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Abstract

Background: RNA-binding proteins (RBPs) play crucial roles in various biological processes. Deep learning-based
methods have been demonstrated powerful on predicting RBP sites on RNAs. However, the training of deep
learning models is very time-intensive and computationally intensive.

Results: Here we present a deep learning-based RBPsuite, an easy-to-use webserver for predicting RBP binding
sites on linear and circular RNAs. For linear RNAs, RBPsuite predicts the RBP binding scores with them using our
updated iDeepS. For circular RNAs (circRNAs), RBPsuite predicts the RBP binding scores with them using our
developed CRIP. RBPsuite first breaks the input RNA sequence into segments of 101 nucleotides and scores the
interaction between the segments and the RBPs. RBPsuite further detects the verified motifs on the binding
segments gives the binding scores distribution along the full-length sequence.

Conclusions: RBPsuite is an easy-to-use online webserver for predicting RBP binding sites and freely available at
http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/.
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Background
RNA-binding proteins (RBPs) are involved in many bio-
logical processes, their binding sites on RNAs can give
insights into mechanisms behind diseases involving RBPs
[1]. Thus, how to identify the RBP binding sites on
RNAs is very crucial for follow-up analysis, like the im-
pact of mutations on binding sites. With high-
throughput sequencing developing, there is an explosion
in the amount of experimentally verified RBP binding
sites, e.g. eCLIP [2] in ENCODE [3]. However, these
CLIP-seq data still cannot provide the full view of the
RBP binding landscape, it is because CLIP-seq relies on
gene expression which can be highly variable between
experiments. But these big data can serve as training

data for machine learning models to predict missing
RBP binding sites that may not be detected in some ex-
periments. For example, GraphProt encodes a RNA se-
quence and structure in a graph [4], which is fed into a
support vector machine to classify RBP bound sites from
unbound sites. GraphProt can detect the binding se-
quence and structure preference of RBPs and further
predict the RBP binding sites on any input RNAs. Con-
sidering that RBPs have difference binding preferences,
the machine leaning-based methods train RBP-specific
models; each model is trained per RBP.
Recently, deep learning-based methods have achieved

remarkable results on predicting RBP sites [5, 6]. For ex-
ample, DeepBind is the first method to train a convolu-
tional neural network (CNN) [7] to predicting RBP
binding preference [6]. Inspired by DeepBind, iDeep in-
tegrates multiple sources of features to predict RBP
binding sites using a multi-modal deep learning, which
consists of a CNN and multiple deep belief networks [8].
RBPs bind to RNAs by recognizing both the sequence
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and structure context. Thus, iDeepS trains a hybrid net-
work with two CNNs and a long-short temporary mem-
ory (LSTM) network [9] to infer binding sequences and
structure preferences of RBPs [10]. In iDeepS, two CNNs
handle the sequence input and structure inputs, respect-
ively and the LSTM learns the dependency between se-
quences and structures to improve prediction
performance. Different from iDeepS, pysster encodes the
sequence and structure in a one-hot encoded matrix
based on an extended alphabet, which combines the se-
quence and structure alphabet [11]. DeepCLIP applies a
similar network architecture consisting of a hybrid CNN
and LSTM to predict RBP binding sites on RNAs [12]
and the network architecture is similar to iDeepS.
iDeepE trains a local CNN and a global CNN to predict
RBP binding sites from sequences alone [13]. The bind-
ing mechanism of RBP binding circular RNAs (cir-
cRNAs) is different from that of linear RNAs, and thus
the trained models on RBP binding linear RNAs cannot
generalize well to circRNAs, CRIP is specially developed
for predicting RBP binding sites on circRNAs by using a
codon-based encoding schema and hybrid deep models
[14].
There exist several online webservers for RNA-protein

interaction prediction based on traditional machine
learning models, e.g. omiXcore [15] and SMARTIV [16,
17]. omiXcore is an RBP-general method, which trains a
non-linear algorithm on pooled RNA-protein interac-
tions and accepts the proteins and large RNAs with a
size between 500 and 20,000 as inputs. Considering that
different RBPs have different binding specificities, the
RBP-specific method in general is superior to the RBP-
general method, as demonstrated in [13]. SMARTIV ac-
cepts a set of RNA sequences in BED format file as the
input, and applies Hidden Markov Model (HMM) to
find the enriched combined sequence and structure mo-
tifs from in vivo binding data. In addition, SMARTIV
cannot predict RBP binding sites for a single RNA se-
quence. The backend predictor of the above webservers
are non-deep learning-based methods, which are proved
to be inferior to deep learning-based methods for pre-
dicting RBP binding sites [18]. Moreover, no online web-
server is currently available for predicting RBP binding
sites on circRNAs.
However, to date, there is no online webserver avail-

able for predicting RBP binding sites on both linear and
circular RNAs using deep learning. Most published ap-
proaches for predicting RBP binding sites only provide
source code with different input data format, like Graph-
Prot, our developed iDeepS and CRIP, their dependency
is difficult to configure due to frequent update of deep
learning framework, like TensorFlow. In addition, for
deep learning-based approaches, the training of models
is very time-intensive and computationally intensive.

Thus, it is imperative to develop an easy-to-use webser-
ver to integrate the state-of-the-art prediction methods
for predicting RBP binding sites on RNAs and cover as
many RBPs as possible. RBPsuite holds a broad applica-
tion potential, it can be used to expand our knowledge
about RBP binding RNAs, e.g. identifying interactions
between RNA regions of SARS-COV-2 and human pro-
teins. In addition, RBPsuite may be used to investigate
the effect of mutations on RNA-protein binding sites, we
can use RBPsuite to predict binding scores for an RNA
sequence and a mutated RNA sequence, then check
whether the mutation will greatly decrease the binding
score to determine the effect of this mutation.
We implement an online webserver RBPsuite for pre-

dicting RBP binding sites on full-length linear and circu-
lar RNAs from sequences alone. For the linear RNAs,
the server predicts the RBP binding scores using our up-
dated iDeepS, which is retrained on binding RNA targets
of 154 RBPs derived from ENCODE. For circRNAs,
RBPsuite predicts the RBP binding scores using our de-
veloped CRIP. RBPsuite first breaks a full-length input
sequence into multiple segments of 101 nucleotides
without overlap, then outputs the scores between the
segments and the chosen RBP. RBPsuite further detects
the verified motifs on the predicted binding segments
and visualizes the score distribution within the input
sequence.

Implementation
Collected datasets
We downloaded peaks of 154 RBPs of K526 and HepG2
through eCLIP-seq from ENCODE corresponding to hu-
man genome hg19 version. These narrow peaks were
produced by the eCLIP-seq Processing Pipeline v2.0 of
ENCODE [19]. To prepare the positive and negative
RBP binding training data sets, several steps were proc-
essed. 1) We merge the peaks files of one RBP. It should
be noted that some studies [20] used the intersection of
the bed files to obtain a set of most probably peaks. 2)
We select regions overlapped with reference gene by
intersectBed of bedtools [21]. 3) The gene overlapped re-
gions are extended to 101 nts in upstream and down-
stream centering at the read peaks, and we got the
positive regions of RBPs. 4) Negative RBP binding re-
gions were produced by implementing shuffleBed of
bedtools, these negative sites are those regions without
any peak located from the same gene of each peak. 5)
The fasta files of positive and negative regions were re-
trieved by fastaFromBed of bedtools. To save the train-
ing time, for each RBP, we only keep 60,000 positive
sites and 60,000 negative sites if the extracted positive
and negative samples are more than 60,000, respectively.
Otherwise we use all the extracted samples for this RBP.
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For circRNAs, we use the trained models of 37 RBPs
on the benchmark dataset of CRIP [14]. For each RBP,
the number of training circRNAs (bound and non-
bound) is different, they range from 992 to 40,000. Each
circRNA is also a sequence segment of a size 101. More
details are given in Table 1. All the collected benchmark
datasets for linear and circular RNAs are freely available
at http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/.
In addition, we downloaded verified motifs of RBPs

from CISBP-RNA [22]. In total, we obtain verified motifs
for 43 RBPs, which are further scanned against the se-
quence segments using FIMO in MEME suite [23] with
p-value < 0.01.

Algorithms in RBPsuite
In RBPsuite, there are two deep learning-based methods:
the updated iDeepS for linear RNAs, and CRIP for cir-
cRNAs. Both methods use hybrid deep models. The full
picture of RBPsuite is illustrated in Fig. 1.

Updated iDeepS for predicting RBP binding sites on linear RNAs
Here we did some modification on the encoding schema
of sequence and structure in original iDeepS. The original
iDeepS encodes the sequence and structure into two indi-
vidual one-hot encoded matrices and it searches sequence
and structure motifs in parallel using CNNs and LSTMs,
instead of combining structure and sequence features for
the same motif. The structure motifs are independent
from the sequence motifs, structural context may not be
added. Thus, we add structure context into the motif
identification to develop an updated iDeepS using an ex-
tended alphabet as used in pysster [11]. It first encodes
the sequence and structure into a one-hot encoded matrix
with an extended alphabet. A given RNA sequence con-
sists of an alphabet (A, C, G, U) and the structure consists
of an alphabet (F, T, I, H, M, S), we obtain an extended al-
phabet of a size 4*6 = 24, this extend alphabet consists of
[24] with an index from 0 to 23. Then the newly one-hot
encoded matrix is fed into a CNN and a LSTM to extract
high-level features, which are inputted into two fully con-
nected layers to predict RBP binding sites on linear RNAs.
Here RNAshapes [24] is used to predict the abstract sec-
ondary structures from RNA sequences.

CRIP for predicting RBP binding sites on circRNAs
Considering that the interacting patterns of RBP-binding
circRNAs are different from those of linear RNAs, the
trained models on linear RNAs cannot generalize well to
circRNAs. In addition, circRNAs are more structurally
constrained than linear RNAs that have free ends and
various secondary structure. Thus, we propose a deep
learning based method CRIP for specially predicting
RBP-binding sites on circRNAs [14] from sequences
alone. CRIP first encodes the sequence into one-hot
encoded matrix using a stacked codon-based encoding
scheme, then the encoded matrix is fed into a hybrid
deep learning architecture with a CNN and a biLSTM to
predict RBP binding sites on circRNAs.

Detecting binding motifs using MEME
To further provide the support evidence for predicted
binding sites, we use FIMO [25] in MEME [23] to scan
the occurrence of verified motifs on the predicted bind-
ing segments. To this end, we first collect the verified
motifs of RBPs from CISBP-RNA database [26]. Then
for a given RBP, we use FIMO to scan its known motif
against those segments with a predicted score > 0.5 by
RBPuite, the p-value threshold 0.01 is used and other pa-
rameters are defaulted values.

Development environment
iDeepS and CRIP in RBPsuite are implemented under
the TensorFlow framework in Python. Given a full-
length RNA sequence, it will break the sequence into
multiple segments of 101 nts (used by iONMF [27] and
our previous iDeep) without overlap, if the input se-
quence or the remaining sequence is shorter than 101
nt, we pad it to a length of 101 using ‘N’ as another 101
nt-long segment. Then these generated segments are fed
into the iDeepS and CRIP to give the binding scores be-
tween individual segments and a specified RBP.
The frontend of RBPsuite webserver uses JQuery

framework of JavaScript and Ajax technology to im-
plement asynchronous loading. The backend uses
PHP to call shell and python scripts. For the
visualization, RBPsuite directly uses Matplotlib to dis-
play the results.

Table 1 The details of training and independent test sets. Each RBP has one training set and one test set, the number is the
average across all RBPs

RNA type # of RBPs Positive data of each RBP Negative data of each RBP

Linear RNAs 154 Training: 44,119
Independent test: 11,030

Training: 44,119
Independent test: 11,030

Circular RNAs 37 Training: 3680
Independent test: 920

Training: 3680
Independent test: 920

Pan et al. BMC Genomics          (2020) 21:884 Page 3 of 8

http://www.csbio.sjtu.edu.cn/bioinf/RBPsuite/


Results and discussion
Performance of RBPsuite webserver
We first evaluate the updated iDeepS on the original
benchmarked dataset with 31 experiments [8], iDeepS
yields an average AUC of 0.85 across 31 experiments,
which is close to the original iDeepS. Our previous study
[10] demonstrates that iDeepS is superior to DeepBind
and GraphProt. In addition, the independent study [12]
demonstrates that iDeepS performs similarly to the latest

DeepCLIP with a similar network architecture on the
benchmark dataset from GraphProt. For linear RNAs,
iDeepS in RBPsuite yields an average AUC of 0.781, pre-
cision of 0.673, sensitivity of 0.802 and specificity of
0.591 across 154 RBPs on the independent test set. As
shown in Fig. 2, the AUCs for 154 RBPs are all greater
than 0.7. We also retrain CRIP on the circRNA bench-
mark set, CRIP yields an average AUC of 0.878, a preci-
sion of 0.798 and a sensitivity of 0.813, across 37 RBPs.

Fig. 1 The workflow of RBPsuite webserver. RBPsuite first breaks the full-length sequence into segments of 101 nucleotides. For linear RNAs, the
binding scores of individual segments are calculated by iDeepS. For circRNAs, the binding scores of individual segments are calculated by CRIP.
The output page gives the binding scores for each segment and identified motifs on the segment, and also the score distribution of RBP binding
sites within the input sequence

Fig. 2 The AUCs of the updated iDeepS for linear RNAs on 154 RBPs
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Input of RBPSuite
The RBPsuite accepts a full-length RNA sequence or a
sequence file in FASTA format as the input. It also ac-
cepts batch input with multiple RNA sequences. The
length of each RNA sequence is not limited, but all se-
quences have to be nucleotides ‘ACGUT’.
In addition to the input sequence, users need specify

the RNA type ‘Linear RNA’ or ‘Circular RNA’, which de-
termines which computational method will be used for
predicting the RBP binding sites. If the RNA type of in-
put RNA is unknown, WebCircRNA is recommended
for assessing the circRNA potential. According to the
potential score estimated by WebCircRNA [28], users
can choose the RNA type. After choosing the RNA type,
the users are required to choose a model. ‘Specific
model’ predicts the binding scores between the input
RNA and the chosen RBP using the models trained on

the RNA targets of the chosen RBP. ‘General model’ pre-
dicts the binding scores between the input RNA and all
RBPs with trained models, and the number of RBPs is
154 and 37 for linear RNAs and circRNAs, respectively.

Output of RBPSuite
When the job is finished, the prediction results will ap-
pear on the results page. For each job, a job-ID will
automatically be assigned, users can use the job-ID to
track the job progress and retrieve the results later. For
the chosen RBP, the result page consists of one sortable
table listing the segments with binding score greater
than 0.5 and a score distribution figure of all segments
according to their positions within the input RNA. If
there are verified motifs for the RBP, the motifs on the
segments in the result table are marked in red. All the
prediction results are downloadable in the result page.
The expected runtime of predicting binding sites of a
specific RBP on a linear RNAs and a circRNAs using
RBPsuite for sequences with different lengths are listed
in Table 2. For longer sequences, iDeepS for linear
RNAs takes longer time than CRIP for circRNAs since it
first needs run the structure prediction.
For general model, RBPsuite will predict binding

scores of all available RBPs for the segments of the input
sequence, as shown in Fig. 3a. Users can click the RBP
of interest to see the predicted RBP binding sites of this
RBP on the input sequence (Fig. 3b).

Table 2 The expected runtime of predicting binding sites of a
specific RBP on a linear RNA and a circRNA using RBPsuite for
sequences with different lengths

RNA type Sequence length Time(s)

Linear RNA 1000 5.62

10,000 15.43

100,000 115.59

circRNA 1000 9.07

10,000 9.79

100,000 20.26

Fig. 3 The output of RBPsuite for general model, clicking a protein of interest to see the detailed results for this protein. In the table, the
detected motif on the predicted binding site is marked in red
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Case study
Here we use RBPsuite to predict RBP binding sites on
full-length RNAs. We use circRNA hsa_circ_0054654 as
an example. hsa_circ_0054654 has a length of 1821 nts,
and it has 13 AGO2 binding sites with the CLIP-seq
peaks without overlap. RBPsuite first breaks the hsa_
circ_0054654 sequence into 18 segments, which are pre-
dicted to be 14 AGO2 binding sites with a score cutoff
0.5, as shown in Fig. 4a. Of the 14 predicted binding
sites, 12 are the segments with verified binding sites lo-
cating on, only one segment with verified binding site is
not detected by RBPsuite (Fig. 4b), where star is the veri-
fied binding sites of AGO2. As shown in Fig. 4b, only
two segments are wrongly predicted as AGO2 binding
sites, one has a low predicted score below 0.6.

Future development
In RBPSuite, we use FIMO in the MEME tool to detect
verified motifs from CISBP-RNA database within the
segments of the input RNA sequences. In iDeepS, we

can extract binding motifs from the learned parameters
of the kernels of CNNs. However, these detected motifs
are still not experimentally verified. Another future dir-
ection of RBPSuite is to apply integrate gradient [29] to
highlight key nucleotides for binding to RBPs, instead of
limiting to the verified binding motifs. For example, TF-
modisco [30] uses the attribution maps generated by in-
tegrated gradients to extract summary motifs.
One limitation of RBPsuite is that it can only predict

binding targets for those RBPs with a certain number of
verified binding targets. It is estimated there exist over
1000 human RBPs [31], whose binding targets may be
screened in future. Thus, we will update RBPsuite to
cover more RBPs with more advanced computational
methods. Another solution is that transferring models
from RBPs with similar binding preference to the RBP
with limited verified targets, as done in beRBP [32],
which is able to predict binding sites for any RBPs. In
addition, RBPsuite predicts a 101 nt-long segment locat-
ing the RBP binding site but still cannot locate the exact

Fig. 4 The results of RBPsuite for predicting AGO2 binding sites on hsa_circ_0054654. A) The 101 nt segments of hsa_circ_0054654 with a
binding score greater than 0.5. B) The score distribution of 18 segments from hsa_circ_0054654, where the star corresponds to the verified
binding sites derived from CLIP-seq read peaks
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binding nucleotides within this segment. More advanced
computational methods will also be added to the existing
framework in future. We expect to update RBPsuite to
be able to locate the exact binding nucleotides on RNAs.

Conclusions
In this study, we implement an online webserver
RBPsuite for predicting RBP binding sites on linear and
circular RNAs based on deep learning. RBPsuite inte-
grates two deep learning algorithms iDeepS and CRIP,
which predict RBP binding sites on linear RNAs and cir-
cRNAs, respectively. RBPsuite is able to predict binding
linear RNAs for the largest number of RBPs, and is the
first deep learning-based webserver for this task. The
RBPsuite accepts RNA sequence as the input and gives
the scores of 101 nt segments broken from the input
RNA sequence. In addition, RBPsuite further detects the
verified motifs on the segments to give more evidence
for supporting the binding segments. The prediction
performance on the independent test set and a case
study both demonstrate the effectiveness of RBPsuite.

Availability and requirements
Project name: RBPsuite
Project home page: http://www.csbio.sjtu.edu.cn/

bioinf/RBPsuite/
Operating system(s): Platform independent
Other requirements: Google chrome, Safari and

Firefox
License: Apache License 2.0
Any restrictions to use by non-academics: Licence

needed
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