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Abstract

Background: A conformational epitope (CE) is composed of neighboring amino acid residues located on an
antigenic protein surface structure. CEs bind their complementary paratopes in B-cell receptors and/or antibodies.
An effective and efficient prediction tool for CE analysis is critical for the development of immunology-related
applications, such as vaccine design and disease diagnosis.

Results: We propose a novel method consisting of two sequential modules: matching and prediction. The
matching module includes two main approaches. The first approach is a complete sequence search (CSS) that
applies BLAST to align the sequence with all known antigen sequences. Fragments with high epitope sequence
identities are identified and the predicted residues are annotated on the query structure. The second approach is a
spiral vector search (SVS) that adopts a novel surface spiral feature vector for large-scale surface patch detection
when queried against a comprehensive epitope database. The prediction module also contains two proposed
subsystems. The first system is based on knowledge-based energy and geometrical neighboring residue contents,
and the second system adopts combinatorial features, including amino acid contents and physicochemical
characteristics, to formulate corresponding geometric spiral vectors and compare them with all spiral vectors from
known CEs. An integrated testing dataset was generated for method evaluation, and our two searching methods
effectively identified all epitope regions. The prediction results show that our proposed method outperforms
previously published systems in terms of sensitivity, specificity, positive predictive value, and accuracy.

Conclusions: The proposed method significantly improves the performance of traditional epitope prediction.
Matching followed by prediction is an efficient and effective approach compared to predicting directly on specific
surfaces containing antigenic characteristics.
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Background

A B-cell epitope, also known as an antigenic determin-
ant, is the surface portion of an antigen that interacts
with a B-cell receptor and/or an antibody to elicit either
a cellular or humoral immune response [1, 2]. Because
of binding specificity characteristics, B-cell epitopes
possess a huge potential for immunology-related appli-
cations, such as vaccine development, drug design and
disease prevention, diagnosis and treatment [3, 4].
Although clinical and biological researchers usually rely
on biochemical/biophysical experiments to identify
epitope-binding sites in B-cell receptors and/or anti-
bodies, such experiments are expensive, time-consuming
and not always successful [5]. Therefore, in silico
methods that reliably predict B-cell epitopes could sim-
plify immunology-related experiments [6]. By applying
accurate epitope-prediction tools, immunologists can
focus only on high-likelihood antigenic protein segments
and reduce their experimental efforts. It was also re-
ported that computational methods could significantly
reduce the epitope prediction time and costs of vaccine
development [7-9].

In general, epitopes are categorized into linear (con-
tinuous) and conformational (discontinuous) types [10—
12]. A linear epitope (LE) is a short, continuous
sequence of amino acids located on the surface of an
antigen. Although an isolated LE lacks conformational
information, it is usually flexible and can adapt its
conformation to form weak interactions with a comple-
mentary antibody. Many researchers have focused on LE
prediction, and a number of LE prediction systems have
been developed with some accuracy. These systems re-
quire only a protein sequence as a query input, and well-
known systems include BEPITOPE [13], BCEPred [14],
BepiPred [15], ABCpred [16], LEPS [17, 18], and
BCPreds [19]. The algorithms calculate physicochemical
properties, such as polarity, charge or secondary struc-
ture of residues within the targeted protein sequences,
and then apply quantitative matrix analyses or machine-
learning algorithms, such as a hidden Markov model,
support vector machine or artificial neural network, to
predict LEs.

The second type of epitope, a conformational epi-
tope (CE), is composed of residues that are not con-
tinuous in sequence, but are rather adjacent on the
structural surface of the protein after folding [20].
The majority of B-cell epitopes are CEs, and the
number of CEs on native proteins has been estimated
to be ~90% of all B-cell epitopes [21, 22]. Research
focusing on the identification of CEs has provided
practical and valuable results. The first 3D CE predic-
tion system, CEP, was developed in 2005 [23], and
nearly twenty other CE prediction systems or algo-
rithms have been developed in the past decade.
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Following from the chronological progress of predic-
tion technologies, CE prediction technologies can be
divided into four categories. All published CE epitope
prediction systems and corresponding algorithms are
listed in Table 1. The first category applies statistical ap-
proaches to identify high-propensity epitope features on
antigen proteins or designs classifiers based on a com-
bination of weighted epitope features. Examples include:
the CEP server, which was developed based on accessi-
bility of amino acid residues [23]; Discotope, which inte-
grates surface/solvent accessibility, contact numbers, and
amino acid propensity scores [22, 24]; BEPro, formerly
known as PEPITO, which utilizes amino acid propensity
scores, solvent accessibility and side-chain orientations
quantified by half-sphere exposure in a linear regression
[25]; PEPOP, which uses accessible surface residues and
segments from putative discontinuous epitopes to pre-
dict discontinuous B-cell epitopes [26]; SEPPA server,
which combines propensity scores of unit patches of
residue triangles, amino acid propensity and clustering
coefficients [27]; ElliPro, which applies protrusion index
(PI) features to protein surface protruding areas [28];
and EPCES, which implements prediction methods using
residue epitope propensity, conservation score, side
chain energy score, contact number, surface planarity
score and secondary structure composition [29].

The second category uses machine learning methods
to predict CE epitopes. For example: Epitopia, which
employs 44 structure features and 41 sequence features
within a Naive Bayes classifier [30]; EPSVR, which uti-
lizes six epitope characteristics of the EPCES method
and combined support vector regression techniques [31];
Bpredictor, which was constructed using thick surface
patches and amino acid frequencies in a random forest
model [32]; ABepar, which employs amino acid pairs
and contact residue pairs within a hidden Markov model
[33]; SEPPA2.0, which enhances prediction performance
of previous systems by using accessible surface area,
relative accessible surface area, clustering coefficient and
AAindex in an artificial neural network with logistic re-
gression [34]; and CeePre, which uses B factor, evolu-
tionary conservation and amino acid log-odds to build a
random forest learning model [35].

The third category applies multiple system prediction,
also known as ensemble learning or multiple layer pre-
diction. For example: EPMeta, which integrates EPSVR
and five other existing prediction servers (EPCES, EPI-
TOPIA, SEPPA, PEPITO, and DiscoTopel.2) to provide
consensus prediction results [31]; Zhang et al, which
proposes a prediction method by combining six CE pre-
diction systems and four LE prediction systems [36]; Hu
et al, which integrates four CE prediction systems and
four LE prediction systems to perform a multiple layer
prediction [37]; and SEPIa, which proposes a prediction
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Table 1 Conformational epitope prediction system or algorithm analysis
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System Instructions year published Features and method Feature classify

name

CEP Web system http://196.1.1144 2005 Nucleic Acids relative solvent accessibility Physical
9/cgi-bin/cep.pl Research

DiscoTope  Web system 2006 Protein Science Amino acid log-odds and contact numbers Physical

1.0 http://tools.iedb.org/stools/
discotope/discotope.do

Rapberger's Algorithm 2007 Journal of Molecular  solvent accessibility, shape complementarity Physical +Chemical

Recognition and binding energies

BEpro (PEPI Web system http://pepito. 2008 Bioinformatics DiscoTope features and side chain direction Physical

TO) proteomics.ics.uci.edu RSA and HSE

ElliPro Web system http://tools. 2008 BMC Bioinformatics ~ Protrusion index (Elliptical surface) Physical
immuneepitope.org/ellipro

PEPOP http://diagtools.sysdiag.cnrsfr/ 2008 BMC Bioinformatics ~ ASA and epitope sequence Physical
PEPOP/

SEPPA Web system http://lifecenter. 2009 Nucleic Acids Amino acid propensity, clustering coefficient, Physical +Chemical
sgst.cn/seppa/ Research ASA +Triangulation

Epitopia Web system http://epitopia. 2009 BMC Bioinformatics 44 structure features and 41sequence feature Physical +Chemical +
tau.ac.l with Naive Bayes classifier machine learning

EPCES Web system http://sysbio.unl. 2009 BMC Bioinformatics  residue epitope propensity, conservation score,  Physical +Chemical
edu/EPCES/ sidechain energy score, contact number,

surface planarity score, and secondary structure
composition.
Soga'’s Algorithm 2010 Protein Engineering  Amino acid propensity, ASEP Physical
Bepar Algorithm 2010 BMC Structural paratope-epitope interacting biclique and Physical +Antibody
Biology cooccurrent pattern of interacting residue pairs  info.

CBTOPE Web system 2010 Immunome Research  Binary profile of patterns (BPP) + Physico- Physical +Chemical
http://osddlinux.osdd.net/ chemical profile of patterns (PPP) + Composition
raghava/cbtope/submit.php profile of patterns (CPP) with SVYM

EPSVR Web system http://sysbio.unl. 2010 BMC Bioinformatics ~ EPCES feature with SVR Physical +Chemical +
edu/services/ machine learning

EPMeta Software 2010 BMC Bioinformatics ~ Combine EPSVR and others 5 system Multiple system

Bpredictor  Software 2011 BMC Bioinformatics  thick surface patch and amino acid frequency Physical + machine

with random forest (RF) algorithm learning

Liu's Algorithm 2011 Journal of relative solvent accessibility and b factor with Physical

Proteomics & logistic regression
Bioinformatics

ABepar http://155.69.2.25/~s080011/ 2011 Computational Amino Acid pair and contact residue pairs with ~ Physical + Antibody

index.html Biology HMM info. + machine
Bioinformatics learning

DiscoTope ~ Web system www.cbs.dtudk/ 2012 PLOS ONE Amino Acid pair and RSA Physical + different

20 services/DiscoTope/ host

Wen http://bcell.whu.edu.cn 2012 PLOS ONE Combine 6 CE systems and 4 LE systems Multiple system

Zhang's

PatchTope  http://www.fci.cuedu.eg:8080/ 2012 American Journal of  Surface patch for RSA and b factor with SVYM Physical +Chemical +
PatchTope/ Bioinformatics machine learning

Research

CE-KEG Web system http://cekeg.cs. 2013 BMC Bioinformatics ~ Energy and amino acid pair Physical +Chemical
ntou.edu.tw

SEPPA20  Web system http:/lifecenter. 2014 Nucleic Acids RSA, clustering coefficient, ASA, AAindex for Physical +Chemical
sgst.cn/seppa2/ Research ANN with logistic regression

EpiPred Web system 2014 Structure geometric fitting and knowledge-based Physical +Chemical
http://opig.stats.ox.ac.uk/ Bioinformatics asymmetric antibody-antigen scoring,then +docking program
webapps/sabdab-sabpred/ using docking program to enhance prediction
EpiPred.php ability

Hu's Algorithm 2014 BMC Bioinformatics ~ Combine 4 CE systems and 4 LE systems Multiple system
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Table 1 Conformational epitope prediction system or algorithm analysis (Continued)

System Instructions year published Features and method Feature classify
name
CBEP http://59.73.198.144:8088/ 2014 BioMed Research evolutionary profile, secondary structure, Multiple system +
CBEP/ International disorder zone, dipeptide composition and multiple machine
physicochemical properties with multiple ML learning
CeePre Algorithm 2014 BMC Bioinformatics B factor, Evolutionary, Amino acid log-odds Physical +Chemical
with random forest +machine learning
PEASE Web system http://www. 2015 Structural surface accessibility, secondary structure, Physical + machine
ofranlab.org/PEASE bioinformatics predicted disorder, predicted interaction learning + Antibody
hotspots, the amino acid considered, and info.
amino acids neighboring in sequence with
Random Forest
Sun'’s Algorithm 2015 Bio Research EPCES features and mimotope knowledge to Physical +chemical +
International enhance prediction ability mimotope
PUPre Algorithm 2015 BMC Bioinformatics 209 features +PU learning Physical +Chemical +
machine learning
SePre Algorithm 2017 BMC Genomics 239 features + two staged heterogenous Physical +Chemical +
learning method multiple machine
learning
SEPla Algorithm 2017 BMC Bioinformatics 13 sequence-based features with naive Physical +Chemical +

Bayesian and random forest classifier multiple machine

learning

method by combining a Naive Bayes classifier and a ran-
dom forest classifier [38].

The fourth category combines additional information
to enhance prediction accuracy. This group includes:
EpiPred, which employs a protein-docking program to
assist in discontinuous epitope prediction [39]; Bepar
[40] and PEASE [41], which require antibody sequences
from users for CE prediction; and Sun et al. integrated
mimotope analysis to increase prediction accuracy [42].

Although a large number of CE prediction systems
were published, the performance of B-cell epitope pre-
diction systems thus far is not satisfactory. The literature
has suggested several reasons why CE prediction tech-
niques have not achieved satisfactory performance [43—
47]: (1) Compared to the variety of antigen-antibody
complexes existing in nature, the collected epitope data-
set is still too small and inconsistent. (2) Non-epitope
amino acids are frequently defined as antigenic epitopes.
The true epitopes may possess only a few critical surface
residues, but researchers often define misidentified adja-
cent amino acids as epitopes. (3) It is difficult to evaluate
the true prediction performance of different systems.
Due to each system using their own training and testing
datasets, there is no benchmark standard for a fair evalu-
ation. (4) True undetected antigen epitopes are being
treated as non-antigenic epitope regions. In addition,
geometric structural information could provide more
useful characteristics than sequences for unknown anti-
genic epitope prediction. However, in recent years, most
of the CE prediction tools have applied similar charac-
teristics for constructing classifiers and prediction

systems and no new critical or effective identification
features have been found. Only transformations of a var-
iety of prediction technologies in the field of machine
learning and adjustment of training/testing datasets to
its best prediction results have been reported.

In this paper, we started from the perspective of vac-
cine developers and drug designers. The main goal was
to propose a discontinuous epitope search and predic-
tion system with the central concept of “matching first,
and prediction second”. The schematic diagram of our
designed system is shown in Fig. 1. A query protein se-
quence/structure is uploaded to the system and it auto-
matically matches all previously-published epitope
regions. When the query protein possesses only se-
quence information, the system automatically transfers
the sequence to Phyre2 webserver [48] to generate a
simulated protein structure. The designed system
searches the most established epitope databases, such as
IEDB [49], IMGT [50], SabDab [51], and PDB [52], to
find any identical or highly similar antigenic epitopes. If
the query object possesses similar antigenic epitopes
within the databases, the system defines the mapped re-
gions as candidate antigenic epitope regions. Otherwise,
if the matching process cannot find any similar epitope
sequences or structures from the databases, the antigen
epitope prediction module will be activated. The de-
signed system directly displays all similar antigen protein
structures and corresponding antibodies and provides
links to additional related resources for downstream ap-
plications. In summary, two searching methods (se-
quence matching and surface patch matching) and two
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Fig. 1 A flowchart of our conformational epitope prediction system

predictive methods (CEKEG [53] and SFVP [54])
were integrated for a comprehensive CE prediction
system. The integrated system can produce a variety
of mapped and predicted antigenic epitopes through
efficlent and effective search and prediction
algorithms.

Methods

Sequence-based epitope search

The BLAST algorithm is widely used as a sequence
comparison tool for matching similar or identical se-
quences. Many antigenic database systems provide
similar antigen search services, such as AntigenDB
[55] and SabDab [56]. These are useful only for query
antigens with corresponding amino acid fragments
available, but without resolved corresponding 3D pro-
tein structures. In this study, we collected 1694 se-
quences from the IEDB database as an initial target
database. Since the PDB file format has been verified
and manually curated by protein crystallographers,
there are many modifications, such as amino acid in-
sertion, deletion, starting position, multiple model re-
cords, and multiple positions of residues. However,
the corresponding protein sequences in FASTA for-
mat only contain the sequential order of amino acids
within a protein. Therefore, in order to correctly map
the amino acid number to the known antigenic se-
quence searched by BLAST, we prepared a structure-
sequence correspondence look-up table for antigen

epitope residues. Using this table, the residue number
within the PDB file and the corresponding FASTA se-
quence could be mapped appropriately.

This proposed system acquires a query protein
structure as the input for analyzing its antigenic epi-
topes. The corresponding sequence from the PDB file
format is extracted and saved as a FASTA file. Then,
BLAST+ is applied to the query protein for matching
to similar sequences from the previously-collected
known antigen database. Finally, the JSmol protein
structure molecular viewer is used to display the
mapped results. The system shows each mapped
known antigenic epitope residue and its correspond-
ing position in the query structure. In addition, the
system displays all relevant information about the
known antigens, such as antigenic type, antibody/anti-
genic domain, antigen epitope/antibody paratope resi-
due mapping table, antigenic name, host/antigen/
antibody species name and corresponding links to
other antigen-antibody databases. The flow chart is
shown in Fig. 2.

Surface-based epitope search

The BLAST tool provides direct searching of a known
antigenic sequence database, and the matched antigen
segments possess identified epitopes which could be
considered as the reference epitope segments for the
query sequence. However, the number of antigen-
antibody binding pairs in nature is greater than the
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Fig. 2 A flowchart of the sequence-based antigen epitope search method

epitopes collected from all existing antibody data-
bases. In addition, when an antibody binds to a spe-
cific antigenic epitope, it is thought that the surface
residue characteristics at the binding regions are
strongly related to the structural conformation of the
binding regions, binding affinity and specificity. If the
query protein sequence is not more than partially
similar to the sequences collected in the database, the
sequence-based approach would fail to discover any
possible antigenic epitope. Therefore, we also propose
a surface-structure-based approach to complement
our sequence-based approach by employing surface
spiral vector matching analysis. Each individual sur-
face residue on the query antigen structure is used to
formulate a corresponding surface spiral vector, and
the calculated surface spiral vectors are compared to
all previously-known antigenic epitope spiral vectors.
A surface spiral vector of a residue located on a pro-
tein structural surface is defined as a sequential resi-
due sequence containing all adjacent surface residues
within a defined radius. The sequential order of all
associated neighboring residues among the corre-
sponding spiral vector is constructed by a shortest
distance path approach and formulated as a non-
repeated shortest circle path. Hence, a surface residue
could be identified as a candidate epitope residue if
high antigenic affinity and similarity are verified by
comparing the corresponding spiral vectors of the
query residue and all previously-known antigenic epi-
tope residues. After performing the spiral vector
matching process, all candidate antigenic epitope resi-
dues are integrated as a CE by evaluating their 3D
geometrical distances, and finally, the system reveals

all possible grouped epitope regions that could be
bound with a specific antibody.

The spiral vector searching process utilizes the follow-
ing steps:

a) Surface spiral vector generation

To create a surface spiral vector of a selected sur-
face residue, first the adjacent residues are identified.
Here, we used the MSMS program to create a
triangular-mesh of the surface of the query antigen
structure. This process obtains all the adjacent resi-
dues of each surface residue. However, these neigh-
boring residues are not arranged or listed in a
clockwise or counterclockwise direction. In order to
create a corresponding spiral vector sequence of the
surface residues, we calculated the shortest distance
as the space neighboring distance between all pairs of
neighboring surface residues, considering the related
surface atoms belonging to the two adjacent residues.
Then, a group of mutual distances obtained from the
neighboring surface residue pairs was applied to con-
struct a circle of surface amino acids. This forms the
shortest distance problem and can be converted into
the fairly well-known Traveling Salesman Problem
[57]. Using either heuristic approaches or dynamic
programming method to find a non-repeated shortest
circle path, we can obtain a corresponding geometric
vector for each surface residue and apply this surface
spiral vector for surface matching. The pseudocodes
of identifying the corresponding spiral vector of a
surface residue through heuristic approaches are writ-
ten as the following,
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//INPUT: PDB file
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//OUTPUT: Spiral feature vector for each surface residue

Procedure SpiralVector(queryPDB)
ExecuteMSMS(queryPDB);

acids.

IntegrateM SMSInfo(queryPDB);

//Execute MSMS to define surface amino acids and adjacent amino

//Obtain the protein structure data from MSMS’s output and

save it into PDB information.

CreateSpiralSeq(queryPDB);

//Calculate the shortest path among adjacent amino acids to form

a corresponding spiral feature vector for each surface residue.

end Procedure

// I: number of surface residues
/I N_Num: number of adjacent residues

Procedure CreateSpiralSeq() {
for i from 1 to / do
N[] = getNeighborAAList(i);

//Obtain the adjacent residue sequences of the specified

surface residue

D[][] = bulitShortDisTable (N);

//Calculate the shortest distance among all adjacent

residues (atom-based)

forj from 1 to N Num -1
DisTmp = INF;
for k fromj+ 1 to N Num
if (DisTmp > DIN[/T][N[X]]) {
DisTmp = D[N[/]][N[X]];
AATmp = k;
}
end for
tmp = N[AATmp];
N[AATmp] = N[j + 1];
N[j + 1] = tmp;
end for
end for

end Procedure

To illustrate the calculation of a spiral vector using a
simple example (Fig. 3 (a)), we selected the residue num-
ber 421 (isoleucine, Ile) from the functional domain D of
protein 2F4W. Using the MSMS program to perform
protein surface identification, we can obtain five adjacent
residues for the query residue 421, which are 422, 423,
424, 429 and 430. The system then automatically calcu-
lates the shortest distances between all surface residue
pairs as shown in Fig. 3 (a), and the five adjacent amino
acids are sequentially enumerated for all possible circu-
lar permutations (2°=32 cases). After calculating all
possible circular distances, the sequence of 422(F) - >
423(I) ->424(S) ->429(S) ->430(I) ->422(F) is ob-
tained as the spiral feature with the shortest distance.

//Calculate the shortest path to generate the spiral feature

Hence, the sequence residue pattern of “F-I-S-S-1” is the
spiral vector for the central residue of 421, and the resi-
due pattern of “I-S-S-I-F” is its inverse spiral vector.

b) Spiral vector comparison for known epitopes

A total of 20,565 antigenic epitope residues from 1694
sequences in IEDB were used to calculate their corre-
sponding surface spiral vectors, and a surface spiral vec-
tor database was constructed for the following BLAST
approach. To match all spiral vectors derived from sur-
face residues of a query protein, the BLASTp-short tool
is applied to find matches in the constructed target
spiral vector database. A single surface residue is
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PDBid:2J4W

Chain: D
422(F) |423(1) | 424(S) | 429(S) | 430(1)
422(F) - 1.8 6.4 8.3 3
423(1) | 1.8 - 2.5 5.7 7.2
424(S) | 6.4 2.5 - 1.9 6.2
429(s) | 8.3 5.7 1.9 - 1.6
430() | 2.3 ) 6.2 1.6 -

surface residues

Fig. 3 Example of a surface spiral vector. a A simple illustration of a spiral vector. b The shortest distance table for a group of neighboring

identified as a candidate epitope residue if its corre-
sponding spiral vector is similar or identical to the vec-
tors of known antigenic epitopes. Since the surface spiral
vector features are constructed without consideration of
clockwise or counterclockwise order, we perform an
additional searching process using the inverse order of
the query vector against the spiral vector database.

Due to the non-directional and rotational characteris-
tics of the spiral feature vectors, all possible rotational
patterns of a spiral vector must be tested, which will in-
crease computational time. Here, we designed a simple
method to accelerate searching performance by head-to-
tail tandem repeat known antigenic epitopes. For
example, if an original known spiral sequence was “A-R-
G-F”, we extended it repeatedly to a new pattern of “A-
R-G-F-A-R-G-F”. Thus, when the system applies the
BLASTp-short tool for short sequence searches, it will
increase successful matching rates with all known spiral
vectors even if the query pattern was rotated or shifted.
In addition, the system provides a parameter for remov-
ing unreasonable search results by validating the pattern
length less than a certain percentage of spiral feature
vectors of known epitopes. Here we applied 50% as a de-
fault setting since we repeated all known antigenic

epitopes in previous spiral feature vector preparation.
This filtering processes could avoid the occurrence of a
query sequence completely matched with a repeated
spiral feature vector. It should be noticed that an ex-
tended and repeated spiral feature vector is for fast
matching procedure, but not a true epitope. An example
is shown in Fig. 4 and is described below.

As shown in Fig. 4, if a user wants to compare two
spiral vector pairs of (“A-F-I-S-H, H-A-F-I-S”) and (“A-
F-I-S-H, “I-F-A-H-S”), we must fix one sequence first
and rotate the other spiral sequence feature for the best
alignment. In order to solve the problem of an undefined
initial residue within a circular feature vector, we extend
the original spiral feature vectors of known antigenic
epitopes by repeating the vector twice and subtracting
the last amino acid. Therefore, the sequence searching
method only needs to scan the query sequence once for
similarity verification. In addition, since it is not known
in advance if established spiral vectors were formulated
in a clockwise or counterclockwise direction during fea-
ture construction, the query sequence (“A-F-I-S-H”) and
its reverse pattern (“H-S-I-F-A”) should be processed
simultaneously to ensure a comprehensive comparison
to the epitope spiral feature database. In this way, the
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known epitope spiral vectors, “H-A-F-I-S" and “I-F-A-H-S"

J

query surface amino acid group will be compared to the
adjacent amino acid groups of known antigenic epitopes
in different circular directions.

iii) Identification of high-potential antigenic residues

After comparing all surface spiral feature vectors of a
query protein to all known spiral vectors derived from
known antigenic epitopes, surface residues possessing
high-potential antigenic epitope characteristics are re-
vealed and annotated. However, the system will auto-
matically remove the identified surface residues which
were matched by coincidence. To achieve this goal, the
system collects all matched surface residues possessing
similar spiral vectors obtained from known antigenic
residues, and then calculates the geometric distance of
each pair of matched surface residues. The distance is
defined and calculated using the previously-described
method for constructing spiral features, which defines
the shortest distance as the distance of the two closest
surface atoms of the two selected residues. A recursive
method is performed for grouping high-potential anti-
genic residues according to their surface amino acid dis-
tance. The number of surface amino acids in each
clustered group is discarded if it is less than a threshold
setting. It is observed that clustered groups possessing
similar spiral characteristics have closer distances. As an
example, the functional domain A of the 4NCO protein
structure in Fig. 5 was used as the query protein for
matching similar protein surface patches collected from
the antigen database. Through spiral feature vector

comparison, four known antigenic epitopes were identi-
fied. After grouping high-potential antigenic amino acids
by their spatial distance attributes, each known antigen
was assigned to one or more groups. Finally, the system
automatically deleted certain groups when the number
of matched amino acids was less than a threshold set-
ting. For the example shown in Fig. 5, the result shows
that only Group_3 from 1BGX_T and Group_1, Group_
2, Group_4 from 4NC1_A were selected and displayed
as the matched epitopes for the query protein.

iv) Continuous surface patch formation by anchor
extension

Although high-potential antigenic residues, called as
anchors, are identified and clustered based on matching
spiral feature vectors, these antigenic epitopes might be
dispersed and discontinuously located on a protein sur-
face due to low evolutionary conservation. It is therefore
necessary to stitch adjacent surface residues to form a
continuous surface patch using an automatic procedure.
Here, we define a fixed radius as an extension region for
grouping identified anchors. After each identified anchor
is expanded outward by the default radius, the overlap of
two adjacent anchors can be analyzed. In other words,
when a residue is covered by at least two disks of identi-
fied anchors, the surface residue is additionally selected
and considered as an extended group of identified epi-
tope residues. All grouped anchors and extended epitope
residues together form a complete and contiguous epi-
tope patch.
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residues predicted as candidate epitope residues. The green circles represent clustered predicted surface epitope residues based on the distance

threshold settings

In Fig. 6 we present the concept of grouping anchors
and extending neighboring residues. The orange stars rep-
resent identified high-potential antigenic amino acids (also
called as ‘anchors’), and the orange dotted lines represent
disks for identifying extended residues. Under the default
expansion radius setting, the adjacent surface residues for
each anchor are defined and all extended residues are re-
trieved to form a complete surface patch. It can be ob-
served in Fig. 6 (right) that only Group_3 of the Hit 3:
1BGX could be extended to a continuous surface patch.

Searching method

In order to efficiently search all possible epitope regions
through surface patch matching, we developed an epi-
tope search algorithm for fast comparison and
visualization. The main purpose of the algorithm is to
treat all surface residues as individual objects. Each indi-
vidual amino acid has its corresponding spiral sequence
feature vector constructed based on the adjacent amino
acids, and this vector is compared to the spiral vectors
of known epitopes to identify surface patch similarities.

After extraction, collection, combination, clustering
and elimination, the identified surface patches are
identified. The detailed flow chart is shown in Fig. 7.
The designed system allows users to upload a protein
structure or a PDB code to discover all possible epi-
tope regions. When a user chooses to analyze a pro-
tein structure by PDB code, the system will
automatically connect to the RDSB PDB website to
download its corresponding structural information.
The user can specify one or more functional domains
as the search terms, the system retrieves all specified
functional domains. After the application of MSMS
software for triangular meshing, the original PDB file
format with atomic type and three-dimensional spatial
coordinates is converted into a series of simulated
protein structure files that represent the protein sur-
face structure. The system produces a set of data files
with extensions of .vert, .face, and .area. The gener-
ated files also contain information on the coordinates
of each triangle point, any three points formed by the
surface, and the triangle grid area. From the .vert and

residues to form a surface patch

* anchor @ neighbor residue XCK extended residue

Fig. 6 An example of anchor extension. (Left) The process of anchor extension. (Right) Dispersed anchor points connect through adjacent
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face files, the system can acquire any surface amino
acid and its adjacent amino acids list, and the .area
file defines the surface residues of the query protein.

Corresponding surface spiral feature vectors of all sur-
face amino acids of the query protein are calculated
according to the methods described above. The
BLASTp-short program is applied to search similar epi-
tope spiral vectors from the constructed database by
querying all surface spiral vectors of the query protein in
both clockwise and counterclockwise directions.
BLASTp-short differs from BLAST in its ability to
search short sequences. The mapped results from
BLASTp-short are collected and integrated according to
different antigenic protein structures. The default dis-
tance thresholding parameter for clustering associated
residues is 15 A. When the distance between any two
residues is greater than the default setting, the two resi-
dues are classified into different groups. A recursive
clustering algorithm is used to find all possible binding
areas. In order to exclude clustered groups with small
numbers of similar spiral feature vectors, our designed
system removes clustered groups less than 4 amino
acids. Finally, all the resulting high-potential antigenic
clusters and their corresponding antigenic epitope amino
acids are displayed. All detail information of the pro-
posed system and more illustrated examples can be
found in Lo’s PhD thesis [58].

Constructing the verification dataset

In order to objectively evaluate the performance of our
prediction system, we utilized a set of exclusive antigen-
antibody complexes from a previously-collected epitope

database. From the IEDB, we collected a set of 90 newly-
reported and labelled antigen-antibody complexes,
several of which were similar in structure or identical in
sequence to the previously-collected epitope sequence
database. When considering a minimum sensitivity of
50% as a successful prediction, a total of 42 antigenic
proteins were correctly predicted by CSS, and 48 by
SVS. If the threshold setting was reduced to a sensitivity
of 25%, a total of 50 correct predictions were achieved
by CSS, and 76 by SVS. This clearly shows that query
structures possessing similar sequences or surface
patches within the known epitope database can easily be
identified. Next, we analyzed the failed matching results
caused by low structure/sequence similarities. Sequences of
the new antigenic proteins were aligned with all previously
collected antigens by the BLAST algorithm, and we ex-
cluded antigens with E-values less than 1e-10. A total of 29
protein structures with low sequence similarities remained
after comparison to all previously-known epitope se-
quences. The CD-HIT tool [59] was then used to cluster
the 29 sequences according to results of a pairwise se-
quence alignment. Sequences with similarities greater than
70% were clustered, and only one representative structure
from each group was selected as the group representative
in the following analysis. As a result, only 12 representative
structures with differential sequence contents were selected
for validating the proposed search methods and comparing
them to existing methods (Fig. 8).

Results
In this study, we have adopted 12 newly annotated and
non-redundant protein structures as a testing set for
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Fig. 8 A detailed description of proteins in the validation set

comparing our CE prediction system with all other sys-
tems available online. Although there are dozens of pub-
lished prediction systems developed over the past
decade, more than half of them are not maintained on-
line or accessible. The six comparable systems we identi-
fied were ElliPro [28], Epitopia [30], EPSVR [31],
CBTOPE [60], Discotope [24] and CEKEG [53]. Since
the input and output of each prediction system is differ-
ent, we executed and evaluated their prediction perfor-
mances individually. Examples of major differences
include: ElliPro and CEKEG provide multiple predicted
epitopes; CBTOPE requires the antigen sequence as in-
put and predicts a set of epitopes; Epitopia reports five
levels of immunogenicity scales; EPSVR only calculates
the epitope score for each residue of the query protein;
and Discotope 2.0 provides input antibody structure and
predicts a set of epitopes. We collected all the prediction
results from these systems and compared their predic-
tion performance. We also calculated the prediction per-
formance of our two proposed search methods. The
results are shown in Table 2. In order to fairly evaluate
the ability of each search and prediction system, we ap-
plied some restrictions to the prediction results. When a
system reported multiple sets of prediction results, only
the first three predicted results were evaluated. All sys-
tems were initially used with their own default threshold

settings, if there were any. If the system could not iden-
tify any predictive candidates initially, we adjusted the
settings using objective and reasonable selections to per-
form CE prediction. It should be noted that because our
search results were based on E-values and the number
of identified anchors within a single group as the rank-
ing factors, sometimes the prediction system does not
provide three predictions exactly.

To evaluate the performance of the proposed method
at the level of the amino acid residue, four indicators
were applied to measure individual performance. These
indicators include sensitivity (SEN), specificity (SPE),
positive predictive value (PPV), F1 score, Matthews cor-
relation coefficient (MCC) and average area under the
curve (AvgAUC). (1) SEN is defined as the percentage of
true epitope residues that are correctly predicted as epi-
tope residues; (2) SPE is defined as the percentage of
non-epitopes that are correctly predicted as non-
epitopes; (3) PPV is also called as precision rate which is
defined as the probability that a predicted epitope is, in
fact, an epitope; (4) F1 score is the harmonic average of
the precision and recall rates. Precision rate is the same
as PPV and recall rate is the same as SEN; (5) MCC is a
measure of the predictive performance that incorporated
both SEN and SPE into a single value between — 1 and +
1; (6) AvgAUC is defined as the average of SEN and
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Table 2 Comparison of the results of all available systems and proposed search methods on the validation set. SEN Sensitivity, SPE
Specificity, PPV Positive Predictive Value, ACC Accuracy, MCC Matthew's Correlation Coefficient, Avg-AUC Average Area Under the

Curve. (Accessed date: July 2017)

Prediction System SEN SPC PPV ACC F1 score MCC Avg-AUC Prediction Condition

CEKEG (2013) 0.528 0.786 0.292 0.775 0.370 0.236 0.657 Best Result from Top3 prediction
ElliPro (2008) 0343 0.901 0.357 0.826 0.300 0227 0622 Best Result from Top3 prediction
CBTOPE (2010) 0334 0.665 0.087 0.597 0.133 0.000 0.500 SVM threshold: 0.3 (default)
Epitopia (2009) 0.274 0.836 0.187 0.761 0.210 0.081 0.555 Immunogenicity Scale: 5

EPSVR (2010) 0.198 0815 0.137 0.733 0.152 0.007 0.507 Epitope score > 80

Discotope2.0 (2012) 0.190 0.847 0.244 0.773 0.140 0.065 0518 Threshold: 3.7 (default)

Search System TPR SPC PPV ACC F1 score MCC Avg-AUC Prediction Condition

CSS 0.120 0.978 0.132 0.890 0.123 0.028 0.549 Best Result from Top3 prediction
SVS 0.473 0.869 0.365 0.853 0.396 0.307 0.671 Best Result from Top3 prediction

SPE. These parameters are calculated with the following
equations:

TP

Sensitivity (SEN) = Recall Rate = TP L EN (1)
N
Positive Predictive Value (PPV)
TP
recision Rate TP 1 ED (3)

F1 9 Precision x Recall @)
score = 2x
Precision + Recall

MCC — TPxTN - EPxEN (5)
/(TP ¥ EP)(TP + EN)(TN + EP)(IN + EN)

SEN + SPE

AvgAUC = >

(6)
where TP represented the true positive; TN, the true
negative; FP, the false positive; and EN, the false
negative.

Our results are presented in Table 2, where the best
prediction performances are in boldface and boxed and
the second-best prediction performances are in boldface
and underlined. It can be clearly seen that the tools
using a single set of predictive systems, such as
CBTOPE, Epitopia, EPSVR, or Discotope 2.0, are low in
sensitivity and accuracy. As a result of the averaged per-
formance, our proposed SVS searching method achieved
the best performance in terms of PPV, F1 score, MCC
and AvgAUC. Most of the second-ranking predictions
(in F1 score, MCC and AvgAUC) were achieved by our
previously-developed prediction system CEKEG, which
also obtained the best TPR prediction indicator. The
ElliPro prediction system is provided by IEDB, and had
high SPE and PPV due to its conservative prediction

ability. Overall, these results clearly show that our pro-
posed searching systems outperform all other existing
approaches tested.

Finally, we compared our two proposed searching
methods to each other. If we set the threshold for suc-
cessful identification of the 12 novel query structures as
a SEN=>25%, the CSS approach worked for only two
structures, but the SVS worked for 9. This result indi-
cates that if the query sequences are not similar to the
epitope database, the SVS surface features comparison
outperforms the CSS approach. The corresponding aver-
age AUC for prediction performances is shown in
Table 3. Since the CSS method did not ever align the
query to any sequence from the published epitope data-
base, its sensitivity is low and its specificity is relatively
high. In contrast, using the SVS approach to compare
the surface patches and to consider the first three clus-
ters provides a better search performance.

Conclusions

One of the most challenging research topics in develop-
ing application software for computational immunology
is correctly predicting B-cell epitopes on antigenic pro-
tein structural surfaces. Although there is a long re-
search history for both LE and CE prediction, the
prediction systems are still far from producing ideal so-
lutions. In particular, several systems developed for pre-
dicting CEs from the past few years could neither reach
high-accuracy performance, nor efficient simulation.

Table 3 Comparison of the CSS and SVS search methods.
Calculations were performed on the testing dataset of 12
proteins. Numbers in boldface indicate the better performance
for each parameter setting

Search Method Sensitivity Specificity Average-AUC
CsS 0.120 0.978 0.549
SVS 0.473 0.869 0.671
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Therefore, an effective and efficient prediction tool for
epitope analysis is necessary for the growth and develop-
ment of immunology-related applications, such as vac-
cine design, drug design and disease prevention. With
the rapidly increasing number of solved protein struc-
tures, CE prediction has become a necessary tool prior
to wet lab biomedical and immunological experiments.
In this paper, we present two major contributions to CE
prediction. First, two antigen epitope search methods,
CSS and SVS, were proposed. Secondly, two discontinu-
ous epitope prediction systems, CEKEG and SFVP, were
designed. We propose a novel concept of combining se-
quence and surface patch matching for CE prediction. In
this comprehensive computation analysis, if the query
structure lacks any existing homologous proteins in the
database, epitope prediction will be performed.

To search for antigenic epitopes, we designed a se-
quential approach of matching protein sequences and
surface patches to quickly find homologous antigenic
epitope regions from a known epitope database. Our
CSS approach facilitates searching for the most similar
antigenic sequences. Our SVS approach assists to com-
plement the shortcomings of the CSS method through
matching surface spiral feature vectors to discover hom-
ologous surface patches with dissimilar and discontinu-
ous characteristics that cannot be solved by sequence
matching approaches. In addition, surface patch com-
parison based on spiral feature vectors does not only
perform exceptionally well for matching specific antigen
epitopes, but also for the unsolved problem of searching
multi-structural surface patches.

To further accomplish the task of CE prediction, all
possible antigenic epitope candidates are predicted using
protein surface characteristics and combinatorial fea-
tures of epitopes. We first designed CEKEG for CE pre-
diction using surface energy and the frequency of amino
acid pairs. In addition, we developed the SFVP system
which integrates the distribution of surface amino acid
content and corresponding physicochemical properties,
clustering these features in different levels. A total of 57
spiral feature vectors were formulated and analyzed by a
K-nearest neighbor classifier. The prediction results
show that the proposed CE prediction algorithm signifi-
cantly outperforms all existing prediction algorithms.
Such information may facilitate the appropriate selection
of initial CE anchors, forming precise CE candidates for
immunological studies. Our experimental results show
the superior performance of our proposed system over
published computational techniques in the field of
antigen-antibody interaction analysis.

Antigenic epitope prediction studies are able to assist
vaccine development and drug design by significantly
reducing experimental costs and time. However, CE
binding region prediction has had no recent major
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breakthroughs in performance. Over the past decade,
numerous researchers have tried to improve epitope pre-
diction ability and the field has become increasingly
aware of the high variability in binding regions to anti-
bodies. It is certain that in the near future a larger, and
more diverse, repertoire of antigen-antibody crystal
complexes will be resolved. In addition, machine learn-
ing algorithms such as deep learning and Al technolo-
gies will continue to evolve through innovation. As
demonstrated by our designed system, CE prediction
performance can be further improved, and this will fa-
cilitate advanced applications in immuno-informatics re-
search, vaccine design, and pharmaceutical development.
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