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Abstract

Background: Cotton is an important fiber crop but has serious heterosis effects, and cytoplasmic male sterility
(CMS) is the major cause of heterosis in plants. However, to the best of our knowledge,

no studies have investigated CMS Yamian A in cotton with the genetic background of Australian wild Gossypium
bickii. Conjoint transcriptomic and proteomic analysis was first performed between Yamian A and its maintainer
Yamian B.

Results: We detected 550 differentially expressed transcript-derived fragments (TDFs) and at least 1013 proteins in
anthers at various developmental stages. Forty-two TDFs and 11 differentially expressed proteins (DEPs) were
annotated by analysis in the genomic databases of G. qustral, G. arboreum and G. hirsutum. Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to better understand the functions
of these TDFs and DEPs. Transcriptomic and proteomic results showed that UDP-glucuronosyl/UDP-
glucosyltransferase, 60S ribosomal protein L13a-4-like, and glutathione S-transferase were upregulated; while heat
shock protein Hsp20, ATPase, FO complex, and subunit D were downregulated at the microspore abortion stage of
Yamian A. In addition, several TDFs from the transcriptome and several DEPs from the proteome were detected
and confirmed by quantitative real-time PCR as being expressed in the buds of seven different periods of
development. We established the databases of differentially expressed genes and proteins between Yamian A and
its maintainer Yamian B in the anthers at various developmental stages and constructed an interaction network
based on the databases for a comprehensive understanding of the mechanism underlying CMS with a wild cotton
genetic background.

Conclusion: We first analyzed the molecular mechanism of CMS Yamian A from the perspective of omics, thereby
providing an experimental basis and theoretical foundation for future research attempting to analyze the abortion
mechanism of new CMS with a wild Gossypium bickii background and to realize three-line matching.
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Background

Cotton is an important cash crop with high-quality fiber,
edible oil, and protein that is primarily used as animal
feed [1]. Heterosis in cotton is quite apparent and has
been widely used in yield quality, and resistance studies
[2]. The adoption of the production of hybrid seeds is
the most important among various means of utilizing
cotton heterosis. At present, castration in the production
of hybrid seeds often relies on hand emasculation and
male-sterile lines produced by such means as chemically
induced male sterility, genic male sterility, and cytoplas-
mic male sterility (CMS) [3]. Production practice shows
that CMS is an effective method for heterosis utilization
in crops and is widely used to produce hybrid seeds be-
cause it eliminates the need for artificial emasculation,
saves manpower and material resources, enhances the
purity of hybrid seeds and increases the output of crops
[3, 4]. Around the world, there were CMS line studies
on cotton in the 1960s, and in the following years, a
number of germplasms have been developed, such as G.
arboreum L, G. harknessii Brandegee, G. trilobum (DC.)
Skov., G. hirsutum, and G. barbadense L. However, to
the best of our knowledge, there is no report on CMS in
cotton with the genetic background of Australian wild
Gossypium bickii, which has been reported despite the
considerable effects of heterosis in cotton germplasm
development.

In recent years, advancement in molecular technology
has enabled breeders and molecular researchers to iden-
tify various plant transcription factors and genes and ex-
plore protein expression at the transcriptome and
proteome levels in such research efforts as CMS studies
of Chinese cabbage [5], turnip [6], Cucumis melo L. [7],
cotton [8, 9], rice [10], and Brassica napus L. [11]. Tran-
scriptomic analysis in cotton (CMS-D8) revealed that re-
active oxygen species (ROS) were released from
mitochondria and served as important signal molecules
in the nucleus, causing the formation of abnormal tap-
etum [8]. Proteome analyses in cotton indicated that the
differentially expressed proteins (DEPs) mainly involved
in pyruvate, carbohydrate and fatty acid metabolism had
been identified between the male-sterile line 1355A and
the male-fertile line 1355B [9]. Integrated analysis of the
transcriptome and proteome can provide a complete pic-
ture with regard regard to the molecular mechanism of
CMS, and this analysis has been employed in Chinese
cabbage [12], Brassica napus [13], pepper [14], and Ciz-
rus suavissima [15] studies involving CMS. The conjoint
analysis of the transcriptome and proteome in Shaan2A
CMS and its maintainer line indicated that the sterility
gene from the mitochondrion might suppress the ex-
pression of relevant transcription factor genes in the nu-
cleus, affecting early anther development [13]. There
have been relatively few studies of the conjoint analysis
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of transcriptomic and proteomic changes in CMS cotton
to date.

Yamian A was identified by the cotton breeding group
of Shanxi Agricultural University, as a new and stable
cytoplasmic male sterile line derived from triple hybrids
of Gossypium bickii, Gossypium arboreum and Gossy-
pium hirsutum Linn [16]. The male sterility mechanism
of Yamian A-CMS (YA-CMS) has not been elucidated.
In the current study, conjoint transcriptomic, proteomic
and early cytological, physiological and biochemical ana-
lyses were first performed between Yamian A and its
maintainer Yamian B (YB) to elucidate the mechanism
of YA-CMS. We attempted to identify differentially
expressed genes and proteins at different development
stages of anthers, discuss the relationship between these
differentially expressed genes and proteins and male
sterility in YA-CMS, and explore the possible effects on
microspore abortion of YA-CMS. The results of this
study may help to elucidate the molecular mechanism of
YA-CMS and improve our understanding of male steril-
ity in cotton.

Results

Transcriptome analysis

Expression type of the differentially expressed fragments
¢DNA amplified fragment length polymorphism (cDNA-
AFLP) analysis was used to perform transcriptome re-
search between Yamian A and Yamian B with buds be-
fore, in the middle of, and after the microspore abortion
stage. A total of 256 primer combinations were screened,
and 134 of them produced 550 differentially expressed
fragments. These differentially expressed fragments not
only showed differences in quantity but also distinctions
in quality (Fig. S1). Expression types of the differentially
expressed fragments in the buds between Yamian A and
Yamian B mainly included fifteen independent sets
(Table S1); fragments detected at only one of the three
stages in Yamian A or Yamian B (Type 1-6), especially
the band number of type 2, were the most common
among all types; fragments detected at any two of the
three stages in Yamian A or Yamian B (Type 7-11), for
example, the 12 fragments of type 7, were detected at
the buds of before and middle microspore abortion
stages in Yamian A; fragments detected at one or any
two of the three stages in Yamian A and Yamian B
(Type 12-15), for example, the 20 fragments of type 12,
were detected at the buds of the middle microspore
abortion stage in Yamian A and Yamian B.

Homology analysis of differentially expressed fragments

One hundred thirty-two transcript-derived fragments
(TDFs) selected from 550 differentially expressed frag-
ments were recycled, cloned, and sequenced, and 99 frag-
ments ultimately produced readable sequences (Table S2).
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The sizes of the 99 fragments were concentrated between
19 to 500 bp. According to the max identity and e value,
sequence alignment of these 99 TDFs in the G. austral
(G2Gy) [17], G. arboreum (AyA,) [18] and G. hirsutum
(AADD); [19] genomic databases revealed that 34 showed
homology to genes with known functions, whereas 57 did
not show homology to other sequences, and 8 displayed
identity with unknown proteins. Sequence analysis indi-
cated that some different TDFs derived from different
primer combinations were searched for the same hom-
ologous sequences, such as homologous sequences of
T26 and T27, and both were UDP-glucuronosyl/UDP-
glucosyltransferase (UGT) (Table 1).

Gene ontology (GO) analysis of TDFs

The G. austral (G5G,) [17], G. arboreum (A,A,) [18],
and G. hirsutum (AADD); [19] genomic databases were
used to assign GO IDs to the genes based on the se-
quence of 99 TDFs, and GO annotation was performed
to retrieve molecular function, biological process, and
cellular component terms according to their function.

In terms of molecular function, these TDFs were
assigned to 15 functional groups, in which the number
of binding nucleic acids was 5; UDP-glycosyltransferase
activity, transferase activity, and transferring hexosyl
groups had 4; ATP binding had 3; ubiquitin-protein
transferase activity, protein kinase activity, and DNA
binding had 2; and zinc ion binding, structural constitu-
ent of ribosome, protein binding, peroxidase activity,
manganese ion transmembrane transporter activity,
heme binding, helicase activity, and ADP binding had 1
(Fig. 1).

In terms of biological processes, these TDFs were
assigned to 10 functional groups, in which the number
associated with DNA integration was 3; protein phos-
phorylation, protein ubiquitination, and regulation of
transcription, DNA-templated had 2; and autophagy of
mitochondrion, cellular manganese ion homeostasis,
oxidation-reduction process, response to oxidative stress,
translation, and autophagosome assembly had 1 (Fig. 1).

In terms of cellular components, these TDFs were
assigned to 3 functional groups, in which the number of
integral components of the membrane was 1, that of the
large ribosomal subunit was 1, and that of the ribosome
was 1 (Fig. 1).

Kyoto encyclopedia of genes and genomes (KEGG) pathway
analysis of TDFs

Pathway assignment of TDFs was performed by the G.
austral (G,G,) [17], G. arboreum (A,A,) [18] and G. hir-
sutum (AADD); [19] genomic databases. Ninety-nine
TDFs were assigned to 7 KEGG pathways (Table 2).
The pathways with the most representation by TDFs
were endocrine resistance (6), amino sugar and nucleotide
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sugar metabolism (2), ribosome (1), zeatin biosynthesis
(1), autophagy - other (1), RNA degradation (1), and
phenylpropanoid biosynthesis (1) (Table 2).

Proteomics analysis

Protein expression profiles in Yamian a and Yamian B by 2-
DE assay

Microspore abortion of YA-CMS occurred mainly be-
tween the stages of sporogenous cell and microsporocyte
through the early-stage study of cell morphological ob-
servation and comparison of physiology and biochemis-
try characteristics [16]. According to bud development
in cotton, the buds at the stages of sporogenous cell and
microsporocyte in YA-CMS and YB were named A2,
A3, B2, and B3 respectively. Thus, to further understand
sterility mechanisms in YA-CMS, we performed a 2-DE
analysis for the total protein of A2, A3, B2, and B3 (Fig.
S2). The total concentration of all detected protein spots
was determined via homogenization processing to obtain
more accurate results. In total, 1013, 1110, 1112 and
1110 protein spots were detected in the 2-DE images of
A2, B2, A3, and B3, respectively, by PDQuest8.0.1 soft-
ware. The molecular weights of these proteins ranged
from 10 to 100kDa, and the isoelectric points ranged
from 3.0 to 10.0.

A total of 11 protein spots changed significantly (P <
0.05) in relative abundance by a minimum of a 2.0-fold
change in at least one stage between YA-CMS and YB
through point-to-point comparison and statistical ana-
lysis. Most of these differential spots displayed quantita-
tive changes, but some displayed qualitative changes.
Eight protein spots had significant quantitative differ-
ences in expression between YA-CMS and YB. For ex-
ample, the 2604 spot was upregulated, whereas 3004 was
downregulated in flower buds from the sporogenous cell
stage of the YA-CMS plants, but instead in the YB
plants. The 0013, 2005, and 3003 spots were upregulated
whereas 1003, 2106, and 4713 were downregulated in
flower buds from the microsporocyte stage of the YA-
CMS plants but instead in the YB plants (Fig. 2). There
were three protein spots that had significant qualitative
differences in expression between YA-CMS and YB. For
example, 1604 and 4702 were expressed only in flower
buds from the sporogenous cell and microsporocyte
stages of the YB plants but not in YA-CMS plants. The
5720 spot was detected only in flower buds from the
sporogenous cell and the microsporocyte stages of the
YA-CMS plants but not in YB plants (Fig. 2).

Identification and functional annotation of differentially
expressed proteins (DEPs)

All 11 differentially expressed spots were analyzed by
LC-Chip-ESI-QTOF-MS. Eleven spots were successfully
identified by MASCOT and PEAKS 6.0 software searches
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Table 1 Homology analysis of TDF sequences on cDNA - AFLP
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Name Length (bp) Accession Description Max Identity E Value

T1 272 Gar05G45090 UDP-glucuronosyl/UDP-glucosyltransferase 100 3.00E-60
T2 226 KAA3484033.1 60S ribosomal protein L13a-4-like 90.7 1.00E-20
T12 379 Gohir.D01G184400.1.p UDP-glucuronosyl/UDP-glucosyltransferase 98.1 2.00E-41

T13 331 Gohir.D05G008900.1.p PREDICTED: autophagy-related protein 11-like 100 4,00E-68
T14 282 KAA3484560.1 Retrovirus-related Pol polyprotein from transposon TNT 1-94 46.15 2.00E-09
T8 367 Gar05G25840 Cccl family 56.25 3.00E-22
T25 354 KAA3464041.1 ATP-dependent RNA helicase DHX36 isoform X2 100 3.00E-73

T26 381 Gohir.D11G100700.1.p UDP-glucuronosyl/UDP-glucosyltransferase 99.19 1.00E-84
127 381 Gohir.D11G100700.1.p UDP-glucuronosyl/UDP-glucosyltransferase 99.19 3.00E-84
T39 155 Gohir.D05G202700.1.p PREDICTED: probable disease resistance protein At4g33300 100 2.00E-27
T41 286 Gohir.A03G112300.1.p U box domain 100 3.00E-46
T42 286 GohirA03G112300.1.p U box domain 100 3.00E-46
T45 152 KAA3485461.1 vacuole membrane protein KMS1-like 96.43 2.00E-11

T51 348 Gar11G01680 NAC domain; NAC domain superfamily 98.26 5.00E-74
T52 348 Gar11G01680 NAC domain; NAC domain superfamily 99.13 2.00E-75

T53 297 Gohir.D12G262100.1.p PREDICTED: calcium-dependent protein kinase 26-like 100 4,00E-44
T54 297 Gohir.D12G262100.1.p PREDICTED: calcium-dependent protein kinase 26-like 98.99 4.00E-43

T55 348 Gar11G01680 NAC domain, NAC domain superfamily 96.52 2.00E-73

T58 331 Gar06G11140 Protein of unknown function DUF1764, eukaryotic 100 5.00E-49
T59 331 Gar06G11140 Protein of unknown function DUF1764, eukaryotic 100 2.00E-45

T60 330 Gar06G11140 Protein of unknown function DUF1764, eukaryotic 98.95 6.00E-36
T61 328 Gar06G11140 Protein of unknown function DUF1764, eukaryotic 98.95 1.00E-46
T62 331 Gar06G11140 Protein of unknown function DUF1764, eukaryotic 97.89 1.00E-48
T63 90 Gar05G22100 Interferon-related developmental regulator 100 3.00E-13
T67 256 Gar10G07450 Myb-like domain 100 5.00E-38
T69 146 Gar03G28270 uncharacterized protein LOC108476290 100 8.00E-06
170 146 Gar03G28270 uncharacterized protein LOC108476290 100 8.00E-06
T73 170 Gar08G17900 protein BPST, chloroplastic 92.06 7.00E-33
T74 170 Gar08G04770 Plant peroxidase 98.21 6.00E-34
175 168 KAA3487221.1 Transposon Tf2-9 polyprotein 82.5 2.00E-17
T76 168 KAA3487221.1 Transposon Tf2-9 polyprotein 82.5 2.00E-17
T77 354 KAA3464041.1 ATP-dependent RNA helicase DHX36 isoform X2 98.26 3.00E-71

178 354 KAA3464041.1 ATP-dependent RNA helicase DHX36 isoform X2 99.13 2.00E-72
T85 92 Gar09G06330 Reverse transcriptase domain 89.66 1.00E-11

T89 65 Gohir.D06G107150.1.p Uncharacterised protein family Ycf15 95 2.00E-08
T90 473 Gar08G03730 F-box domain 97.92 1.00E-23
T92 227 Gar11G34830 Golgi apparatus membrane protein TVP23-like 98.31 5.00E-35
T93 70 KAA3480627.1 Gag protease polyprotein-like protein 913 4.00E-10
T94 84 KAA3461301.1 Retrovirus-related Pol polyprotein from transposon 17.6 80 1.00E-09
T95 347 Gar10G30060 NAD(P)-binding domain 100 4.00E-44
T96 347 Gohir.D10G225100.1.p PREDICTED: UDP-glucuronic acid decarboxylase &-like 100 2.00E-41

T97 347 Gohir.D10G225100.1.p PREDICTED: UDP-glucuronic acid decarboxylase 6-like 100 2.00E-41
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Table 2 KEGG pathway analysis of TDFs on cDNA — AFLP

Pathway (KO-ID) Count Name

Endocrine resistance (ko01522) 6 T2. T13. T18.
T25. T26. T27

Ribosome (ko03010) 1 T2

Zeatin biosynthesis (ko00908) 1 T12

Autophagy - other (ko04136) 1 T13

RNA degradation (ko03018) 1 T25

Phenylpropanoid biosynthesis (ko00940) 1 174

Amino sugar and nucleotide sugar 2 T95. T96

metabolism (ko00520)

of the G. austral (G,G,) [17], G. arboreum (A5A,) [18], G.
hirsutum (AADD); [19] and G. raimondii (DsDs) [20] gen-
omic databases according to the -10IgP and peptides. The
11 spots included ATPase, FO complex, subunit D, mito-
chondrial (spot 0013), pathogenesis-related protein STH-2
(spot 1003), ATPase, F1/V1/A1l complex, alpha/beta sub-
unit, nucleotide-binding domain (spots 1604, 4713), heat
shock protein Hsp20 (spot 2005), glutathione S-transferase
(spot 2106), enolase (spot 2604), peroxisomal membrane
protein PMP22 (spot 3003), major latex protein domain
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(spot 3004), and ribulose bisphosphate carboxylase, large
subunit (spots 4702, 5720) (Table 3).

GO annotations were performed to retrieve molecular
function, biological process, and cellular component
terms according to their function. G. raimondii (DsDs),
G. austral (GyG,), G. arboreum (AyA,) and G. hirsutum
(AADD); genomic databases were used to assign GO
IDs to the 11 DEPs (Fig. 3).

In terms of molecular function, these DEPs were
assigned to 12 functional groups, in which the numbers
of ATP binding, hydrolase activity, acting on acid anhy-
drides, catalyzing transmembrane movement of sub-
stances, magnesium ion binding, proton-transporting
ATP synthase activity, rotational mechanism, and
proton-transporting ATPase activity, rotational mechan-
ism DEPs were 2, and ATPase activity, phosphopyruvate
hydratase activity, protein binding, protein phosphatase
inhibitor activity, proton transmembrane transporter ac-
tivity, ribulose-bisphosphate carboxylase activity, and
signaling receptor activity were 1 (Fig. 3).

In terms of biological process, these DEPs were assigned
to 10 functional groups, in which the number of ATP syn-
thesis coupled proton transport DEPs was 3, ATP hy-
drolysis coupled proton transport, ATP metabolic process,

GO term

Fig. 1 Gene Ontology analysis of TDFs on cDNA - AFLP
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Fig. 2 Enlarged differentially expressed protein spots from the pollen between YA-CMS and YB. A, B, C: represent differentially expressed proteins
in sporogonium and microsporocyte stage, sporogonium stage, and microsporocyte stage from the pollen.

defense response, proton transmembrane transport, pro-
ton transport, and response to biotic stimulus were 2, and
ATP biosynthetic process, carbon fixation, and glycolytic
process were 1(Fig. 3).

In terms of cellular components, these DEPs were
assigned to 8 functional groups, in which the numbers of
proton-transporting ATP synthase complex, catalytic core
F (1), proton-transporting two-sector ATPase complex,
and proton-transporting two-sector ATPase complex,
catalytic domain DEPs were 2, and integral component of
membrane, mitochondrial proton-transporting ATP syn-
thase complex, catalytic core F (1), mitochondrial proton-
transporting ATP synthase complex, coupling factor F(o),

phosphopyruvate hydratase complex, and plastid were
1(Fig. 3).

The differential protein functions in the metabolic
pathway were revealed by G. raimondii (DsDs), G.
austral (G,Gs), G. arboreum (AA,) and G. hirsutum
(AADD); genomic databases analysis. Eleven DEPs
were assigned to 7 KEGG pathways (Table 4). The
pathways with the most representation by DEPs were
Oxidative phosphorylation (3), Carbon fixation in
photosynthetic organisms (2), Glyoxylate and dicar-
boxylate metabolism (2), Glycolysis/Gluconeogenesis
(1), Glutathione metabolism (1), Peroxisome (1), and
Photosynthesis (1).
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Table 3 Identification of DEPs by MS/MS
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SSP Numbers Protein name -10IgP  Molecular Sequence Peptides Accession no.
(kDa)/pl coverage (%)
0013 ATPase, FO complex, subunit D, mitochondrial 175.07 19.588/494 35 6 Cotton_D_gene_10017606
1003 Pathogenesis-related protein STH-2 198.11 17.154/516 52 6 Cotton_D_gene_10010317
1604 ATPase, F1/V1/A1 complex, alpha/beta subunit, 48576  46501/596 49 17 Gohir.12049799.1
nucleotide-binding domain
2005 Heat shock protein Hsp20 12741 17.514/6.04 21 4 Cotton_D_gene_10037266
2106 Glutathione S-transferase 65.2 25847/584 11 2 Gohir.D09G157000.1
2604 Enolase 23544 47665/564 32 12 Cotton_D_gene_10005023
3003 Peroxisomal membrane protein PMP22 26.11 21485/1035 3 1 Cotton_D_gene_10021212
3004 Major latex protein domain 7551 17993/609 28 6 Cotton_D_gene_10014373
4702 Ribulose bisphosphate carboxylase, large subunit  178.73  53.894/657 25 12 Cotton_D_gene_10018308
4713 ATPase, F1/V1/A1 complex, alpha/beta subunit, 120.18  51587/805 6 3 Cotton_D_gene_10036457
nucleotide-binding domain
5720 Ribulose bisphosphate carboxylase, large subunit  191.28  53.894/6.57 31 15 Cotton_D_gene_10018308

Insights into the functional mechanisms of living cells
can be provided by protein-protein interaction networks.
Selecting G. raimondii (DsDs) as the search species, 11
proteins were recognized as key nodes with various rela-
tionships in biological interaction networks by using the

online tools of STRING 11.0 (http://string-db.org/cgi/
input.pl). The results showed that there were interac-
tions among atpl (spot 4713), Gorai.002G143400.1
(spot 0013), Gorai.002G243100.1 (spot 2604), Gor-
ai.013G048500.1 (spot 1604) and rbcL (spot 4702/
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Fig. 3 Gene Ontology analysis of differentially expressed proteins
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Table 4 KEGG pathway of differentially expressed proteins

Pathway (KO-ID) Count Protein

Glycolysis / Gluconeogenesis (ko00010) 1 2604

Glutathione metabolism (ko00480) 1 2106

Glyoxylate and dicarboxylate metabolism 2 4702, 5720
(ko00630)

Carbon fixation in photosynthetic 2 4702, 5720
organisms (ko00710)

Peroxisome (ko04146) 1 3003

Oxidative phosphorylation (ko00190) 3 4713, 0013, 1604
Photosynthesis (ko00195) 1 1604

5720), and there were no interactions among Gor-
ai.012G129000.1 (spot 1003), Gorai.002G177600.1
(spot 3004), Gorai.006G178600.1 (spot 2106), Gor-
ai.009G042100.1 (spot 2005), and Gorai.006G252300.1
(spot 3003) (Fig. 4).

Validation of genes and proteins of differential abundance

To verify the differential abundance of gene expression
derived from cDNA-AFLP, seven genes were selected to
perform quantitative real-time PCR (qRT-PCR) using
equal amounts of cDNA templates from the buds of
seven different development periods of both Yamian A
and Yamian B. The results of qRT-PCR were the same
as those obtained with cDNA-AFLP (Fig. S3 and Fig. 5).
T75 and T74 were both detected at the 2nd stage of
flower buds in Yamian A. T12 was detected at the 2nd,
3rd and 4th stage of flower buds in Yamian A, which
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was the peak period of microspore abortion, and it was
not detected in the flower buds of other periods in
Yamian A and all periods in Yamian B. T26 and T39
were detected at the 6th and 7th and at the 5th, 6th, and
7th stages of flower buds in Yamian A, respectively,
which followed microspore abortion, and they were not
detected in the flower buds of other periods in Yamian
A and all periods in Yamian B. T67 and T81 were de-
tected at the 2nd, 3rd and 4th stages of flower buds in
Yamian B and were not detected in the flower buds of
other periods in Yamian B and all periods in Yamian A.
The qRT-PCR results of these selected genes were con-
sistent with their cDNA-AFLP results.

Seven coding genes that corresponded to differentially
expressed proteins were selected to analyze in the
mRNA expression levels by qRT-PCR to examine our 2-
DE results and verify the differences in protein abun-
dance at the transcriptional level (Fig. 6). The expression
level of 1003 at the 2nd, and the 7th stages of the floral
buds in Yamian A was lower compared to that at the
same stages in Yamian B, but instead at the 3rd stage of
the flower bud, and a notable difference in other periods
between Yamian A and Yamian B was not observed. The
expression level of 3004 at the 2nd stage of the flower
bud in Yamian A was lower compared to that at the
same stages in Yamian B, but instead at the 3rd stage of
the flower bud. The expression levels of 0013, 1604,
4702 and 2005 at the 2nd and 3rd stages of the flower
buds in were lower compared to those at the same
stages in Yamian B. The expression level of 4713 at the

® \

Gorai.002G243100.1

=

N

Gorai.002G143400.1

Gorai.003G101200.1

Gorai.012G129000.1

Gorai.008G199000.1
Gorai.002G177600.1

-

Gorai.001G077400.1

Gorai.006G178600.1

-

Gorai.009G042100.1

-

Fig. 4 Biological interaction network of the differentially expressed proteins. Blue indicates co-occurrence evidence, red indicates fusion evidence,
green indicates neighborhood evidence, yellow indicates text-mining evidence, purple indicates experimental evidence, light blue indicates
database evidence and black indicates coexpression evidence
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2nd and 3rd stages of the flower buds in Yamian A was
higher compared to that at the same stages in Yamian B.

Comparative analysis between TDFs and DEPs

To study the abortive cause of YA-CMS, we performed a
comparative analysis between TDFs and DEPs in terms of
expression, functional annotation, GO and KEGG analyses.
We found four interesting things. First, we found
peroxidase-related annotations (T74 and 3003) between
TDFs and DEPs; however, T74 was highly expressed only
in the A2 period, while 3003 was highly expressed in the B3
period. Second, the expression of different TDFS or DEPs
with the same annotation, such as the NAC domain, the
NAC domain superfamily (T51 and T55), and the ribulose
bisphosphate carboxylase, large subunit (4702 and 5720),
was not consistent between Yamian A and Yamian B.
Third, there was 1 identical cell component, integral

component of membrane (GO:0016021), and 2 molecular
functions, protein binding (GO:0005515) and ATP binding
(GO:0005524), according to the GO analysis of TDFs and
DEPs. Fourth, there were no identical KEGG pathways be-
tween TDFs and DEPs. These results indicated that the two
study perspectives, transcriptomics and proteomics, were
consistent and complementary and demonstrated that there
might be a complex regulatory network between the genes
and proteins derived from three different genetic back-
grounds of Gossypium bickii, Gossypium arboreum and
Gossypium hirsutum Linn in YA-CMS.

Discussion

Relationship between pollen abortion and the differences
in ATP synthase in the YA-CMS and YB plants

ATP synthase is the key enzyme in the process of mito-
chondrial oxidative phosphorylation. Mitochondria ATP
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synthase belongs to the energy storage “F” type, which
consists of two parts, the Fo and F; regions. The Fo
region is located within the inner membrane of plant
mitochondria and functions as a proton channel. F; is
the active enzyme center and is composed of alpha,
beta, and other subunits. The binding sites of beta
subunits have the activity of catalytic ATP synthesis
or hydrolysis [21].

Pollen development is a process of high energy con-
sumption, and some or some gene products interfere
with the function of mitochondrial FoF;-ATP synthase,
which may lead to the abortion of pollen [22]. Many
studies have shown that ATP synthase has a close rela-
tion with cytoplasmic male sterility. For example, Li
et al’s study of protein interactions in chili pepper

indicated that the decreased activity and amount of ATP
synthase affected the development of pollen and thus
caused cytoplasmic male sterility [23]. The use of the
SNP marker of the ATP synthase gene could simply,
rapidly and easily identify the cytoplasmic male sterile
line CMS-D8 [24]. The study results of atpl [25], atp4
[26], atp6 [27], atp8 [28] and atp9 [29] by researchers
showed that these genes may be related to cytoplasmic
male sterility in plants. Studies have also found that 29
mtDNA regions associated with CMS have been identi-
fied, and these recombinant chimeric genes are involved
in the promoter region and part of the coding region of
the ATP synthase subunit gene. Kong et al.’s RNA edit-
ing analysis of ATP synthase genes on the cotton CMS
line H276A, maintainer line and restorer line showed
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forty-one RNA editing sites, and two new stop codons
were detected and suggested the ATP synthase genes
might be an indirect cause of cotton CMS [30]. Protein
analysis in CMS of wheat showed ATP synthases could
be associated with abnormal pollen grain formation and
male sterility [31].

In this study, we found 3 ATP synthase-related pro-
teins from the proteome, 2 ATPase, F1/V1/A1 complex,
alpha/beta subunit, and nucleotide-binding domain
(1604, 4713), and 1 ATPase, FO complex, subunit D,
mitochondrial (0013).

Among these proteins, 1604 was significantly upregu-
lated in the sporogenous cell and microsporocyte stage
of the YB plants but not in YA-CMS plants at the same
stages. The expression of 0013 was significantly re-
duced in the microsporocyte stage of the YA-CMS
plants compared with the YB plants in the same period.
Spot 4713 was more significantly upregulated in the mi-
crosporocyte stage of the YA-CMS plants than in YB
plants. Zheng et al. ‘s study found that ATP synthase
beta subunit and ATP synthase D chain were downreg-
ulated in Male Sterile Mutant YX-1 anthers of Wolf-
berry [32]. Li et al.’s study found that ATP synthase
beta subunit was not expressed in the wheat BNS male
sterile line but was expressed in its transformation line
[33]. These results were consistent with ours. Differen-
tial proteomics was studied with the upland cotton
cytoplasmic sterile line 104-7A, maintainer line, and re-
storer line by Xu Qi, and the results found that ATP
synthase beta subunit was expressed only in the re-
storer line, while there was no expression in the sterile
and maintainer lines [34]. Wu et al.’s study found that
ATP synthase D chain was downregulated in Capsicum
annuum L. CMS anthers, but ATP synthase beta sub-
unit was upregulated in the same material [35]. These
findings were not consistent with ours results. Accord-
ing to previous ultrastructure observations, the spor-
ogenous cell and microsporocyte stages of the YA-CMS
plants both contained numerous abnormal mitochon-
dria. The above results showed that the downregulation
of ATPase, F1/V1/Al complex, alpha/beta subunit,
nucleotide-binding domain (1604) and 1 ATPase, FO
complex, subunit D, mitochondrial (0013) led to in-
ternal energy metabolism disorder, caused large mito-
chondrial abnormal disintegration, and then affected
the development of anther, ultimately causing male
sterility in the YA-CMS plant. Additionally, the dis-
agreements in the up- and down-regulation of ATP
synthase and its subunit from different male sterile
lines in different plants, and even the same kind of
plant but different genotypes, may be caused by their
self-different abortion mechanisms; these different ster-
ility mechanisms are still not well understood and war-
rant further research.
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Relationship between pollen abortion and differences in
UGT in YA-CMS and YB plants

UGT are the major glycosyl transferase in plants. These
proteins can transfer the glycosyl groups of the activated
donor molecule (mainly uridine diphosphate glucose) to
the receptor molecule (including secondary metabolites,
such as flavonoids, phytohormones, such as cytokinins,
and herbicides and insecticides), thereby regulating the
location of the receptor molecule in the cell and its bio-
logical activities such as solubility and transport in or-
ganisms [36, 37]. UGT plays an important role in
regulating glycosylation and energy storage of secondary
metabolites in organisms, endogenous hormone activity
and toxicity relief of exogenous toxins [38, 39]. In this
study, three different primers (E2M7, E9M16 and
E15M3) were used to amplify the four differences in the
highest consistency with the UGT gene (T1, T12, T26,
and T27) in the buds of the YA-CMS plant during the
peak period of abortion (sporogenous cell proliferation
stage, microspore mother cell stage and meiosis stage)
and after the abortion stage (tetrad stage, first nuclear
stage and pollen maturation stage) of microspores. The
allogenic fragments were not amplified in the main-
tainers of the same period. This suggests that the UGT
gene may play a role in the peak period of microspore
abortion of the cotton male sterile line Yamian A and
may be related to the microspore abortion of Yamian A,
but this hypothesis still needs further experiments to

verify.

Relationship between pollen abortion and the differences
in ribosomal proteins in YA-CMS and YB plants
The ribosome is a protein-nucleic acid complex enzyme
system [40]. As the main site of protein synthesis in
cells, the integrity of the ribosome structure and the co-
ordination of the quantity of each component are neces-
sary conditions to ensure the effective and correct
synthesis of protein [41]. Although it is generally be-
lieved that these ribosomal proteins play an important
role in protein synthesis, more ribosomal proteins have
been reported to have many other functions. For ex-
ample, they can play a role in the regulation of cell
apoptosis, proliferation, development, and malignant
transformation by participating in transcription, RNA
processing, DNA repair and replication [39]. Zhou et al.
found that ribosome proteins were essential for anther
development and male sterility in sterile buds when they
studying the genetic male sterile line ‘AB01” in Chinese
cabbage [5]. This study indicates that there is a certain
relationship between ribosomal protein and plant male
sterility.

The 60S ribosomal protein L13a-4-like (T2) of G. aus-
tral was isolated, and expressed only at the peak of
microspore abortion of cotton cytoplasmic male sterile
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line Yamian A, but no expression was observed during
microspore developmen and other periods in the male
sterile line Yamian A and the whole anther formation
period of the maintainer line. This result suggests that
the 60S ribosomal protein L13a-4-like may be involved
in the development of microspores in the male sterile
line, which is related to the abortion of microspores in
male sterile lines, but this hypothesis still needs further
experiments to verify.

Relationship between pollen abortion and the differences
in NAC transcription factors in the YA-CMS and YB plants
NAC transcription factors are one of the largest families
of transcription factors peculiar to plants. These factors
have many functions, and they are widely involved in the
formation of lateral roots, secondary walls, shoot apical
meristem, senescence and flowering of plants, as well as
the response to abiotic and biological stresses [42]. Chen
et al. found that 9 NAC transcription factor genes were
downregulated and 6 NAC transcription factor genes
were upregulated in sterile buds when they studied CMS
in Wucai [43].

Our study results showed that three TDFs, T51, T52,
and T55, had the same annotation NAC domain; NAC
domain superfamily. T55 was amplified from the mixed
buds of the peak period of abortion (sporogenous cell
proliferation stage, microspore mother cell stage and
meiosis stage) of YA-CMS by using selection primers
E7M3 but was not amplified in the buds of the cotton
maintainer line in corresponding period. T51 and T52
were amplified from the mixed buds of microspore de-
velopment tetrads, monocyte and binucleate pollen
grains and mature pollen grains of the cotton maintainer
line YB by using the selection primer E7ZM2 but were
not amplified in the buds of the sterile line in the corre-
sponding period. In terms of cell morphology, at this
stage, the pollen sac of the male sterile line anthers
contracted and decreased after microspore mother cells
disintegrated completely. Then, the tapetum cells elon-
gated radially and filled the pollen sac during the tetrad
formation of fertile anthers and finally formed pollen sacs
without pollen grains. This result suggests that pollen
abortion of CMS lines may be caused by mutation or si-
lencing of the NAC transcription factor gene, but this hy-
pothesis still needs further experimental verification.

Relationship between pollen abortion and the differences
in ribulose bisphosphate carboxylase in YA-CMS and YB
plants

Ribulose bisphosphate carboxylase is widely distributed
in the organelles of photosynthesis. It is a key enzyme
for fixing CO, in plant photosynthesis and participates
in the photorespiration pathway of plants. Ribulose
bisphosphate carboxylase is composed of 8 small subunits
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(12-18 kD) encoded by nuclear genes and 8 large subunits
(50-60 kD) encoded by chloroplasts. The small subunits
have regulatory functions, and the enzyme activity locates
on the large subunits. Kurepa ] and Smalle ] A found that
the oxidative stress caused by promoting the generation of
superoxide anion induced the formation of covalently
linked ribulose-1,5-bisphosphate carboxylase/oxygenase
large subunit dimer, and its formation coincided with the
loss of chloroplast function when they studied the effects
of oxidative stress on tobacco [44].

Current studies on cytoplasmic male sterility in many
plants have shown that ribulose bisphosphate carboxyl-
ase is related to fertility. Chen et al. showed that the ex-
pression of the ribulose bisphosphate carboxylase
subunit in two stages of the wheat cytoplasmic-nuclear
interaction male sterile line was significantly downregu-
lated, and this result suggested that energy metabolism
might be closely related to anther development [45]. Liu
et al. found that the activity of ribulose bisphosphate
carboxylase in cytoplasmic male sterile lines of maize,
sorghum, rice, wheat, and tobacco was higher than that
in their corresponding maintainer lines, indicating that
there was a certain relationship between ribulose bispho-
sphate carboxylases or their cytoplasmic male sterility in
plants [46]. Ren Yan also identified five ribulose bispho-
sphate carboxylase or its large subunits in the differential
proteome analysis of anthers of double recessive genic
male sterile lines and fertile lines of Gossypium hirsutum
Linn [47].

Two ribulose bisphosphate carboxylase, large subunit
spots (4702, 5720) were found in our study. The spots
(4702, 5720) on the 2-DE diagram show that the mo-
lecular weight is the same, but the isoelectric point is
not the same: one is acidic, and the other is alkaline.
The acidic large subunit was expressed only in the crit-
ical period of abortion of the maintainer line, while the
alkaline large subunit was only expressed in the sterile
line at the critical period of abortion. The difference be-
tween the 2 ribulose bisphosphate carboxylase, large
subunit spots between the sterile and maintainer lines
may be caused by the differing degrees of reactive oxy-
gen species, and this may be related to anther fertility of
cytoplasmic male sterility, though the specific mechan-
ism needs further study.

Relationship between pollen abortion and the differences
in heat shock protein in the YA-CMS and YB plants

Heat shock protein is a kind of stress protein induced
and synthesized by organisms under the influence of ad-
verse environmental factors such as high temperature,
hypoxia, starvation, and heavy metal ions. It can improve
the heat resistance of cells and has the functions of mo-
lecular chaperone and regulation. At present, heat shock
protein has become the focus of molecular biology
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research, and there are some reports on male sterility.
Heat shock protein HSP70 gene transcription was
blocked in the sterile line, which caused abnormal cell
meiosis, resulting in the number of anther mitochondria
in the sterile line, and then pollen development could
not obtain sufficient energy, resulting in pollen abortion
[48, 49]. Zeng et al. also found heat shock protein 22
kDa in anther differential proteomics of the soybean
cytoplasmic male sterile line NJCM2A and speculated
that it might lead to abnormal mitochondrial develop-
ment, thus resulting in inadequate energy supply for
pollen development and eventually abortion [50]. Su et al.
found that six BoHSP70 genes were highly expressed in
the binuclear-pollen-stage buds of a male fertile line com-
pared with its near-isogenic sterile line when they studied
the HSP70 family genes in cabbage [51].

In this study, heat shock protein Hsp20 (2005) was
found in the buds of YA-CMS and YB during the critical
period of abortion, and its expression in YB was higher
than that in YA-CMS. Our results were similar to the re-
sults of Su et al. The difference in expression of heat
shock protein Hsp20 (2005) between sterile lines and
maintainer lines indicates that 2005 may be related to
anther fertility of cytoplasmic male sterility.

Conclusions

Combining all results of the transcriptome, proteome
and early cytological, physiological and biochemical
studies of the cytoplasmic male sterile line Yamian A
and its maintainer line Yamian B in cotton, we specu-
lated that there might be connections among UGT,
NAC transcription factors (NAC TFs), ATPase, ribulose
bisphosphate carboxylase, large subunit (RBCL), gluta-
thione S-transferase (GST), heat shock protein, peroxid-
ase, and ribosomal protein regarding the cytoplasmic
male sterility of Yamian A (Fig. 7). However, the occur-
rence of cytoplasmic male sterility has certain temporal
and spatial specificity. Further studies are still needed to
determine the exact nature of the full mechanism under-
lying cytoplasmic male sterility in Yamian A.

Methods

Plant materials

Both the cytoplasmic male sterile (CMS) line Yamian A
and its maintainer Yamian B are from the cotton breed-
ing group of Shanxi Agricultural University.

The breeding process of the CMS Yamian A and its
maintainer Yamian B was as follows: the diploid Gossypium
arboreum (A,A,) was used as the female parent, the wild
Gossypium bickii (G;G;) was used as the male parent to
hybridize into the allodiploid (A,G;), the hybrid chromo-
some was doubled, the new heterotetraploid (A,A,G;G;)
was synthesized, and the tri-specific hybrid (AAGD) was
synthesized by hybridizing the heterotetraploid (A,A,G,G;)
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with the cultivated tetraploid Gossypium hirsutum Linn
(AADD); [52-54]. The natural mutant cytoplasmic male
sterile material found in the progeny of tri-specific hybrids
was used as the source of sterility, and the BCq cotton cyto-
plasmic male sterile Yamian A was obtained through inter-
specific hybridization and continuous backcrossing with
upland cotton Yamian B as the recurrent parent. Yamian A
has the cytoplasm of Gossypium arboreum and the genetic
background of wild Gossypium bickii in Australia. Yamian
B is the homotype maintainer of Yamian A.

We analyzed the flower organ morphology, fertility
performance, restoration and conservation relationship,
cytology, physiological and biochemical, and Random
Amplification Polymorphic DNA (RAPD) of Yamian A.
The main study results were as follows:

The anther of Yamian A was thin, dark brown, shriv-
eled and not dehiscent, and no pollen dispersed, but its
pistil development was normal. The anther in its main-
tainer Yamian B was plump, and milky yellow, and the
pollen is scattered and full of the whole anther after
cracking (Fig. S4) [16]. The fertility of Yamian A was not
affected by the environment, and the sterility was stable;
Yamian A has a 100% rate for both sterile plants and de-
gree of sterility, and the outcrossing rate was high, which
was distinctly different from that of the Gossypium
arboreum cytoplasmic male sterile line, reported to be
susceptible to the environment [55, 56]. Both upland
cotton and island cotton could be used as maintainers of
Yamian A. The recovery materials 10N93R and 10N91R
(introduced from the cotton Institute of Shanxi Acad-
emy of Agricultural Sciences) transferred from 0 to 613-
2R had good recovery ability for Yamian A. The abortion
of microspores of Yamian A was caused by delayed de-
velopment of tapetum cells (Fig. S5) [16], which was dif-
ferent from the abortion methods summarized by
previous studies that were caused by excessive hyper-
trophy or premature disintegration of tapetum cells; the
activities of peroxidase and so on were related to the
male sterility of Yamian A [57]. The source of the mater-
ial and mitochondrial RAPD analysis indicated that the
sterile cytoplasm of Yamian A was different from that of
the existing Gossypium harknessii cytoplasmic male ster-
ile line (Ha A) [58] and jin A [59] (Fig. S6).

These results indicate that Yamian A is a new sterile
material with the cytoplasm of Gossypium arboreum and
the genetic background of Australian wild Gossypium
bickii, and Yamian A is novel for study.

The cotton CMS line Yamian A (YA-CMS) and its
maintainer Yamian B (YB) were planted in the experi-
mental field of Shanxi Agricultural University, Taigu,
Shanxi, China, during the natural growing season. Refer-
ring to Hou’s method [60], based on the observation and
analysis of a large number of cotton anther morphology
and cytology, we determined the stable correlation
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between bud transverse diameter (BTD) and pollen de-
velopment stages on YA-CMS and YB, and the flower
buds were divided into seven consecutive grades (Table
S3). Stage 1 (Sporogonium stage, BTD < 1.50 mm): the
buds were the normal development and before micro-
spore abortion stage; Stage 2 (Sporogenous cells stage,
1.50 < BTD < 2.16 mm), 3 (Microsporocyte stage, 2.16 <
BTD <2.60 mm) and 4 (Meiosis stage, 2.60 < BTD < 4.60
mm): the buds were the fertility transformation and mid-
dle microspore abortion stage, stages 2 and 3were the
key stage of pollen abortion; Stage 5 (Tetrad stage,
4.60 <BTD <5.90 mm), 6 (First nuclear stage, 5.90 <
BTD <9.93 mm) and 7 (Pollen maturation stage, BTD >
9.93 mm): the buds were entirely abortive and after the
microspore abortion stage [16].

At the anthesis, the buds of 7 different stages were
harvested separately from more than 55 plants of YA-
CMS and YB, and the mixed buds of every stages from
each line were weighed in 2 g packages, then rapidly fro-
zen as packed materials with liquid nitrogen and pre-
served at — 80 °C for later experiments.

The buds of the before, middle and after microspore
abortion stages of Yamian A and Yamian B were col-
lected for transcriptome research; the buds of the key
stage of pollen abortion (Stage 2, 3) were collected for
proteomics research; the buds of the seven different de-
velopment periods were used to perform analysis by
qRT-PCR. An individual hybrid dynamic sampling

method was used in the sampling process to ensure that
each sample has the same genetic background and
growth period.

Transcriptome analysis

The total RNA of the buds collected for the transcrip-
tome research was extracted by the EASYspin Plus Plant
RNA Kit RN37 (Aidlab Biotechnology) and cDNA syn-
thesis by the M-MLV RTase cDNA Synthesis Kit
(TaKaRa Company). ¢cDNA-AFLP analysis was per-
formed and slightly changed as described previously
[61]. Each sample was used with three technical repli-
cates. The differentially expressed band’s sequences were
analyzed with DNASTAR software and the BLAST in-
strument in the latest G. austral, G. arboreum and G.
hirsutum genomic databases of CottonGen (https://
www.cottongen.org/).

Proteomics analysis

Protein isolation, 2-DE, image analysis, tryptic digestion
and identification of differentially expressed proteins
were performed as described previously with some modifi-
cations [62]. Each sample was used with three technical
replicates. The mass spectrometry data of differentially
expressed proteins were identified by MASCOT and PEAK
S 6.0 software, and their sequences were analyzed in the G.
raimondii, G. austral, G. arboreum and G. hirsutum gen-
omic databases of CottonGen (https://www.cottongen.org/)
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[63]. STRING 11.0 (http://string-db.org/cgi/input.pl) was
used to construct a protein-protein interaction network of
differential proteins with G. raimondii as the reference
species.

Quantitative real-time PCR verification

Total RNAs extraction, reverse transcription and qRT-
PCR from the buds of seven different development pe-
riods of both the fertile and sterile plants were per-
formed using EASYspin Plus Plant RNA Kit RNO9
(Aidlab Biotechnology), PrimeScript® RT Master Mix
Perfect Real-Time and DRR820ASYBR® Premix Ex Taq™
II (Tli RNaseH Plus) (TaKaRa), respectively, according
to the manufacturer’s instructions. The relative expres-
sion of the target genes was calculated with the 27°°“*
method [64]. Primers for qRT-PCR analysis are shown
in Supplementary Table S4. There were three biological
replicates with three technical replicates per sample.
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