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Abstract

Background: The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part
of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by
enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in
the regulation of cellulase production have been conducted but no overview of the whole regulation network is
available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction,
was used to help us decipher missing parts in the network of T. reesei Rut-C30.

Results: Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the
enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription
factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE
Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and
cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative
regulation of the development process and growth.

Conclusions: This work is the first investigating a transcriptomic study regarding the effects of pure and mixed
carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and
hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of
cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to
better cellulase-producing strains in industry-like conditions.
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Background
Given current pressing environmental issues, research
around green chemistry and sustainable alternatives to
petroleum is receiving increased attention. A promising
substitute to fossil fuels resides in second generation bio-
ethanol, an energy source produced through fermentation
of lignocellulosic biomass. One of the key challenges for
industrial bio-ethanol production is to improve the com-
petitiveness of plant biomass hydrolysis into fermentable
sugars, using cellulosic enzymes.
The filamentous fungus Trichoderma reesei, because of

its high secretion capacity and cellulase production capa-
bility, is the most used microorganism for the industrial
production of cellulolytic enzymes. The T. reesei QM6a
strain, isolated from the Solomon Islands during the Sec-
ond World War [1], was improved through a series of
targeted mutagenesis experiments [2–5]. Among the vari-
ety of mutant strains, Rut-C30 is actually known as the
reference hyper-producer [6, 7], and its cellulase produc-
tion is 15-20 times that of QM6a [8]. Comparison of
genomes of the Rut-C30 strain and its ancestor QM6a
brings to light the occurrence of numerous mutations
including 269 SNPs, eight InDels, three chromosomal
translocations, five large deletions and one inversion [9–
14]. Alas among them, only few mutations have been
proved to be directly linked to the hyper-producer phe-
notype [10, 15], the most striking one being the trunca-
tion of the gene cre1 [9]. CRE1 is the main regulator of
catabolite repression which mediates the preferred assim-
ilation of carbon sources of high nutritional value such
as glucose over others [16]. The truncated form retain-
ing the 96 first amino acids and results in a partial release
of catabolite repression [9] and more surprisingly turns
CRE1 into an activator [17]. While most specificities
(mutations, deletions, etc.) of the genetic background of
Rut-C30 are seemingly unrelated to the production of cel-
lulases [13], their impact should not be totally neglected
and assesed according to a dedicated experimental
design.
In T. reesei, the expression of cellulases is regulated by

a set of various transcription. Beside the carbon catabo-
lite repressor CRE1, the most extensively studied is the
positive regulator XYR1 which is needed to express most
cellulase and hemicellulase genes [18, 19]. Other tran-
scription factors involved in biomass utilization have
been characterized: ACE1 [20], ACE2 [21], ACE3 [22],
BGLR [15], HAP 2/3/5 complex [23], PAC1 [24], PMH20,
PMH25, PMH29 [22], XPP1 [25], RCE1 [26], VE1 [27],
MAT1-2-1 [28], VIB1 [29, 30], RXE1/BRLA [31] and
ARA1 [32]. Moreover, transcription factors involved in
the regulation of cellulolytic enzymes have also been char-
acterized in other filamentous fungi: CLR-1 and CLR-2
in Neurospora crassa [33] or AZF1 [34], PoxHMBB [35],
PRO1, PoFLBC [36] and NSDD in Penicillium oxalium

[37, 38]. Yet, their respective function has not yet been
established in T. reesei. Among the mentioned regula-
tors, some are specific to cellulases or xylanases genes,
or to carbon sources while others are global regulators,
e.g. PAC1, which is reported to be a pH response regu-
lator. This profusion of transcription factors reveals the
complexity of the regulatory network controlling cellulase
production. Better understanding links between regula-
tors could be a major key in improving the industrial
production of enzymes.
Gene Regulatory Network (GRN) inferencemethods are

computational approaches mainly based on gene expres-
sion data and data science to build representative graphs
containing meaningful regulatory links between tran-
scription factors and their targets. GRN may be useful to
visualize sketches of regulatory relationships and to unveil
meaningful information from high-throughput data [39].
We employed BRANE Cut [40], a Biologically-Related
Apriori Network Enhancement method based on graph
cuts, previously developed by our team. It has been proven
to provide robust meaningful inference on real and syn-
thetic datasets from [41, 42]. In complement to classical
analysis, such as differential expression or gene cluster-
ing, the graph optimization of BRANE Cut on T. reesei
RNA-seq is likely to cast a different light on relationships
between transcription factors and targets.
While cellulose is the natural inducer of cellulase pro-

duction, authors in [43] showed that, in Trichoderma
reesei, the lactose is capable to play the role of cellulase
inducer. For this reason, this carbon source is generally
used in the industry to induce the cellulase production
in T. reesei. Efficient enzymatic hydrolysis of cellulose
requires the synergy of three main catalytic activities:
cellobiohydrolase, endoglucanase and β-glucosidase. The
cellobiohydrolases cleave D-glucose dimers from the ends
of the cellulose chain. Endoglucanases randomly cut the
cellulose chain providing new free cellulose ends which
are the starting points for cellobiohydrolases to act upon,
hydrolyze cellobiose to glucose, thereby preventing inhi-
bition of the rest of enzymes by cellobiose [44]. It is well
known that in T. reesei, β-glucosidase activity [45, 46] has
generally been found to be quite low in cellulase prepa-
rations [47]. It causes cellobiose accumulation which in
turn leads to cellobiohydrolase and endoglucanase inhi-
bition. To overcome this low activity, different strategies
have been experimented: supplementation of the enzy-
matic cocktail with exogenous β-glucosidase [48, 49], con-
struction of recombinant strains overexpressing the native
enzyme [47, 50, 51], expressing more active enzymes or
modifying the inducing process to promote the produc-
tion of β-glucosidase. This latest approach was performed
by using various sugar mixtures to modify the composi-
tion of the enzymatic cocktail [52]. Thus, an increase of
β-glucosidase activity in the cocktail can be achieved by
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using a glucose-lactose mixture, also favorable in terms of
cost.
In the present study, fed-batch cultivation experiments

of the T. reesei Rut-C30 strain, using lactose, glucose and
mixtures of both were performed. We chose to analyze
this reference strain for industrial production because
of its superior cellulase production capacity. The other
reference strain for academic studies, QM9414, has for
instance a much lower productivity (amount of extracellu-
lar protein and cellulase activity) [7]. Rut-C30 is impaired
in CRE1-dependent catabolite repression, which modifies
the regulatory network. This truncation entails the inter-
est for this strain, while making the understanding of its
mechanisms complicated. Our objective is therefore to
analyze transcriptomes with different sugar mixtures with
a hyperproducing strain under industry-like conditions.
As observed previously, productivity was increased with
the proportion of lactose in the mixture and an higher
β-glucosidase activity was measured in the mixture con-
ditions compare to pure lactose. To explore the molecular
mechanisms underlying these results, a transcriptomic
study was performed at 24 h and 48 h after the onset
of cellulase production triggered by the addition of the
inducing carbon source lactose. An overall analysis reveals
significant impact of lactose/glucose ratios on the num-
ber of differentially expressed genes and, to a lesser extent,
of sampling times. According to the following clustering
analysis, three main gene expression profiles were iden-
tified: genes up or down regulated according to lactose
concentration and genes over-expressed in the presence
of lactose but independently of its proportion in the sugar
mix. Interestingly, expression profile of these genes sets
overlaps productivity and β-glucosidase curve confirm-
ing a transcripomic basis of the phenotypes observed.
As transcription factors were identified in all transcrip-
tomic profiles, we decided to deepen our understanding
on the regulation network operating during cellulase pro-
duction in T. reesei Rut-C30. A system biology analysis
with BRANE Cut network selection was carried out to
inferred links between differentially regulated transcrip-
tion factors and their targets. Results highlight three sets
of subnetworks, one directly linked to cellulases genes,
one matching with β-glucosidase expression and the last
one connected to developmental genes.

Results
Cellulase production is increased with lactose proportion
but β-glucosidase activity is higher in glucose-lactose
mixture
In order to study its transcriptomic behavior on various
carbon sources, T. reesei Rut-C30 was cultivated in fed-
batch mode in a miniaturized experimental device called
“fed-flask” [53], allowing us to obtain up to 6 biological
replicates with minimal equipment. Cultures were first

operated for 48 h in batch mode on glucose for initial
biomass growth (resulting in around 7 g L−1 biomass dry
weight), then fed with different lactose/glucose mixtures
e.g. pure glucose (G100), pure lactose (L100), 75% glucose
+ 25% lactose mixture (G75-L25), and 90% glucose + 10%
lactose mixture (G90-L10).
As expected, pure lactose feed resulted in highest pro-

tein production, with 2.6 g L−1 protein produced during
fed-batch, at a specific protein production rate (qP) of 7.7
± 1.1mg g−1 h−1 (Fig. 1a and b). The final protein con-
centration on pure lactose may appear low (≈3g/L), but
the specific productivity is high, similar to that obtained
in a bioreactor. In addition, as displayed in Additional
file 1, the whole fed substrate is converted into proteins
as no biomass is produced during the pure lactose feed-
ing. Hence, despite the low value of protein concentration
obtained in our “fed-flask” conditions, these observations
show that cellulase induction is at its maximum level. Glu-
cose feed resulted in almost no protein production (qP
15 times lower than on lactose) but in biomass growth
(4.2 g L−1 biomass produced during fed-batch, see Addi-
tional file 1) while glucose/lactose mixtures resulted in
intermediate profiles, with 0.6 g L−1 protein produced on
10% lactose (G90-L10), and 1.4 g L−1 protein produced
on 25% lactose (G75-L25). We then determined the fil-
ter paper and β-glucosidase activities at 48 h after the
beginning of fed-batch (Fig. 1c and d): filter paper activ-
ity is correlated to lactose amounts whereas β-glucosidase
activity is higher in carbon mixture. The obtained results
are in accordance with the ones obtained in [53], allowing
us to assume the absence of residual sugar accumulation
in the medium during the fed-batch.

Differentially expressed gene identification
This study aims at better understanding the effect of the
lactose on the transcriptom of T. reesei Rut-C30, but not
during the early lactose induction as in [54]. For this rea-
son, we chose to extract RNA at 24 h and 48 h after the
fed-batch start for further transcriptomic analysis.
Analysis of glucose, lactose and mixture effects was

performed to identify differentially expressed (DE) genes
between conditions. Specifically, to refine the understand-
ing of the lactose effect on the cellulase production, the
gene expressions on various lactose proportions (G90-L10,
G75-L25, L100) at 24 h and 48 h have been differentially
evaluated regarding gene expression obtained on pure
sugar e.g. glucose (G100) or lactose (L100) at 24 h and 48 h.
The comparison to both pure glucose and pure lactose
feeds leads to ten comparisons (summarized on the cir-
cuit design displayed in Additional file 2. The use of two
distinct references conditions increases the chances to
identify relevant gene expression clusters by exploring a
wider gene expression pattern. The number of DE genes
obtained for each of the comparisons is displayed in Fig. 2.
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Fig. 1 Protein production on different sugar sources in fed-batch mode. amonitoring of protein concentration during fed-batch. For the different
glucose-lactose content in feed (G100, G90-L10, G75-L25, L100), b reports the specific protein production rate, c the final β-glucosidase activity and d
the final filter paper activity. Reported values are average and standard deviation of the biological replicates

For a better intelligibility of the results, we focus on DE
genes compared to the pure glucose (G100) reference.
From a global overview, at 24 h, 427 genes are differ-

entially expressed and the number of DE genes increases
with the level of lactose. In addition, these DE genes are
up-regulated. Results obtained at 48 h lead to 552 DE
genes and its number increases with the level of lactose.

These results, displaying an increasing number of dif-
ferentially expressed genes according to the lactose level
between 24 h and 48 h, are in accordance with the spe-
cific protein production rate results previously presented
(cf Fig. 1). Note that this increase is essentially inherent to
the threshold of 2 on the log fold-change. Indeed, at 24 h,
some genes are considered as non differentially expressed

Fig. 2 Differentially expressed genes of Rut-C30 on various of carbon sources mixtures. Number of over- (up, in red) and under-expressed (down, in
green) genes on different mixed carbon source media (G90-L10, G75-L25, L100) at 24 h and 48 h
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although they are on the verge of becoming one, and then
appear at 48 h.
We then focused on the intertwined effects i.e. the

impact of time regarding each carbon source mixture. On
pure lactose (L100), the number of DE genes increases
between 24 h and 48 h. On the contrary, for both the mini-
mal and the intermediate level of lactose (e.g. G90-L10 and
G75-L25), the number of DE genes decreases between 24 h
and 48 h. We observe that this diminution between the
early and the late time samplings on low lactose quantity
is mainly due to the diminution of over-expressed genes.
This result suggests that a belated process only appears on
pure lactose.
Eventually, we checked whether the genes mutated

in Rut-C30, by comparison to QM6a, are differentially
expressed in our conditions (see Additional file 3). While
the total number of mutated genes at the genome scale is
166 (1.8%), we only found 12 of them in Rut-C30 which
are also differentially expressed (1.8%). Hence, we cannot
conclude to an enrichment of mutated genes responsible
for cellulase production on lactose. This result is consis-
tent with [54], which demonstrates the weak impact of
random mutagenesis on transcription profiles related to
cellulase induction and the protein production system.
Subsequent analyses are based on the 650 genes identi-

fied as DE in at least one of the ten studied comparisons.

Gene clustering and functional analysis
To detect functional changes on lactose, we performed a
clustering on the previously selected 650 genes. For this
purpose, each gene is related to a ten-point expression
profile corresponding to the ten log2 expression ratios
(base-2 logarithm of expression ratios between two condi-
tions according to the circuit design detailed in Additional
file 2. Gene clustering was performed using an aggregated
K-means classifier (detailed in the Materials andMethods
section). Among the five distinct profiles identified (Fig. 3
and Additional file 3 for the exhaustive list of genes),
three main trends appear, when we compare the gene
expression on lactose relatively to on glucose. The first
trend encompasses genes under-expressed on lactose, in
a monotonic manner at 24 h and 48 h and is found in two
clusters, denoted byD+ andD− (D for down-regulation).
Conversely, observed in two others clusters namedU+ and
U− (U for up-regulation), the second trend refers to genes
over-expressed on lactose in a monotonic manner at 24 h
and 48 h. The last trend concerns genes over-expressed on
lactose, but where the amount of lactose affects the gene
expression in an uneven manner. This trend is recovered
in a unique cluster denoted by U�.

Genesmonotonically down-regulated across lactose amount
As mentioned above, genes having a monotonic under-
expression regarding the amount of lactose are grouped

in clusters D+ (64 genes: 10%) and D− (254 genes: 39%).
These genes are repressed in lactose: the more the lactose,
the more the repression. The main difference between
these two clusters is in the levels of under-expression:
genes in cluster D+ are in average more strongly under-
expressed than genes in cluster D−. In addition, we note
that cluster D−, for which the under-expression is the
weaker, contains a larger number of genes than cluster
D+. This result suggests that lactose moderately affects
the behavior of a large number of genes while only few
genes are strongly impacted by lactose concentration.
In addition, it is interesting to note that the differential
expressions of transcription factors are lower than genes
not identified as such. This observation confirms that a
weakmodification only of transcription factors expression
can lead to a strong modification in the expression of their
targets.
More specifically, clusterD+ is enriched in genes related

to proteolysis and peptidolysis processes (IDs 22210,
22459, 23171, 106661, 124051) and contains three genes
encoding cell wall proteins (IDs 74282, 103458, 122127).
Interestingly, no transcription factors are detected in this
cluster.
Cluster D−, whose median profile exhibits a slight

repression across lactose concentrations encompasses
transcription factors whose ortholog are involved in
the development: Tr–WET-1 (ID 4430, [55]), Tr–PRO1
(ID 76590, [56, 57]) and Tr–ACON-3 (ID 123713, [58]).
We recall that the Tr–XXX notation refers to the gene
in T. reesei for which the ortholog in an other specie is
XXX (see the “Functional analysis” section in Materials
and Methods). We also found 11 genes involved in prote-
olysis and peptidolysis processes, five genes encoding for
cell wall protein (IDs 80340, 120823, 121251, 121818 and
123659), two genes encoding for hydrophobin proteins
(hbf2 and hbf3) and two genes involved in the cell adhesion
process (IDs 65522 and 70021). Nine genes encoding for
G-protein coupled receptor (GPCR) signaling pathway are
also recovered in this cluster. It is important to note that,
in addition to the three already mentioned, 11 other tran-
scription factors are also present (including PMH29, RES1
[59], Tr–AZF-1 (ID 103275) and IDs 55272, 59740, 60565,
63563, 104061, 105520, 106654, 112085). We also found
the xylanase XYN2 with a strong repression observed
on pure lactose in comparison to pure glucose, while its
expression seems insensitive to low lactose concentration.

Genesmonotonically up-regulated across lactose amount
We recall that clusters U+ (78 genes: 12%) and U−
(201 genes: 31%) contain genes whose over-expression
is monotonic with respect to lactose: the more the lac-
tose, themore the induction. Themain difference between
expression profiles of these two clusters is the level of
over-expression: genes in cluster U+ are more activated
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Fig. 3 Heatmap and median profiles of clustered genes. Clustering results on the 650 differentially expressed genes : clusterD+ (green),D− (dark
green) for down-regulation,U� (orange),U+ (red) andU− (dark red) for up-regulation. We have highlighted the median profile of the
corresponding cluster in black and left the median profiles of the other clusters in grey in the background to facilitate visual comparison

than genes belonging to cluster U−. A similar remark may
be drawn as previously: preliminary observations suggest
that a large number of genes is moderately impacted by
lactose (cluster U−) while only few genes are strongly
affected by lactose concentrations (cluster U+). As sim-
ilarly observed on down-regulated genes, the expression
level of the transcription factors is weaker than their
targets.
In cluster U+, whose median profile expresses a potent

induction regarding lactose concentrations, 26 CAZymes
are found, of which 23 belong to the large glycoside hydro-
lase (GH) family. We recover the principal CAZymes
known to be induced in lactose condition: the two cel-
lobiohydrolases CBH1 and CBH2, two endoglucanases
CEL5A and CEL7B, one lytic polysaccharide monooxyge-
nase (LPMO)CEL61A, two xylanases XYN1 andXYN3, as

well as the mannanase MAN1, the β-galactosidase BGA1.
In addition, we found three specific carbohydrate trans-
porters CRT1, XLT1 and ID 69957 and three putative ones
(IDs 56684, 67541, and 106556). Interestingly, we found
the transcription factor YPR1, which is the main regulator
for yellow pigment synthesis [60]. These results, showing
a lactose-dependent increase in the expression of genes
related to the endoglucanase and cellobiohydrolase, cor-
roborate the phenotype observed in the study of [52].
Indeed, its authors show a rise of the specific endoglu-
canase and cellobiohydrolase activity positively corre-
lated to lactose concentration and cellulolytic enzymes
productivity.
Cluster U−, distinguishable by its median profile show-

ing a slight induction across lactose concentrations, con-
tains 17 genes involved in the carbohydrate metabolism,
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of which 16 belong to the large GH family. Among
these genes, we identified three β-glucosidases whose
two extracellulars CEL3D and CEL3C and one intracel-
lular CEL1A, the xylanase XYN4, and the acetyl xylanase
esterase AXE1 are recovered. We also found 14 Major
Facilitator Superfamily (MFS) transporters. In addition,
seven transcription factors are found in this cluster,
including XYR1 the main regulator of cellulase and hemi-
cellulase genes [19], CLR2 (ID 23163) identified as a reg-
ulators of cellulases but not hemicellulases in Neurospora
crassa [33], Tr–FSD-1 (ID 28781), ID 121121 and three
others, with no associated mechanism (IDs 72780, 73792,
106706).

Uneven up-regulation across lactose amount
In cluster U� (53 genes: 8%), we found globally over-
expressed genes but with a non-monotonic behavior
regarding lactose concentration. A more detailed study of
this cluster reveals three main typical characteristics in
the gene expression profiles. A tenth of the genes shows
an uneven behavior with a high-over expression in all
G90-L10, G75-L25 and L100 conditions without significant
difference according to the amount of lactose. This kind
of profile suggests that the up-regulation is uncorrelated
with lactose concentration itself but triggered by lactose
detection only. Then we found one third of the genes that
demonstrates a high over-expression on the two carbon
source mixtures G90-L10 and G75-L25 while no differen-
tial expression is observed on pure lactose compared to
pure glucose. The transcription factor ID 105805 follows
this profile. These two trends of gene expression profiles
could be fully explained by the CRE1-dependent catabo-
lite repression impairment and no focus on them are
made in the discussion. Finally, a little more than half
of the genes has a significant stronger over-expression
on G75-L25 compared to the one on G90-L10 and L100.
Interestingly, we found one endoglucanase CEL12A, one
LPMO CEL61B, three β-glucosidases whose two extra-
cellulars with a peptide signal CEL3E and BGL1 and one
intracellular β-glucosidase CEL1B, potentially involved in
cellulase induction. We also found the β-xylosidase BXL1
and the transcription factor ACE3 that share this profile.
We observe a strong correlation between the transcrip-
tomic behavior we found in our study and the phenotype
highlighted in [52]. Actually, the specific β-glucosidase
activity is the highest for intermediate amounts of lactose
while this activity decreases on glucose or lactose alone.
Corroboratively, our transcriptomic study shows a highest
over-expression of genes encoding β-glucosidases (cel3e,
bgl1 and cel1b) on the intermediate mix of lactose and
glucose, while their expression decreases when lactose is
present in too low or too high concentration.
Note that a large proportion of genes belonging to the

up-regulated clusters are recovered on the co-expressed

genomic regions observed in [22]. The biological coher-
ence of clustering results encourage us to pursue the
transcriptomic study through a gene regulatory network.
The use of network inference approach is driven by the
motivation to better understand links between DE tran-
scription factors but also to highlight strong links with
the help of alternative proximity definition, and thus to
concrete the relationships foreseen though the clustering.

Network inference
From the set of DE genes, we built a gene regulatory
network with the combination of CLR [61] and BRANE
Cut [40, 62] inference methods. When the use was judi-
cious, we evaluated our discovered TF-targets interac-
tions by performing a promoter analysis of the plausible
targets given by the inferred network, with the Regula-
tory Sequence Analysis Tool (RSAT) [63]. More details on
the complete methodology for both the inference and the
promoter analysis are provided in section Materials and
Methods.
Network enhancement thresholding performed by

BRANE Cut post-processing [40] selected 161 genes
(including 15 transcription factors) and inferred 205 links
(Fig. 4). In order to help network interpretation, we
applied the same color code as for the clustering (Fig. 3).
We observe a coherence between the function and the
expression behavior of genes linked into modules, thus
corroborating clustering results. As we will see in details
in the following network analysis, we reveal potential links
between three mechanisms grouped in modules (SubN1,
SubN2, and SubN3) and related to cellulase activation, β-
glucosidase expression and repression of developmental
process.
First of all, the global study of the network shows inter-

actions between genes sharing the same gene expression
profile. The 161 genes selected by BRANE Cut cover a
relatively small number of biological processes, especially
regarding half of the 15 retained transcription factors
for which only two main biological processes are iden-
tified: development (Tr–WET-1, Tr–PRO1, Tr–ACON-3
(IDs 4430, 76590, 123713)) and carbohydrate mechanisms
(XYR1, PHM29, ACE3 and CLR2).
In addition, we observe a large proportion of genes

related to the enzymatic cocktail for cellulase produc-
tion. In terms of interaction, we predominantly observed
links between up-regulated genes in a monotonic manner
(U−/U− and U−/U+ interactions), and related to cellu-
lase production. A second observation refers to enriched
U�/U� interactions i.e. between up-regulated genes in an
uneven way. Note that we also found an interesting prox-
imity with U−/U� interactions, with inverse expression
profiles. Involved genes mainly refer to the cellulase and
β-glucosidase production. Finally, a significant number of
interactions are found between genes belonging to cluster
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Fig. 4 Inferred network. Network built with BRANE Cut from expression profiles of the differentially expressed genes. BRANE Cut selected 205 edges
involving 161 genes. Node colors correspond to cluster labels:U+ (red, genes highly and monotonically up-regulated on lactose),U− (dark red,
genes slightly and monotonically up-regulated on lactose),U� (orange, genes up-regulated and non-monotonically on lactose),D− (dark green,
genes slightly and monotonically down-regulated on lactose) andD+ (green, genes highly and monotonically down-regulated on lactose). Bigger
nodes with bold frame correspond to genes coding for a transcription factor while smaller nodes with thin frame correspond to genes not
identified to code for a transcription factor

D− and related to development mechanism. Here again,
links are also observed between genes having antagonist
expression profiles, mainly related to cellulase production
and development (D−/U− interactions). Figure 4 displays
the inferred network with highlights on the three sub-
networks SubN1, SubN2 and SubN3, extracted from the
combination of the above observations and the clustering
results. We now focus on each identified sub-network for
a more detailed analysis.
Sub-network SubN1 encompasses eight genes associ-

ated to the carbohydrate metabolism process. Among
them, cel5a, cel6a, cel7a and cel7b are specifically related
to cellobiohydrolase and endoglucanase activities. It also
includes four carbohydrate transporters including CRT1,
known to be responsible for lactose uptake and having
a pivotal role in the lactose induction of cellulase genes
[22, 64, 65], and three carriers. These genes are linked to
transcription factor XYR1, known to be the main actor
during the cellulase production process. It also appears
specifically linked to a galacturonic acid reductase GAR1,
a helicase (ID 35202), a glycoside hydrolase XYN6 [66],
a secreted hydrolase CIP1 and Tr–FSD-1 (ID 28781),

known to pertain to sexual development. The network
highlights the action of another transcription factor CLR2,
which is known in other species to participate to cellulase
production [33]. These two transcription factors XYR1
and CLR2 seem to be highly correlated and share a large
number of cellulose-oriented targets. This sub-network
is related to the genes involved in cellulase production
and having an increased up-regulation across to the lac-
tose concentration. Based on this sub-network subN1,
we performed a promoter analysis. Using independently
plausible targets of XYR1 and CLR2, we significantly
recovered the degenerated binding-site 5‘-GGC(A/T)3-3’,
previously identified in [67] as the binding site specific
to XYR1. We also found an enriched non-degenerated
motif 5‘-GTTACA-3’ which differs from the XYR1 motif.
A straightforward hypothesis is to credit this new motif
for CLR2 and a simple statistical test suggests that this
motif might be specific to the CLR2. Details regarding this
analysis are provided in Additional file 4.
Sub-network SubN2 contains nine genes involved in the

carbohydrate metabolism, and some of them are specif-
ically related to β-glucosidase and cellulases activities:
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bgl1, cel3e, cel12a and cel61b. Interestingly, these genes
are linked to the transcription factor ACE3 and have the
particularity to be maximally over-expressed on G75-L25.
We observe that seven genes belonging to cluster D− are
also present in this sub-network and are predominantly
linked to the transcription factor PHM29 which has been
recently identified to play a role in the cellulase activity
[22]. We notice that these genes have a maximal under-
expression on G75-L25, which is the inverse profile of ace3
and its linked genes, suggesting a dependence between
ACE3 and the transcription factor pmh29.
The sub-network SubN3 reveals seven transcriptions

factors including two which have been identified to par-
ticipate to the development process in other species:
Tr–WET-1 (ID 4430) and Tr–PRO1 (ID 76570). Inter-
estingly, three other genes EsdC, pro41 and hpr1, also
pertaining to the development process, are linked to pro1.
In addition, genes in this sub-network are mainly down-
regulated on lactose and related to metabolism, secretion,
transport and cell surface. This sub-network seems to
reveal some interesting links between the repression of
the development and the cellulase production that will be
investigated in more details in the “Discussion” section.
Results provided by this inferred network and the pro-

moter analysis are in agreement with present knowledge
on Trichoderma reesei, particularly for the cellulase pro-
duction. The additional results given by BRANE Cut are
coherent with the literature based on other close species,
especially regarding results that suggest a potential link
between development and cellulase production and a par-
ticular behavior of the β-glucosidase. Table 1 provides
some relevant references that coroborate the network
generated by BRANE Cut. The coherence of the DE anal-
ysis as well as clustering and inference results with the
actual knowledge allows us to use these results for predic-
tion. In the following “Discussion” section, we thus for-
mulates some postulates regarding cellulase production
mechanism in T. reesei, with respect to these three main
results.

Table 1 BRANE Cut network validation from literature. Direct link
refers to genes identified as implied in the cellulase production
while indirect refers to genes having a side effect on the cellulase
production (CP)

Gene ID Name Up/Down Link to CP Species Reference

122208 xyr1 up direct T. reesei [19]

26163 clr2 up direct N. crassa [33]

77513 ace3 up direct T. reesei [22]

122523 pmh29 down direct T. reesei [22]

123713 medA down indirect P. decumbuns [68]

76590 pro1 down direct P. oxalicum [37]

4430 wetA down indirect P. decumbuns [68]

Discussion
A cellulase production directly linked to the lactose
concentration
The gene xyr1 is widely reported to play the role of the
major activator of the cellulase production in T. reesei
[19]. As notably expected, we recovered in our network
links between XYR1 and the main cellulolytic enzymes
(especially the two main cellulases CBH1 and CBH2).
In Neurospora crassa, cellulases are regulated by CLR-
2 specifically, while Tr–XLNR, the ortholog of xyr1, is
responsible of the hemicellulase expression [33, 69]. Thus,
the regulation of cellulases and hemicellulases is per-
formed through two independents pathways. While the
genes responsible for this regulation are present in T. ree-
sei, their behavior appears to be different as they show a
coupling action of the regulation of both cellulases and
hemicelullases, suggesting a different regulatory network
in T. reesei compared to N. crassa.
Although observed in different T. reesei strains and cul-

ture conditions, authors in [70] and [71] have identified
links between xyr1 and clr2 genes. Interestingly, we also
found in our data such a strong correlation between xyr1
and clr2, suggesting a common regulation on lactose. We
found a significant number of regulatory links between
clr2 and cellulolytic enzymes. Unlike in N. crassa, where
authors in [33] demonstrate a distinct effect of clr2 and
xlnR on hemicellulase and cellulase respectively, our data
analysis show that clr2 seems to be complemental to xyr1
for both cellulases and hemicellulases activation in T. ree-
sei Rut-C30. Thus, even though gene ID 26163 is the
ortholog of clr-2 in N. crassa, this observation argues for a
different behavior in T. reesei Rut-C30.
Another difference between T. reesei and N. crassa

regarding clr2 is its location on the genome. Contrary to
N. crassa, clr2 in T. reesei pertains to a physical cluster,
located on chromosome III [72], and containing the lac-
tose permease CRT1, established as essential for cellulase
induction on a lactose substrate as it allows lactose uptake
[22, 64]. Due to this proximity between clr2 and crt1, we
may assume a regulation of crt1 by CLR2. InN. crassa, the
ortholog of crt1 is sud26, and encodes a sugar transporter
which is located next to a transcription factor of unknown
function TF-48.
In N. crassa, clr2 is repressed by the carbon catabolite

repression [33]. We do not know if such an extrapola-
tion to T. reesei is valid, but interestingly, the Rut-C30
strain has a partial release of catabolite repression due to
the truncation of cre1, allowing us to suggest a possible
release of the repression of clr2, leading to a low expres-
sion of CLR2 and CRT1, and thus to a low lactose uptake.
This low level of lactose would be sufficient to initiate
the induction of cellulases through the increased expres-
sion of XYR1 and CLR2. Without the lactose inducer, we
assume that this low expression of CLR2 and CRT1 is
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not sufficient to intensively produce cellulases, and their
expression remains low.
As established in [22], the gene ace3 is known in T. ree-

sei to be involved in the cellulase induction on lactose.
Furthermore, as presented in [73], ace3 seems to inter-
act with xyr1 to initiate cellulase production. Based on
your data and their interpretations, especially regarding
the strong correlation between clr2 and xyr1, we may sup-
pose an additional interaction between ace3 and clr2. This
result can also be corroborated by the fact that the inval-
idation of ace3 in [73] leads to a decrease of XYR1 and
CLR2 expressions. However, we note that the expression
of ACE3 is not directly correlated with the lactose con-
centration as the maximal expression of ACE3 is obtained
on a mixture of glucose and lactose (G75-L25). Thus, the
regulation of XYR1 by ace3 could be complemented by
another mechanism necessary for cellulase induction on
pure lactose, and without glucose.

Gene expression profiles of bgl1, cel3e and cel1b follow
β-glucosidase activity
A previous study had shown an effect of sugar mixtures to
influence the composition of the enzymatic cocktail of T.
reesei [52]. A higher β-glucosidase activity was observed
in the presence of a glucose-lactose mixture compared to
pure lactose. This result obtained in the CL847 strain is
here confirmed in the reference hyper-producing Rut-C30
strain.
In the transcriptome performed on the various glucose-

lactose mixtures, a group of DE genes (U�) has an expres-
sion profile correlated to β-glucosidase activity. These
genes are overexpressed by lactose but without correlation
with the amount of lactose, and their maximal expres-
sion are recovered for the intermediate level of lactose
(G75-L25). We suppose that these results can not be fully
explained by the CRE1-dependent catabolite repression
impairment. Among these genes, three β-glucosidase are
identified, whose two are extracellular (bgl1 and cel3e)
while the other is an intracellular β-glucosidase (cel1b).
It has been shown previously that in presence of lac-
tose the extracellular enzyme activity is mainly produced
by bgl1 [74]. Our results seem to demonstrate that for
a full expression of bgl1, presence of lactose is required
independently of glucose. Nothing is known about the
regulation of cel3e but its expression profile is similar to
bgl1. This two genes have been previously identified as
co-regulated by the same substrate [75]. There is there-
fore a correlation between the expression of these genes
and enzymatic activity of BGL1. It would thus be interest-
ing to delete cel3e to study the impact of its absence on
the global extracellular β-glucosidase activity in glucose-
lactose mixture.
In the regulatory network, bgl1 and cel3e are connected

to both ace3 and pmh29. However, ace3 has a similar pro-

file as the previously mentioned β-glucosidase (cel3a and
cel3e) while pmh29 is anti-correlated. It would therefore
be interesting to explore the role of its two transcrip-
tion factors in the control of CEL3A/BGL1 and CEL3E
under glucose-lactose induction conditions. The roles of
ace3 and pmh29 in cellulase regulation have recently been
explored [22]. However, the difference in genetic back-
ground (QM6a and QM9414) and experimental condi-
tions (100% lactose batch) does not allow the results of
these experiments to be extrapolated to the regulation
observed here.
Another β-glucosidase, CEL1B, is present in cluster U�.

This intracellular enzyme appears to play an essential role
in lactose induction since the joint invalidation of cel1b
and cel1a, another intracellular β-glucosidase, abolishes
the production of cellulases on lactose. However, invalida-
tion of cel1b alone does not appear to have any effect while
invalidation of cel1a produces a delay in induction on lac-
tose which is restored by galactose [76]. Surprisingly, the
transcriptomic profile of cel1a is different from that of
cel1b since it belongs to the cellulase cluster D−. The dif-
ference in its profiles could indicate a different response
between these two genes depending on whether or not
glucose is present. Thus the expression of CEL1A could
be negatively regulated by the presence of glucose and
induced by lactose while CEL1B could be induced by lac-
tose but insensitive to the presence of glucose. As cel1b is
also connected to the regulators ACE3, it would be inter-
esting to explore the role of ACE3 and PMH29 regulators
in the expression of CEL1B.

A dedication to cellulase production to the detriment of
growth
Strinkingly, orthologs of transcription factor genes
(IDs 4430, 76590 and 123713) described as involved in
developmental process have been identified in this tran-
scriptomic study. All of them being part of clusterD− and
so down-regulated in lactose compared to glucose.
Firstly, ID 76590 is the ortholog of pro1 in Sordaria

macrospora (67% identity) and Podospora anserina (49%
identity), and the ortholog of adv-1 in Neurospora crassa
(67% identity). The gene Tr–pro1 is required for fruiting
body development and cell fusion [56, 57]. In P. anse-
rina, pro1 activates the sexual recognition pathway includ-
ing the pheromone and receptor genes and is probably
involved in the control of the entry in stationary phase
[77]. In Penicillium oxalicum, deletion of pro1 (43% iden-
tity) has been proved to increase cellulase production [37].
No similar phenotype has been described in other fungi.
At low lactose concentration obtained in our experiments,
Tr–pro1 is down regulated and linked in the GRN to hpr1,
the mating type pheromone receptor.
Secondly, ID 123713 is the orthologMedA in Aspegillus

nidulans (42% identity), coding for a protein with un-
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known function, but required for normal asexual and sex-
ual development.We determined that theN. crassa ortho-
log of MedA is acon-3, a gene required for early conid-
iophore development and female fertility. We also note
that in [78], authors show that Tr–MedA is repressed
by CRE-1 in QM9414 �cre1, thus suggesting a role of
the partial carbon catabolite derepression regarding the
observed down-regulation of ID 123713. In N. crassa,
acon-3 is positively regulated by the transcription fac-
tor ADA-6 involved in conidiation, sexual develope-
ment, and oxidative stress response [58]. Interestingly,
ypr1 (ID 102499), the yellow pigment regulator, DE in
our data, displayed 35% identity with ada-6. In con-
trast to Tr–MedA, ypr1 is up-regulated on lactose and
its regulatory function seems restricted to the sorbicillin
cluster [60].
The gene with ID 4430 is the ortholog of wet-1 of

N. crassa (72% identity), of WetA in A. nidulans (60%
identity) and Fusarium graminearum (43% identity). In
contrast to Aspergilli and F. graminearum, wet-1 mutant
is phenotypically similar to the wild-type strain with no
conidiation defect [55]. A regulatory cascade with WetA
regulated by AbaA itself regulated by BrlA was described
in Aspergillus [79]. The regulatory cascade between aba1
and wet-1 is preserved in N. crassa and F. graminearum.
In P. decumbens, an industrial lignocellulolytic enzymes
production strain, expression of cellulases genes is upreg-
ulated in BrlA deletion strain [68]. In T. reesei, rxe1 is
involved in regulation of conidiation and modulated pos-
itively by the expression of xyr1 and cellulase and hemi-
cellulase genes [31]. Unfortunately, the low percentage
of identity (20%) between rxe1 and BrlA does not allow
us to go further regarding the regulatory link with Aba1
and then wet-1, as in the regulatory cascade described
in Aspergillus. In addition, in our transcriptomic data,
neither rxe1 nor Aba1 is differentially regulated, so down-
regulation of wet-1 does not seem to be dependent of
these genes. Eventually, further experiments would allow us
to decipher the role ofwet-1 on cellulase production and if
there is a putative regulatory link between wet-1 and rxe1.
In Aspergillus nidulans, MEDA acts as a repressor of

BrlA expression and is an activator of AbaA expression
[80]. Although, no direct regulation relation between
MedA andWetA in T. reesei has been described, it is worth
to note that these genes, both involved in the regulation
of conidiation, are down-regulated on lactose. Interestingly
in A. niger, authors in [81] showed that the secretion
of the vegetative mycellium is repressed by sporulation,
thus indicating a reverse link between conidiation and
secretion. Thus,Tr–WetA andTr–MedA down-regulation
could be a result of the lactose fed batch cultivation mode
where the carbon flux is maintaining a near-vegetative
state without growth. Conversely, glucose feed resulted in
biomass growth leading to conidiation.

Altogether, the down regulation of Tr–pro1, Tr–wet1
and Tr–acon3 on lactose compared to glucose could
reflect a balance between vegetative growth, sexual and
asexual development. In the fed-batch condition, the lac-
tose is provided to maintain the biomass without growth.
In contrast, starvation could create a path to conidia-
tion or glucose could redirect to sexual development. The
equilibrium is maintained through the down regulation of
essential developmental transcription factor.
Finally, as already observed in previous stud-

ies, but in other strains and conditions ([28,
82]), we noticed that links between development
and cellulase production are also recovered in a
strain having an highly modified genomic back-
ground in addition to be observed in industry-like
condition.Hence, such amechanism seems highly preserved
through very heterogeneous strains and conditions.

Conclusions
This study is the first considering the effect of various
carbon sources (glucose/lactose mixtures) in a fed-batch
mode on the transcriptome of T. reesei Rut-C30. In such
a condition, we highlighted an interdependence between
crucial transcription factors (XYR1, CLR2 and ACE3)
known to participate to cellulase and hemicellulase pro-
duction. We also correlated the transcriptome to the β-
glucosidase activity observed in a previous study [52] and
revealed a repression of the development process dur-
ing the cellulase production. These conclusions provide
us with plausible targets for further genetic engineering
leading to better cellulase producing strains.

Methods
Strain andmedia
T. reesei RUT-C30 (ATCC 56765) was received from
ATTC on October 2013, spread on PDA plates and
incubated until sporulation. Spores were harvested with
50% glycerol solution then stored at −80 °C. Spore solu-
tion concentration was 6 × 109 mL−1. Culture media are
prepared according to [53] (case with 25mM dipotas-
sium phthalate) and supplemented with 12.5 g L−1 glu-
cose. Feeding solutions (stoichiometric mix of carbon and
nitrogen sources) were prepared according to [52].

Fed-flask cultivations
Fed-flask cultivation was performed according to [52]
with few modifications. For each replicate, a Fernbach
flask was prepared with 250mL culture medium and inoc-
ulated with around 107 spores mL−1. Initial growth phase
on glucose lasted around 48 h and resulted in around
7 g L−1 biomass. Immediately after glucose exhaustion,
empty 250mL Erlenmeyer flasks were filled with 50mL
broth per flask then fed at 0.3mL h−1 (using Dasgip MP8
peristaltic pumps) with different sugar solutions (one flask
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fed with pure lactose, one flask fed with pure glucose,
one flask fed with a mixture of glucose and lactose). Pure
glucose (G100) feed and pure lactose (L100) feed were
replicated 6 times, 75% glucose + 25% lactose mixture
(G75-L25) was replicated 4 times, and 90% glucose + 10%
lactose (G90-L10) was replicated 2 times. Incubation was
performed in an Infors rotary shaker at 30 °C and 150 rpm.
Analysis (biomass dry weight, protein concentration, sug-
ars concentration, enzymatic activities) were performed
according to [52].

RNA-seq library preparation and analysis
Library preparation and RNA-seq data acquisition
The pipeline used for library preparation and RNA-seq
data acquisition is similar to the ones presented in [29,
54], and for which we summarize the main steps. Libraries
were prepared using the strand specific RNA-seq library
preparation TruSeq Stranded mRNA kit (Illumina). They
were multiplexed by 6 × 6 flowcell lanes for a 50bp read
sequencing on a HiSeq 1500 device (Illumina). Eoulsan
pipeline [83] is used for reads analysis. For each of the 36
samples, an average of 35 ± 10 millions passing Illumina
quality filter reads was obtained. Trimming of poly N read
tails, reads with less than 40 bases and reads with qual-
ity mean lower than 30 were performed. Reads Aligne-
ments and gene expression were performed as previously
described with theTrichoderma reesei genome annota-
tion version 2 from Joint Genome Institute. The RNA-seq
gene expression data and raw fastq files are available on
the GEO repository (www.ncbi.nlm.nih.gov/geo/) under
accession number: GSE82287.

Normalization and differentially expressed genes
identification
RNA-seq data normalization and differential analysis was
performed thanks to the DESeq Bioconductor R package
(version 1.8.3) [84]. The normalization method imple-
mented in DESeq assumes that only a few number of
genes are differentially expressed and corresponds to a
median scale normalization.
The differential analysis relies on a statistical model,

and more precisely on the negative binomial distribu-
tion with variance and mean related by local regression.
This approach allows us to identify, for each gene, if
the observed difference in read counts is significant. An
adjustment for multiple-testing with the procedure of
Benjamini and Hochberg [85] was also performed. Hence,
we assumed that a gene is said differentially expressed
when the adjusted p-value was lower than 0.001 and the
absolute value of the log2(FC)was higher than 2. Here, FC
refers to the fold change of the read counts for the tested
condition against the read counts for the reference con-
dition. In this way, we independently compared at 24 h
and 48 h the read counts obtained on G75-L25, G90-L10 to

those obtained on G100, or L100. In addition read counts
obtained on L100 are also compared to those obtained on
G100. This approach, sketched in the circuit design dis-
played in the Additional file 2, leads to ten possibilities for
a gene to be identified as differentially expressed.

Gene expressionmatrix construction
For clustering and network inference, the establishment of
a relevant gene expression matrix is needed.
For this purpose, we used results from the differen-

tial analysis. More precisely, we selected the subset of
genes which are identified as differentially expressed in at
least one on the ten studied comparisons. We decided to
remove genes having at least one missing value over the
ten comparisons. Doing this, we selected 650 genes for
which a complete expression profile was available, com-
posed of ten log2 expression ratios values leading to the
gene expression matrix used to carry out the clustering.
We note that, in this matrix, the fold change is computed
on the average of the read counts across the biological
replicates for a given condition (test or reference). For the
network inference part, we choose to deal with a slightly
modified version of this expression matrix, while keeping
the same initial set of the 650 DE genes. To enforce the
relevance of the metric used in network inference meth-
ods, we chose to deal with all biological replicates for
the tested conditions while all reference conditions were
pooled, with glucose or lactose pure are chosen as ref-
erence conditions. In other words, the log fold change is
computed between the read count coming from a bio-
logical replicate of the test condition and the averaged
read counts of the reference condition. Hence, for a given
comparison, we obtained as many log fold changes as bio-
logical replicates. In order to harness the variability caused
by this approach, we removed genes for which a biological
replicate has a null read count. As a result, the final matrix
contains 593 genes, where for each gene the expression
profile contains 32 components. This procedure allows us
to deal with expression profiles having a sufficient number
of components to obtain a more reliable inferred network.

Clustering and functional analysis of differentially
expressed genes
Clustering
As previously mentioned, clustering is performed on
the 650 genes. Each gene is characterized by its ten-
component expression profile. The following approach
was completely performed using the Multi Experiment
Viewer (MeV) software [86]. Firstly, a hierarchical cluster-
ing allows us to estimate the optimal number K of clusters
hidden in the data. By choosing the Euclidean distance
metric and the average linkage method, results suggest
K = 5 clusters. Then, the K-means algorithm (originat-
ing in [87]) is preferred in order to obtain a final gene

www.ncbi.nlm.nih.gov/geo/
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classification. As this method is sensitive to initialization,
we performed ten independent runs of K-means with
random initialization; the Euclidean distance is used for
each run. Results are subsequently aggregated into five
consensus clusters. The aggregation is constrained by a
co-occurrence threshold, fixed to 80%. As a result, the 650
genes are completely classified into five clusters and no
unassigned cluster was found.

Functional analysis
A functional analysis was performed throughout a full
expert annotation of the classified genes. More precisely,
our annotation is based on the functionnal annotation
from T. reesei v2.0 JGI portal [88], including EC annota-
tion and KEGG pathway, SignalP, InterPro and GO files.
This first annotation was complemented by function-
nal annotation issued from orthologs of several species
(S. cerevisiae, P. anserina, S. pombe, A. niduland and
N. crassa). The orthologs were obtained from Fungi-
Path (www.fungipath.i2bc.paris-saclay.fr/). Eventually the
annotation was updated regularly thanks to literature in
addition to the more recent one given in [89]. By con-
vention in this manuscript, we shall denote by Tr–XXX
the gene in T. reesei for which the ortholog in an other
specie is XXX. Otherwise, genes are labeled as unknown.
This functional annotation allows us to manually pro-
vide meaning to clustering results. Note that we voluntary
chose to use protein IDs of the reference genome QM6a.
However, in Additional file 3, we provide the correspon-
dence with Rut-C30 protein IDs given by [14].

Network inference and promotor analysis
Network inference
Network inference was performed using the gene expres-
sion matrix containing 593 genes (and 32 differential
expression levels) as input. We firstly obtained a com-
plete weighted network G(V , E ;ω), linking all genes V by
links E with weight ω. This step was performed thanks
to the CLR (Context Likelihood of Relatedness) algorithm
[61]. The weights ωi,j, affected to each pair (i, j) of genes,
are based on the mutual information metric which quan-
tifies the mutual dependence or the information shared
between expression profiles of genes i and j. From this
complete gene network, a threshold selects the most rel-
evant gene links. For this purpose, we used the network
enhancement algorithm BRANE Cut [40]. Briefly, each
edge ei,j in the complete network is labeled by a vari-
able xi,j set to 1 if the link has to be in the final network,
and 0 otherwise. By optimizing a cost function over the
variable x = (

xi,j
)
i∈V ,j∈V , the minimizer x∗ gives us the

optimal set of links on the final graph. In order to select
the relevant links, biological and structural constraints
are encoded in the cost function. Indeed, in addition
to favoring strongly weighted edges, this post-processing

method prefers links around labeled transcription factors
(TF). Moreover, thanks to an additional constraint, links
between a gene and a couple of transcription factors, if
this latter couple is identified as co-regulator, are also
preferentially selected. As a result, we obtain an inferred
network composed of 161 genes and 205 edges.

Promoter analysis
The promoter analysis was performed using the Reg-
ulatory Sequence Analysis Tools (RSAT) software [63].
From each set of genes to study (linked to a specific
TF), promoter sequences from −1 to −1000 upstream
bases are retrieved using the retrieve sequence tool. From
these sequences, a detection of over-represented oligonu-
cleotides was performed thanks to the oligo-analysis tool.
We used the reference sequence set of Trichoderma reesei
as background model. As mentioned in [90], this choice
is driven by the fact that the input sequences (the query)
are a subset of a larger collection (the reference). As a
result, we obtain a list of over-expressed oligonucleotides
(from hexa- to octo-) and several larger motifs assem-
bled from the previous ones using the pattern assembly
tool. Significance and count matrices are also obtained
at this stage and lead to the establishment of sequence
logo binding motifs. In order to detect the occurrences
of the previously discovered patterns, we used the string-
based pattern matching (dna-pattern) tool. It provides a
list of features indicating the positions of the motifs in
the input sequences. A suitable way to deal with this
data is to visualize them using the feature map tool.
From the feature map, the presence of overlapping close
motifs is commonly a good indication for the relevance of
the discovered motif. This methodology hints at suppos-
ing that the set of initial tested genes detains a binding
site of the linked TF. From the given occurrences, we
also computed the average number of discovered sites
on the tested subset of genes. Then, in order to give a
statistical significance, we performed two statistical anal-
yses: one based on the promoter sequence of the whole
genome, the other based on the a set of random promoter
sequences. For both statistical analysis, the occurrences
are also computed and averaged over the number of
involved sequences. Then a t-test was carried out in order
to deem significance (or not) to the average number of dis-
covered sites. The significance is given for a p-value lower
than 0.05.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12864-020-07281-8.

Additional file 1: Study of the biomass concentration during the
fed-batch. This PNG file contains experimental results regarding the study
of the Rut-C30 biomass concentration at 0 h, 24 h, 48 h and 120 h during
the fed-batch on G100, G75-L25, G90-L10 and L100.

www.fungipath.i2bc.paris-saclay.fr/
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Additional file 2: Circuit design. This PDF file contains an illustration of
the methodology used to perform the differential analysis.

Additional file 3: List of mutated and/or differentially expressed genes.
This Excel file contains two sheets. In the first one, we found the list of
differentially expressed genes and contains information regarding gene
name, gene function, orthologs in various species (S. cerevisiae, A. nidulans
and N. crassa), whether the gene is a transcription factor, expression ratios
and the label of the cluster to which it belongs. In the second sheet, there
is the list of mutated genes in Rut-C30, by comparison to QM6a, and the
ones which are identified to be differentially expressed in our conditions.

Additional file 4: Promoter analysis of clr2. This Excel file contains three
sheets. The first one gathers results regarding the promoter analysis of clr2
based on results obtained in the sub-network SubN1 generated by BRANE
Cut [40]. The second sheet displays the pattern feature map while the third
one contains the statistical analysis regarding the discovered promoter
sequence.
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