that accuracy ranged between 89.33
and 25.33% when comparing to Sanger validated SNP
mutations [25]. That work described technical differ-
ences between different algorithms and concluded that
accuracy is improved when a variant call is predicted by
at least two algorithms. In cassava, up to 281 different
accessions were pooled together prior to sequencing in
an approach designed to quickly identify putative dele-
terious alleles [28]. In that study 24% (79/325) of called
variants were predicted by four algorithms tested.

The experimental design for rye differed from previous
studies in order to allow the discovery and analysis of
intra-accession allele variation. Similar to previous stud-
ies with pooled samples and wheat exome capture data,
multiple variant callers were used to find concordant
SNPs. The rye assay was designed to recover two types
of what can be considered “rare” variation. The first type
of rare variants are alleles that are found in only one ac-
cession (known as private alleles) or very few accessions
in the tested set, and occur with a high frequency within
the respective accessions. This type of rare variation is
easily recovered using conventional genotyping and rese-
quencing as alleles can be recovered through assay of a
single seed [60, 61]. The second type of rare variants are
more difficult to discover. These variants segregate at a
low frequency within an accession and are never found
at high frequency in any tested accession. To recover
this type of rare variant requires the sampling of mul-
tiple individual seed per accession. As such, these alleles
are hidden from discovery when using traditional
methods that sample one or few seed per accession.
Using pooled amplicon sequencing we have recovered
both types of rare alleles in the tested rye accessions. Im-
portantly, the presence of variants that segregate at a
low frequency within an accession, and are never found
at high frequency in any tested accession, suggest that a
broader genetic diversity can exist in germplasm collec-
tions than previously known. We expect this to be most
common in outcrossing species like rye where admix-
tures of alleles are frequent.

Variants with mean VAF between 0.7 and 1 repre-
sented between 1.87 and 3.06% of all predicted alleles,
depending on the algorithm used. In this set of variants,
between 41 and 49% are private alleles found in only
one accession (Fig. 1, Additional file 2: Figure S1, Add-
itional file 3: Figure S2). The highest number of variants
were found in the lowest VAFs. It is expected that false
positive errors will increase as the number and percent-
age of reads supporting the alternative allele decreases.
Studies have been carried out on errors associated with
MiSeq paired end sequencing, but a thorough investiga-
tion into errors in pooled samples has not been reported
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[62]. False positive errors are expected to be random
and therefore infrequently independently predicted when
applying multiple variant calling algorithms. Indeed, of
the 895 variants common to GATK, SNVer and CRISP,
only 20% had a predicted mean VAF of 0.038 or lower, a
reduction of more than 50% from the data from any sin-
gle algorithm. Further experiments are required to deter-
mine what, if any, percentage of the sub 0.038 VAF
variants predicted by all three algorithms are false posi-
tive errors. This requires extensive genotyping, as many
individual seed need to be tested to ensure true variants
are recovered. In the present study, genotyping assays
using approximately 10 seed per accession were suffi-
cient to validate alleles with a VAF of 0.15 or higher that
were predicted in the same accession by all three algo-
rithms. We expect it is necessary to test more than 100
seeds per accession to validate the lowest frequency al-
leles in the data. Some very low frequency false positive
errors are expected and may result from biological con-
tamination, for example, from pollen contamination on
the leaf tissue collected. This can be ruled out in the
present study because seedlings were grown, and tissue
collected in growth room conditions where there were
no rye plants flowering. Sample to sample cross contam-
ination of DNA or PCR product may also be a source of
low VAF false positive errors. Sixty-five percent of sub
0.038 VAF variants commonly predicted by all algo-
rithms were found in more than one accession. How-
ever, 96% had a maximum predicted VAF of less than
10%, and the highest maximum VAF was 24.5%. This
means that a large volume of accidental liquid transfer
between samples would be needed to create a detectable
false positive. With the caveat of possible very low fre-
quency false positive errors, we conclude that selecting
variants commonly called by multiple algorithms may
reduce errors and serves as a useful method to prioritize
alleles for further study.

We found qualitative evaluation of VAF values using
strip and violin plots to be useful to estimate the influ-
ence of a taxon’s reproductive biology, preservation his-
tory and breeding on the genetic composition of an
accession. For example, one of the outlier accessions
identified is this study is S. sylvestre (B6). Molecular
marker-based analyses of genetic diversity indicated this
self-pollinating taxon as the most divergent in genus
Secale [35, 58, 63]. Its large proportion of high VAF vari-
ants (Fig. 5) likely corresponds to homozygosity for al-
ternative alleles, since reference sequences used during
variant calling originated from cultivated rye accessions.
Another outlier, S. strictum subsp. kuprijanovii (E8), is a
perennial outbreeder, also genetically divergent from S.
cereale. However, its violin plot differs markedly from
plots obtained for the other two S. strictum samples in-
cluded in the study, S. strictum subsp. africanum (B7)
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and S. strictum subsp. strictum (B9), which might indi-
cate a sample tracking mistake during genebank preser-
vation or laboratory handling, or a bottleneck during
preservation. A sample of Imperial cultivar (B4), widely
used in cytological studies, originating from the collec-
tion of A. J. Lukaszewski (UCLA, Riverside), showed an
approximately equal abundancy of variants with all pos-
sible VAF values and differed clearly from another sam-
ple of Imperial (C1), obtained from IPK Gatersleben
genebank. Less pronounced (although also statistically
significant) differences were also observed between the
two samples of cultivar Dankowskie Zlote (C6 and F3),
obtained from different sources. Samples of hybrid culti-
vars from KWS, such as Ballistic (D11) and KWS Flor-
ano (G10), exhibited a higher percentage of VAF values
in the range 0.3-0.5, with median ca. 0.3, and also
higher percentage of AF values close to 1.0, in compari-
son to population cultivars included in the study, such
as Dankowskie Zlote (F3 and C6), Petkus (G8), or Car-
stens Kortstra (E8), which is consistent with the use of
the three line system in the development of hybrid rye
cultivars. Statistical analysis also showed that wild acces-
sions differed from modern varieties in terms of VAF
value distributions, with wild accessions (accession codes
E8, B7, B6, B10, B9, A9, F4, F7, E12, full names in Add-
itional file 11: Table S5) always located in different clus-
ters than modern varieties (accession codes F12, G11,
F2, F1, G10, G9, D11, B12) in the dendrogram in Add-
itional file 10: Figure S6. However a trend in median
values differentiating wild accessions from modern var-
ieties could not be observed.

In this study we analyzed six genes linked to biotic
and abiotic stress resistance and seed quality. Using deep
sampling and pooled amplicon sequencing numerous
new variants were identified, (including putatively dele-
terious ones), in each of the analyzed genes, providing
potential targets for future functional studies and, even-
tually, inclusion in breeding schemes in rye and related
species (wheat, triticale). Consistent with a high diversity
of the germplasm set used (with respect to domestica-
tion status and origin) we obtained a several fold higher
estimate of SNP frequency in rye (on average one SNP
or InDel every 12 bp), than those reported in the past: 1
SNP/52 bp [64], 1 SNP/58 bp [65] or 1 SNP or InDel/31
bp [66]. In agreement with the results of previous
genome-wide, DArT-marker based characterization of
genetic diversity in rye [35], data obtained in the present
study on distribution of private alleles among germplasm
groups indicates that the genetic diversity in modern rye
cultivars is relatively narrow, with less than one private
allele identified per modern cultivar tested, and provides
further evidence for the value of rye PGR in genetic re-
search and crop improvement, with more than five private
alleles identified per accession, stressing the importance of
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conservation and characterization efforts. On the other
hand, the clustering of the accessions in the NJ tree gener-
ated based on the VAF of 895 variants detected in com-
mon did not agree with the improvement status of the
accessions, suggesting, that selective pressures other than
breeding practices have influenced the diversity of the
genes analyzed.

This study also points out that, in case of open polli-
nated populations (due to the high within-accession
variability), the sampling of a single individual or a small
number of individuals from an accession most likely re-
sults in an inaccurate and perhaps even misleading rep-
resentation of genetic relationships between the
accessions. This can be seen in NJ trees produced based
on conversion of VAF values into genotyping-like scores,
where a different clustering of accessions was observed
at each range of VAF used to define heterozygous vari-
ants (Additional file 9: Figure S5).

The approach of deep sampling and pooled amplicon
sequencing allows discovery of variants in candidate
genes and also an evaluation of the effect of variants on
gene function. This provides an additional filter to
prioritize variants. The SIFT program was used to iden-
tify 73 putative deleterious alleles commonly identified
by the three variant calling algorithms. This data set
contained different classes of alleles for example, homo-
zygous variants found in one or few individual acces-
sions (private deleterious alleles, the first category of
rare variants described above). Homozygous variants
present in more than 90 accessions were also recovered.
Interestingly, putative deleterious variants were also
identified where the maximum VAF was between 0.15
and 0.3 and the variant was found in only one or two in-
dividual accessions (the second category of rare variant).
This suggests that alleles are segregating within rye ac-
cessions at low fractions that may affect gene function
and potentially plant phenotype. Such variants would go
undiscovered in conventional GBS or WGS assays where
only one or two seed per accession are sampled, and
may be useful for functional genomic characterizations
and breeding. Further studies are being designed to
evaluate the different classes of putative deleterious al-
leles. For example, homozygous private alleles may rep-
resent alleles where a fitness penalty results in the allele
having been expunged from most populations. Homozy-
gous putative deleterious alleles present in most tested
accessions may represent alleles with no fitness penalty,
or may represent alleles that have no negative effect on
fitness under their natural growing conditions (e.g. low
aluminum in the soil). Possible mechanisms for the
maintenance of rare low frequency alleles in populations,
including meiotic effects, can also be investigated.

The rye amplicons used in this study were generated
before the release of the rye genome [34]. It is expected
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that the recent release of the rye reference genome will
enable improvements in gene target selection and primer
design The broadening of the genetic basis has been
identified as one of the most important goals in rye hy-
brid breeding [40, 67], however, introduction of PGR
into a breeding program is often challenging [68]. The
experimental protocol validated in this study provides a
means to rapidly and effectively screen numerous acces-
sion samples for the genes of interest and identify de-
sired variants. Therefore it has the potential to advance
the use of exotic and primitive germplasm for targeted
broadening of variation in breeding schemes.

Reference genomes have been produced for few of the
hundreds of thousands of plant species existing on the
planet. Because pooled amplicon sequencing does not
require complete genome sequence, we expect that the
approach described for rye can be adapted for many
plant species and can facilitate better characterization of
existing rich germplasm collections. We predict that
flexible and low-cost methods for recovery of rare gen-
etic variation will support future efforts to promote sus-
tainable food security.

Methods

Plant material

Ninety-five accessions of rye, each represented by a
pooled sample comprising DNA of 96 individual plants,
were analyzed in the study. This set included 90 acces-
sions of S. cereale, among them 8 modern cultivars, 34
historic cultivars, 35 landraces, and 5 accessions of other
Secale taxa, representing various geographic regions. In
total 10 accessions from this set were described as wild/
weedy. Seeds were obtained from several sources includ-
ing genebanks and breeding companies (Add-
itional file 11: Table S5).

Genomic DNA extraction, quantification and pooling

Seeds were placed in a growth room in containers lined
with moist paper towels. Ten days after germination a
20 mm long leaf segment was harvested from each plant.
For each accession 96 plants were sampled. Leaf seg-
ments from 16 plants of the same accession were col-
lected into one 2mL centrifuge tube, with six tubes
from 16 individual plants obtained for each accession.
Collected leaves were freeze-dried in an Alpha 2-4
LDplus lyophilizator (Christ), for 18 h at - 60°C, 0.011
mbar, followed by 1h at — 64°C, 0,006 mbar and ground
to fine powder using a laboratory mill MM 301 (Retsch)
for 2.5-5 min at frequency 30.0 1/s. Genomic DNA was
extracted using Mag-Bind Plant DNA DS Kit (OMEGA
Bio-Tek) following manufacturer’s protocol. Quality and
quantity of DNA was assessed using spectrophotometry
(NanoDrop2000, Thermo) and electrophoresis in 1%
agarose gels stained with ethidium bromide. DNA
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concentration of each sample tube was adjusted to 100
ng and an equal volume of all samples from an accession
were pooled together.

Primer design and PCR amplification of target genes
Sequences of six target genes: multidrug and toxic com-
pound extrusion (MATEI, also known as AACTI - alu-
minium activated citrate transporter), taumatin-like
protein (7TLP), fructose-biphosphate aldolase (FBA),
prolamin-box binding factor (PBF), secaloindoline-b
(Sinb) and grain softness protein (GSP-1) were retrieved
from GenBank (Additional file 12: Table S6, Add-
itional file 13: Figure S7). The entire sequences of Sinb
and GSP-1 genes (456 and 506 bp, respectively) were
amplified using primers described, respectively, by
Simeone and Lafiandra [49] and Massa et al. [69]. For
genes FBA, MATE1, PBF and TLP primer pairs for gen-
eration of overlapping, ca. 600 bp long amplicons, cover-
ing the entire gene sequence were designed using
Primer-BLAST [70]. Primer pairs were tested using the
DNA of rye inbred line L318 and those producing single
product of expected length were used for amplification
of gene fragments from pooled DNAs. Primer design
and all other assays described in this work were carried
out before the public release of the rye genome. PCR set
up was as follows: 200ng of template DNA, 2.5 mM
MgCl,, 0.2 uM of each primer, 0.2 mM of each dNTP,
1x Dream Taq Green buffer, 0.5U Dream Taq DNA
polymerase (Thermo Scientific). The reactions were car-
ried out in 25 pL in Mastercycler epgradient S (Eppen-
dorf) thermal cyclers. For all primer pairs the thermal
profile of initial denaturation for 60s at 95 °C, 30 cycles
of 30s at 95 °C, 30s at 56 °C and 60s at 72 °C, followed by
final extension for 5 min at 72 °C was used. A volume of
5 pL from each reaction was used to check the amplifica-
tion success using electrophoretic separation in 1.5%
agarose gels stained with ethidium bromide. PCR prod-
ucts were shipped to Plant Breeding and Genetics La-
boratory, Joint FAO/IAEA Division, International
Atomic Energy Agency (Seibersdorf, Austria) for further
processing.

PCR product quantification and pooling

PCR products were quantified using egel 96well gels
(Thermo Fisher Scientific) and quantitative lambda
DNA standards as previously described (Huynh et al.,
2016). PCR product concentration was adjusted to 10
ng/ul in TE. All PCR products from a single gDNA pool
were then pooled together. Pooled PCR products from
each of the 95 accessions were then quantified using the
Advanced Analytical® Fragment Analyzer™ with the low
sensitivity 1 kb separation matrix with 30 cm capillaries
(Advanced Analytical’#DNF935). All sample pools were
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normalized to 30nM concentration in TE prior to li-
brary preparation.

Library preparation and sequencing

Indexed DNA library for NGS was prepared using the
TruSeq® Nano DNA HT Library Preparation Kit (Illu-
mina, cat. 20,015,965) according to manufacturer’s rec-
ommendation. Indexed libraries were then quantified
using a Q-bit fluorometer (Thermo Fisher Scientific)
and pooled together at an equal concentration. The
pooled library was diluted to 18 pM concentration. Se-
quencing was performed on an Illumina MiSeq® using
2 x 300 PE chemistry according to manufacturer’s proto-
col. The reads were de-multiplexed with the MiSeq Re-
porter software and were stored as FASTQ files for
downstream analysis (Additional file 14: Table S7).

Sequence evaluation

FASTQ files were aligned to target amplicons using
BWA mem (Version: 0.7.17-r1188) with commands -M
-t 16 [71]. Amplicon fragment sequences were derived
from public databases prior to the release of the rye ref-
erence genome. These were given target names that
were used throughout the NGS analysis and the se-
quences are referred to as homozygous reference se-
quence throughout the manuscript (Additional file 12:
Table S6). Samtools view (Version 1.7) was used to con-
vert from SAM to BAM format [72]. BAM files are avail-
able in NCBI BioProject PRJNA593253. Coverage
statistics were prepared using qualimap (v.2.2.1-dev)
[73]. Variant calling was performed using three algo-
rithms CRISP (Version 0.1), GATK (Version 4.0.1.2) and
SNVer (Version 0.5.3). Parameters used for CRISP were
—OPE 0, —-poolsize 192 and —qvoffset 33 [57]. The GUI
of SNVer was used with the following parameters:
-bq20,-mq17,-s0,-f0,-pbonferroni = 0.1,-a0,-u30, -n192,-
t0 [56]. HaplotypeCaller (GATK) was used following
best practices with default settings with the exception
that ploidy was set to 192 [55]. For each method, VCF
files from individual pools were merged using bcftools.
Following this, read group information was unified be-
tween the three files using picard tools AddOrReplaceR-
eadGroups function  (http://broadinstitute.github.io/
picard/index.html). Data for calculation of allele fre-
quency from the VCF files (called VAF in this manu-
script) was extracted for each variant and each accession
using R libraries vcfR [74] and VariantAnnotation [75]
and used to produce AF tables. The potential effect of
nucleotide variation on gene function was evaluated with
SNPeff [76]. For this, a genome database was prepared
using the build -genbank function. The effect of reported
nucleotide variation was also evaluated with SIFT4G
using a self-prepared genomic database with the fasta file
of amplicon sequences used for mapping with BWA
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mem, a self-prepared gtf file and the uniref90 protein
database [77]. Venn diagrams were produced using the
R package eulerr (https://github.com/jolars/eulerr).

Evaluation of VAF distributions

For the variants detected in common by three algo-
rithms distributions of VAF values reported by GATK
were compared pairwise using the two-part Wilcoxon
test [78] resulting in a pairwise matrix of Os and 1s,
with 1 indicating that for the given pair of populations
the distributions of VAF values are different at a = 0.05.
This matrix was then used for hierarchical clustering
analysis with the haclust function of the R package stats.
Combined strip/violin plots were drawn using R libraries
ggplot2 [79], ggbeeswarm and ggdendro.

Evaluation of phylogenetic relationships between
accessions

For the purpose of illustrating the relationships between
rye populations analyzed, a Nei’s genetic distance [80]
matrix was calculated using POPTREEW [81] using
VAF values reported by GATK for the variants detected
in common by three algorithms and imported into
MEGA 5. 2 [82] to produce a Neighbor Joining dendro-
gram. The Nei’s genetic distance matrix was also used as
input to perform a principal coordinates analysis with
NTSYSpc ver. 2.2 [83]. To simulate the effect of treating
the accessions as individuals on the clustering, VAF
value tables were converted to genotyping scores (with
“0” meaning a reference allele homozygote”, “1” mean-
ing a variant allele homozygote, and 2 meaning a hetero-
zygote). Three settings were applied that use different
VAFs to define heterozygous variants: i)VAF < 0.3 =0;
VAF>0.7 =1; and values in between (greater than 0.3
and less than 0.7) =2, ii) VAF<0.4=0; VAF>0.6=1;
and values in between =2, and iii) VAF <0.2=0; VAF >
0.8 = 1; in between = 2. The obtained genotype scores were
used as input to GenAlEx 6.5 [84, 85]for calculation of Eu-
clidean distances. Neighbor Joining trees were produced
from the resulting distance matrices using MEGA 5.2
[82].

Validation of nucleotide variants
For validation of nucleotide variants CAPS assays were
developed based on output of PARSESNP [86], which
provides a list of restriction endonuclease sites that are
gained or lost due to the predicted SNV or indel. Serial
Cloner 2.6.1 (http://serialbasics.free.fr/Serial_Cloner.
html) software was used to digest in silico the gene frag-
ment of interest and predict restriction patterns for ref-
erence and mutant alleles.

New batches of seeds were sown for several accessions,
where the predicted variant resulted in gain or loss of a
restriction enzyme recognition site in amplicons of genes
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MATEI, PBF and Sinb. Tissue harvest, DNA isolation
and PCR reaction were done separately for each plant,
using the procedures described above. The number of
individual plants ranged from 10 to 27, depending on
the availability of seeds after the initial issue collection
for NGS amplicon sequencing experiments. Restriction
digestion was done for 20 min using 10 pL of PCR reac-
tion as template and 1 pL of the restriction enzyme in
the total volume of 20 pL. FastDigest restriction enzymes
(ThermoFisher) with dedicated buffers were used. The
digestion products were separated in 6% denaturing
polyacrylamide gels (if the predicted products were
shorter than 200 bp or differed in length by less than 50
bp) and visualized by silver staining as described by Tar-
gonska et al. [36], or in 1.5% agarose gels containing eth-
idium bromide. For Sanger sequencing-based validation
of variants, amplicons of PBF gene from six to 27 plants
per accession, obtained as described above, were sent to
an external service provider. Sequencing was done on an
automated sequencer using fluorescent dye terminator
chemistry. The analyzed plants were classified based on
electrophoretic separation patterns/chromatograms as
homozygous reference (RefRef), heterozygous (RefAlt),
or homozygous variant (AltAlt). The variant frequency
was calculated using the formula (RefAlt x 1 + Alt/Alt x
2)/ n x2, where n is the total number of individuals
analyzed.
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Additional file 1: Table S1. Sequencing coverage for each nucleotide
position in the experiment.
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(VAF). Data from GATK is plotted in light blue, CRISP in green and SNVer
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Additional file 3: Figure S2. Scatter plots of variant allele frequency
(VAF) data. VAF is plotted on the x-axis. Black dots represent every pre-
dicted variant. The number of accessions predicted to harbor the variant
is plotted on the y-axis. Data is plotted on the z-axis to separate different
variants that share the same VAF and number of accessions. The percent-
age of the total data from VAF 0 to a specific frequency is overlaid in red.
Variants predicted by CRISP are plotted in panel A, and by SNVer in panel
B.

Additional file 4: Table S2. Allele frequencies and number of
accessions harboring alleles of predicted deleterious variants common to
GATK, SNVer and CRISP.

Additional file 5: Figure S3. Venn diagram of variants called by GATK,
SNVer and CRISP predicted to be deleterious using SIFT.

Additional file 6: Figure S4. Lollipop chart of allele frequencies of
GATK variants predicted deleterious by SIFT and also called by SNVer and
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plotted on the y axis. Data is sorted into 5 distinct groups based on the
number of accessions harboring the variant. This sorting is indicated by
the colored ball at the end of the bar. Allele frequencies below 0.039 are
not plotted.
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in common by three algorithms per gene.
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single plants from an accession.

Additional file 9: Figure S5. NJ dendrograms based on conversion of
VAF values reported by GATK for variants identified in common into
genotype scores. VAF values were converted into genotype scores (0" =

Page 14 of 16

Author details

'Department of Plant Genetics, Breeding and Biotechnology, Institute of
Biology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland.
2Departmem of Silviculture, Institute of Forest Sciences, Warsaw University of
Life Sciences — SGGW, Warsaw, Poland. Plant Breeding and Genetics
Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and
Agriculture, IAEA Laboratories Seibersdorf, International Atomic Energy
Agency, Vienna International Centre, Vienna, Austria. 4Veterinary Genetics

g

reference allele homozygote”, “1" = variant allele homozygote, 2" =
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