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Abstract

Background: Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed
including the standard additive genetic effect model for which the variance components are estimated with mixed
model equations. In recent years, deep learning (DL) methods have been considered in the context of genomic
prediction. The DL methods are nonparametric models providing flexibility to adapt to complicated associations
between data and output with the ability to adapt to very complex patterns.

Main body: We review the applications of deep learning (DL) methods in genomic selection (GS) to obtain a meta-
picture of GS performance and highlight how these tools can help solve challenging plant breeding problems. We
also provide general guidance for the effective use of DL methods including the fundamentals of DL and the
requirements for its appropriate use. We discuss the pros and cons of this technique compared to traditional
genomic prediction approaches as well as the current trends in DL applications.

Conclusions: The main requirement for using DL is the quality and sufficiently large training data. Although, based
on current literature GS in plant and animal breeding we did not find clear superiority of DL in terms of prediction
power compared to conventional genome based prediction models. Nevertheless, there are clear evidences that DL
algorithms capture nonlinear patterns more efficiently than conventional genome based. Deep learning algorithms
are able to integrate data from different sources as is usually needed in GS assisted breeding and it shows the
ability for improving prediction accuracy for large plant breeding data. It is important to apply DL to large training-
testing data sets.
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Background

Plant breeding is a key component of strategies aimed at
securing a stable food supply for the growing human
population, which is projected to reach 9.5 billion people
by 2050 [1, 2]. To be able to keep pace with the expected
increase in food demand in the coming years, plant
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breeding has to deliver the highest rates of genetic gain
to maximize its contribution to increasing agricultural
productivity. In this context, an essential step is harnes-
sing the potential of novel methodologies. Today, gen-
omic selection (GS), proposed by Bernardo [3] and
Meuwissen et al. [4] has become an established method-
ology in breeding. The underlying concept is based on
the use of genome-wide DNA variation (“markers”) to-
gether with phenotypic information from an observed
population to predict the phenotypic values of an unob-
served population. With the decrease in genotyping
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costs, GS has become a standard tool in many plant and
animal breeding programs with the main application of
reducing the length of breeding cycles [5-9].

Many empirical studies have shown that GS can in-
crease the selection gain per year when used appropri-
ately. For example, Vivek et al. [10] compared GS to
conventional phenotypic selection (PS) for maize, and
found that the gain per cycle under drought conditions
was 0.27 (t/ha) when using PS, which increased to 0.50
(t/ha) when GS was implemented. Divided by the cycle
length, the genetic gain per year under drought condi-
tions was 0.067 (PS) compared to 0.124 (GS). Analo-
gously, under optimal conditions, the gain increased
from 0.34 (PS) to 0.55 (GS) per cycle, which translates to
0.084 (PS) and 0.140 (GS) per year. Also for maize,
Moro et al. [11] reported a similar selection gain when
using GS or PS. For soybean [Glycine max (L.) Merr.],
Smallwood et al. [12] found that GS outperformed PS
for fatty acid traits, whereas no significant differences
were found for traits yield, protein and oil. In barley,
Salam and Smith [13] reported similar (per cycle) selec-
tion gains when using GS or PS, but with the advantage
that GS shortened the breeding cycle and lowered the
costs. GS has also been used for breeding forest tree spe-
cies such as eucalyptus, pine, and poplar [14]. Breeding
research at the International Maize and Wheat Improve-
ment Center (CIMMYT) has shown that GS can reduce
the breeding cycle by at least half and produce lines with
significantly increased agronomic performance [15].
Moreover, GS has been implemented in breeding pro-
grams for legume crops such as pea, chickpea, ground-
nut, and pigeon pea [16]. Other studies have considered
the use of GS for strawberry [17], cassava [18], soybean
[19], cacao [20], barley [21], millet [22], carrot [23], ba-
nana [24], maize [25], wheat [26], rice [27] and sugar
cane [28].

Although genomic best linear unbiased prediction
(GBLUP) is in practice the most popular method that is
often equated with genomic prediction, genomic predic-
tion can be based on any method that can capture the
association between the genotypic data and associated
phenotypes (or breeding values) of a training set. By fit-
ting the association, the statistical model “learns” how
the genotypic information maps to the quantity that we
would like to predict. Consequently, many genomic pre-
diction methods have been proposed. According to Van
Vleck [29], the standard additive genetic effect model is
the aforementioned GBLUP for which the variance com-
ponents have to be estimated and the mixed model
equations of Henderson [30] have to be solved. Alterna-
tively, Bayesian methods with different priors using Mar-
kov Chain Monte Carlo methods to determine required
parameters are very popular [31-33]. In recent years,
different types of (deep) learning methods have been
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considered for their performance in the context of gen-
omic prediction. DL is a type of machine learning (ML)
approach that is a subfield of artificial intelligence (AI).
The main difference between DL methods and conven-
tional statistical learning methods is that DL methods
are nonparametric models providing tremendous flexi-
bility to adapt to complicated associations between data
and output. A particular strength is the ability to adapt
to hidden patterns of unknown structure that therefore
could not be incorporated into a parametric model at
the beginning [34].

There is plenty of empirical evidence of the power of
DL as a tool for developing Al systems, products, de-
vices, apps, etc. These products are found anywhere
from social sciences to natural sciences, including
technological applications in agriculture, finance, medi-
cine, computer vision, and natural language processing.
Many “high technology” products, such as autonomous
cars, robots, chatbots, devices for text-to-speech conver-
sion [35, 36], speech recognition systems, digital assis-
tants [37] or the strategy of artificial challengers in
digital versions of chess, Jeopardy, GO and poker [38],
are based on DL. In addition, there are medical applica-
tions for identifying and classifying cancer or dermatol-
ogy problems, among others. For instance, Menden et al.
[39] applied a DL method to predict the viability of a
cancer cell line exposed to a drug. Alipanahi et al. [40]
used DL with a convolutional network architecture to
predict specificities of DNA- and RNA-binding proteins.
Tavanaei et al. [41] used a DL method for predicting
tumor suppressor genes and oncogenes. DL methods
have also made accurate predictions of single-cell DNA
methylation states [42]. In the genomic domain, most of
the applications concern functional genomics, such as
predicting the sequence specificity of DNA- and RNA-
binding proteins, methylation status, gene expression,
and control of splicing [43]. DL has been especially suc-
cessful when applied to regulatory genomics, by using
architectures directly adapted from modern computer
vision and natural language processing applications.
There are also successful applications of DL for high-
throughput plant phenotyping [44]; a complete review of
these applications is provided by Jiang and Li [44].

Due to the ever-increasing volume of data in plant
breeding and to the power of DL applications in many
other domains of science, DL techniques have also been
evaluated in terms of prediction performance in GS.
Often the results are mixed below the —perhaps exagger-
ated— expectations for datasets with relatively small
numbers of individuals [45]. Here we review DL applica-
tions for GS to provide a meta-picture of their potential
in terms of prediction performance compared to con-
ventional genomic prediction models. We include an
introduction to DL fundamentals and its requirements
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in terms of data size, tuning process, knowledge, type of
input, computational resources, etc., to apply DL suc-
cessfully. We also analyze the pros and cons of this tech-
nique compared to conventional genomic prediction
models, as well as future trends using this technique.

Main body

The fundamentals of deep learning models

DL models are subsets of statistical “semi-parametric in-
ference models” and they generalize artificial neural net-
works by stacking multiple processing hidden layers,
each of which is composed of many neurons (see Fig. 1).
The adjective “deep” is related to the way knowledge is
acquired [36] through successive layers of representa-
tions. DL methods are based on multilayer (“deep”) arti-
ficial neural networks in which different nodes
(“neurons”) receive input from the layer of lower hier-
archical level which is activated according to set activa-
tion rules [35-37] (Fig. 1). The activation again defines
the output sent to the next layer, which receives the in-
formation as input. The neurons in each layer receive
the output of the neurons in the previous layer as input.
The strength of a connection is called weight, which is a
weighting factor that reflects its importance. If a connec-
tion has zero weight, a neuron does not have any influ-
ence on the corresponding neuron in the next layer. The
impact is excitatory when the weight is positive, or in-
hibitory when the weight is negative. Thus, deep neural
networks (DNN) can be seen as directed graphs whose
nodes correspond to neurons and whose edges corres-
pond to the links between them. Each neuron receives,

Page 3 of 23

as input, a weighted sum of the outputs of the neurons
connected to its incoming edges [46].

The deep neural network provided in Fig. 1 is very
popular; it is called a feedforward neural network or
multi-layer perceptron (MLP). The topology shown in
Fig. 1 contains eight inputs, one output layer and four
hidden layers. The input is passed to the neurons in the
first hidden layer, and then each hidden neuron pro-
duces an output that is used as an input for each of the
neurons in the second hidden layer. Similarly, the output
of each neuron in the second hidden layer is used as an
input for each neuron in the third hidden layer; this
process is done in a similar way in the remaining hidden
layers. Finally, the output of each neuron in the four hid-
den layers is used as an input to obtain the predicted
values of the three traits of interest. It is important to
point out that in each of the hidden layers, we attained a
weighted sum of the inputs and weights (including the
intercept), which is called the net input, to which a
transformation called activation function is applied to
produce the output of each hidden neuron.

The analytical formulas of the model given in Fig. 1
for three outputs, d inputs (not only 8), N; hidden neu-
rons (units) in hidden layer 1, N, hidden units in hidden
layer 2, N3 hidden units in hidden layer 3, N, hidden
units in hidden layer 4, and three neurons in the output
layers are given by the following egs. (1-5):
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Fig. 1 A five-layer feedforward deep neural network with one input layer, four hidden layers and one output layer. There are eight neurons in the
input layer that corresponds to the input information, four neurons in the first three hidden layers, three neurons in the fourth hidden layer and
three neurons in the output layer that corresponds to the traits that will be predicted
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where fi, f5, f3, fa and f;, are activation functions for
the first, second, third, fourth, and output layers, re-
spectively. Eq. (1) produces the output of each of the
neurons in the first hidden layer, eq. (2) produces the
output of each of the neurons in the second hidden
layer, eq. (3) produces the output of each of the neurons
in the third hidden layer, eq. (4) produces the output of
each of the neurons in the four hidden layer, and finally,
eq. (5) produces the output of the response variables of
interest. The learning process involves updating the

weights (w}il) ,w,(qz.) ,w},‘?) ,wﬁjl) ,wifn) ) and biases (b1, bio,
b3, b,ya, bys) to minimize the loss function, and these

weights and biases correspond to the first hidden layer (
w;il),bﬂ), second hidden layer (w,(qz.),bkz), third hidden
(4) b

it bma), and to

layer (W;lf),bly,), fourth hidden layer (w

the output layer (wgf,,),bﬁ), respectively. To obtain the
outputs of each of the neurons in the four hidden layers
(fi> f2 f3, and f3), we can use the rectified linear activa-
tion unit (RELU) or other nonlinear activation functions
(sigmoid, hyperbolic tangent, leaky_ReLu, etc.) [47-49].
However, for the output layer, we need to use activation
functions (f5,) according to the type of response variable
(for example, linear for continuous outcomes, sigmoid
for binary outcomes, softmax for categorical outcomes
and exponential for count data).

It is important to point out that when only one out-
come is present in Fig. 1, this model is reduced to a uni-
variate model, but when there are two or more
outcomes, the DL model is multivariate. Also, to better
understand the language of deep neural networks, next
we define the depth, the size and the width of a DNN.
The “depth” of a neural network is defined as the num-
ber of layers that it contains, excluding the input layer.
For this reason, the “depth” of the network shown in Fig.
1 is 5 (4 hidden layers + 1 output layer). The “size” of
the network is defined as the total number of neurons
that form the DNN; in this case, it is equal to |9+5 +
5+5+4+3|=31. It is important to point out that in
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each layer (except the output layer), we added + 1 to the
observed neurons to represent the neuron of the bias (or
intercept). Finally, we define the “width” of the DNN as
the layer that contains the largest number of neurons,
which, in this case, is the input layer; for this reason, the
width of this DNN is equal to 9. Finally, note that the
theoretical support for DL models is given by the univer-
sal approximation theorem, which states that a neural
network with enough hidden units can approximate any
arbitrary functional relationships [50-54].

Popular DL topologies

The most popular topologies in DL are the aforemen-
tioned feedforward network (Fig. 1), recurrent neural
networks and convolutional neural networks. Details of
each are given next.

Feedforward networks (or multilayer perceptrons; MLPs)

In this type of artificial deep neural network, the infor-
mation flows in a single direction from the input neu-
rons through the processing layers to the output layer.
Every neuron of layer i is connected only to neurons of
layer i + 1, and all the connection edges can have differ-
ent weights. This means that there are no connections
between neurons in the same layer (no intralayer), and
that there are also no connections that transmit data
from a higher layer to a lower layer, that is, no supra-
layer connections (Fig. 1). This type of artificial deep
neural network is the simplest to train; it usually per-
forms well for a variety of applications, and is suitable
for generic prediction problems where it is assumed that
there is no special relationship among the input infor-
mation. However, these networks are prone to overfit-
ting. Feedforward networks are also called fully
connected networks or MLP.

Recurrent neural networks (RNN)

In this type of neural network, information does not al-
ways flow in one direction, since it can feed back into
previous layers through synaptic connections. This type
of neural network can be monolayer or multilayer. In
this network, all the neurons have: (1) incoming connec-
tions emanating from all the neurons in the previous
layer, (2) ongoing connections leading to all the neurons
in the subsequent layer, and (3) recurrent connections
that propagate information between neurons of the same
layer. RNN are different from a feedforward neural net-
work in that they have at least one feedback loop be-
cause the signals travel in both directions. This type of
network is frequently used in time series prediction
since short-term memory, or delay, increases the power
of recurrent networks immensely, but they require a lot
of computational resources when being trained. Figure 2a
illustrates an example of a recurrent two-layer neural
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Fig. 2 A simple two-layer recurrent artificial neural network with univariate outcome (a). Max pooling with 2 x 2 filters and stride 1 (b)

g W o|s
D N | 0| O

Output
Ynt1

network. The output of each neuron is passed through a
delay unit and then taken to all the neurons, except it-
self. Here, only one input variable is presented to the in-
put units, the feedforward flow is computed, and the
outputs are feedback as auxiliary inputs. This leads to a
different set of hidden unit activations, new output acti-
vations, and so on. Ultimately, the activations stabilize,
and the final output values are used for predictions.

Convolutional neural networks (CNN)

CNN are very powerful tools for performing visual rec-
ognition tasks because they are very efficient at captur-
ing the spatial and temporal dependencies of the input.
CNN use images as input and take advantage of the grid
structure of the data. The efficiency of CNN can be at-
tributed in part to the fact that the fitting process re-
duces the number of parameters that need to be
estimated due to the reduction in the size of the input
and parameter sharing since the input is connected only
to some neurons. Instead of fully connected layers like
the feedforward networks explained above (Fig. 1), CNN
apply convolutional layers which most of the time in-
volve the following three operations: convolution, nonlin-
ear transformation and pooling. Convolution is a type of
linear mathematical operation that is performed on two
matrices to produce a third one that is usually inter-
preted as a filtered version of one of the original matri-
ces [48]; the output of this operation is a matrix called
feature map. The goal of the pooling operation is to pro-
gressively reduce the spatial size of the representation to
reduce the amount of parameters and computation in

the network. The pooling layer operates on each feature
map independently. The pooling operation performs
down sampling and the most popular pooling operation
is max pooling. The max pooling operation summarizes
the input as the maximum within a rectangular neigh-
borhood, but does not introduce any new parameters to
the CNN; for this reason, max pooling performs dimen-
sional reduction and de-noising. Figure 2b illustrates
how the pooling operation is performed, where we can
see that the original matrix of order 4 x 4 is reduced to a
dimension of 3 x 3.

Figure 3 shows the three stages that conform a convo-
lutional layer in more detail. First, the convolution oper-
ation is applied to the input, followed by a nonlinear
transformation (like Linear, ReLU, hyperbolic tangent,
or another activation function); then the pooling oper-
ation is applied. With this convolutional layer, we signifi-
cantly reduce the size of the input without relevant loss
of information. The convolutional layer picks up differ-
ent signals of the image by passing many filters over
each image, which is key for reducing the size of the ori-
ginal image (input) without losing critical information,
and in early convolutional layers we capture the edges of
the image. For this reason, CNN include fewer parame-
ters to be determined in the learning process, that is, at
most half of the parameters that are needed by a feed-
forward deep network (as in Fig. 1). The reduction in pa-
rameters has a positive side effect of reducing the
training times. Also, Fig. 3 indicates that depending on
the complexity of the input (images), the number of con-
volutional layers can be more than one to be able to
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capture low-level details with more precision. In Fig. 3
also shows that after the convolutional layers, the input
of the image is flattened (flattening layer), and finally, a
feedforward deep network is applied to exploit the high-
level features learned from input images to predict the
response variables of interest (Fig. 3).

Activation functions

Activation functions are crucial in DL models. Activa-
tion functions determine the type of output (continuous,
binary, categorical and count) of a DL model and play
an important role in capturing nonlinear patterns of the
input data. Next, we provide brief details of some com-
monly used activation functions and suggest when they
can be used.

Linear

The linear activation function is the identity function. It is
defined as g(z) = z, where the dependent variable has a dir-
ect, proportional relationship with the independent vari-
able. Thus the output is equal to the input; this activation
function is suggested for continuous response variables
(outputs) and is used mostly in the output layer [47]. A
limitation of this activation function is that it is not cap-
able of capturing nonlinear patterns in the input data; for
this reason, it is mostly used in the output layer [47].

Rectifier linear unit (ReLU)

The rectifier linear unit (ReLU) activation function is flat
below some thresholds and then linear. When the input
is below zero, the output is zero, but when the input
rises above a certain threshold, it has a linear relation-
ship with the dependent variable g(z) = max (0, z). This
activation function is able to capture nonlinear patterns
and for this reason, most of the time it is used in hidden

layers [47, 48]. This activation function is one of the
most popular in DL applications for capturing nonlinear
patterns in hidden layers [47, 48]. This activation func-
tion has the Dying ReLU problem that occurs when in-
puts approach zero, or are negative, that causes the
gradient of the function becomes zero; thus under these
circumstances, the network cannot perform backpropa-
gation and cannot learn efficiently [47, 48].

Leaky RelLU
The Leaky ReLU is a variant of ReLU and is defined as

zifz >0

g(z) = { az otherwise
be zero when z <0, the leaky ReLU instead has a small nega-
tive slope, a, where alpha (@) is a value between 0 and 1. This
activation function most of the time is also a good alternative
for hidden layers because this activation function attempts to
fix the problem by having a small negative slope which is
called the “dying ReLU” [47]. Sometimes this activation func-
tion provides non-consistent predictions for negative input
values [47].

. As opposed to having the function

Sigmoid

A sigmoid activation function is defined as g(z) = (1 +
e !, and maps independent variables near infinite
range into simple probabilities between 0 and 1. This ac-
tivation function is used to capture nonlinear patterns in
hidden layers and produce the outputs in terms of prob-
ability; for this reason, it is used in the output layers
when the response variable is binary [47, 48]. This acti-
vation function is not a good alternative for hidden
layers because it produces the vanishing gradient
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problem that slows the convergence of the DL model
[47, 48].

Softmax

The softmax activation function defined as g(z;)

= %, j=1.,C, is a generalization of the sigmoid
activation function that handles multinomial labeling sys-
tem; that is, it is appropriate for categorical outcomes. It
also has the property that the sum of the probabilities of
all the categories is equal to one. Softmax is the function
you will often find in the output layer of a classifier with
more than two categories [47, 48]. This activation function
is recommended only in the output layer [47, 48].

Tanh
The hyperbolic tangent (Tanh) activation function is de-

tanh(z) = sinh(z)/ cosh(z) = %.

Like the sigmoid activation function, the hyperbolic tan-
gent has a sigmoidal (“S” shaped) output, with the ad-
vantage that it is less likely to get “stuck” than the
sigmoid activation function since its output values are
between - 1 and 1. For this reason, this activation func-
tion is recommended for hidden layers and output layers
for predicting response variables in the interval between
-1 and 1 [47, 48]. The vanishing gradient problem is
sometimes present in this activation function, but it is
less common and problematic than when the sigmoid
activation function is used in hidden layers [47, 48].

fined as

Exponential

This activation function handles count outcomes be-
cause it guarantees positive outcomes. Exponential is the
function often used in the output layer for the prediction
of count data. The exponential activation function is de-
fined as g(z) = exp (2).

Tuning hyper-parameters

For training DL models, we need to distinguish between
learnable (structure) parameters and non-learnable
(hyper-parameters) parameters. Learnable parameters
are learned by the DL algorithm during the training
process (like weights and bias), while hyper-parameters
are set before the user begins the learning process,
which means that hyper-parameters (like number of
neurons in hidden layers, number of hidden layers, type
of activation function, etc.) are not learned by the DL
(or machine learning) method. Hyper-parameters govern
many aspects of the behavior of DL models, since differ-
ent hyper-parameters often result in significantly differ-
ent performance. However, a good choice of hyper-
parameters is challenging; for this reason, most of the
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time a tuning process is required for choosing the
hyper-parameter values. The tuning process is a critical
and time-consuming aspect of the DL training process
and a key element for the quality of the final predictions.
Hyper-parameter tuning consists of selecting the optimal
hyper-parameter combination from a grid of values with
different hyper-parameter combinations. To implement
the hyper-parameter tuning process, dividing the data at
hand into three mutually exclusive parts (Fig. 4) is rec-
ommended [55]:

a) a training set (for training the algorithm to learn
the learnable parameters),

b) a tuning set (for tuning hyper-parameters and
selecting the optimal non-learnable parameters),
and.

c) a testing or validation set (for estimating the
generalization performance of the algorithm).

This partition reflects our objective of producing a
generalization of the learned structures to unseen data
(Fig. 4). When the dataset is large, it can be enough to
use only one partition of the dataset at hand (training-
tuning-testing). For example, you can use 70% for train-
ing, 15% for tuning and the remaining 15% for testing.
However, when the dataset is small, this process needs
to be replicated, and the average of the predictions in
the testing set of all these replications should be re-
ported as the prediction performance. Also, when the
dataset is small, and after obtaining the optimal combin-
ation of hyper-parameters in each replication, we suggest
refitting the model by joining the training set and the
tuning set, and then performing the predictions on the
testing set with the final fitted model. One approach for
building the training-tuning-testing set is to use conven-
tional k fold (or random partition) cross-validation
where k-1 folds are used for the training (outer training)
and the remaining fold for testing. Then inside each fold
with the corresponding training, k-fold cross-validation
is used, and k-1 folds are used for training (inner train-
ing) and the remaining fold for tuning evaluation. The
model for each hyper-parameter combination in the grid
is trained with the inner training data set, and the com-
bination in the grid with the lower prediction error is se-
lected as the optimal hyper-parameter in each fold.
Then if the sample size is small using the outer training
set, the DL model is fitted again with the optimal hyper-
parameter. Finally, with these estimated parameters
(weights and bias), the predictions for the testing set are
obtained. This process is repeated in each fold and the
average prediction performance of the k testing set is re-
ported as prediction performance. Also, it is feasible to
estimate a kind of nonlinear breeding values, with the
estimated parameters, but with the limitation that the
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estimated parameters in general are not interpretable as
in linear regression models.

DL frameworks

DL with univariate or multivariate outcomes can be imple-
mented in the Keras library as front-end and Tensorflow as
back-end [48] in a very user-friendly way. Another popular
framework for DL is MXNet, which is efficient and flexible
and allows mixing symbolic programming and imperative
programming to maximize efficiency and productivity [56].
Efficient DL implementations can also be performed in
PyTorch [57] and Chainer [58], but these frameworks are
better for advanced implementations. Keras in R or Python
are friendly frameworks that can be used by plant breeders
for implementing DL; however, although they are consid-
ered high-level frameworks, the user still needs to have a
basic understanding of the fundamentals of DL models to
be able to do successful implementations. Since the user
needs to specify the type of activation functions for the
layers (hidden and output), the appropriate loss function,
and the appropriate metrics to evaluate the validation set,
the number of hidden layers needs to be added manually
by the user; he/she also has to choose the appropriate set of
hyper-parameters for the tuning process.

Thanks to the availability of more frameworks for imple-
menting DL algorithms, the democratization of this tool will
continue in the coming years since every day there are more
user-friendly and open-source frameworks that, in a more
automatic way and with only some lines of code, allow the
straightforward implementation of sophisticated DL models
in any domain of science. This trend is really nice, since in
this way, this powerful tool can be used by any professional
without a strong background in computer science or math-
ematics. Finally, since our goal is not to provide an exhaustive
review of DL frameworks, those interested in learning more
details about DL frameworks should read [47, 48, 59, 60].

Publications about DL applied to genomic selection
Table 1 gives some publications of DL in the context of
GS. The publications are ordered by year, and for each

publication, the Table gives the crop in which DL was
applied, the DL topology used, the response variable
used and the conventional genomic prediction models
with which the DL model was compared. These publica-
tions were selected under the inclusion criterion that DL
must be applied exclusively to GS.

A meta-picture of the prediction performance of DL
methods in genomic selection
Gianola et al. [61] found that the MLP outperformed a
Bayesian linear model in predictive ability in both data-
sets, but more clearly in wheat. The predictive Pearson’s
correlation in wheat ranged from 0.48 + 0.03 with the
BRR, from 0.54 +0.03 for MLP with one neuron, from
0.56 + 0.02 for MLP with two neurons, from 0.57 +0.02
for MLP with three neurons and from 0.59 +0.02 for
MLP with four neurons. Clear and significant differences
between BRR and deep learning (MLP) were observed.
The improvements of MLP over the BRR were 11.2,
14.3, 15.8 and 18.6% in predictive performance in terms
of Pearson’s correlation for 1, 2, 3 and 4 neurons in the
hidden layer, respectively. However, for the Jersey data,
in terms of Pearson’s correlations Gianola et al. [61]
found that the MLP across the six neurons used in the
implementation outperformed the BRR by 52% (with
pedigree) and 10% (with markers) in fat yield, 33% (with
pedigree) and 16% (with markers) in milk yield, and 82%
(with pedigree) and 8% (with markers) in protein yield.
Pérez-Rodriguez et al. [62] compared the predictive abil-
ity of Radial Basis Function Neural Networks and Bayesian
Regularized Neural Networks against several linear models
[BL, BayesA, BayesB, BRR and semi-parametric models
based on Kernels (Reproducing Kernel Hilbert Spaces)].
The authors fitted the models using several wheat datasets
and concluded that, in general, non-linear models (neural
networks and kernel models) had better overall prediction
accuracy than the linear regression specification. On the
other hand, for maize data sets Gonzalez-Camacho et al.
[6] performed a comparative study between the MLP,
RKHS regression and BL regression for 21 environment-
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Table 1 DL application to genomic selection

Obs Year Authors Crop Topology Response variable(s) Comparison with
1 2011 Gianola etal. ~ Wheat and Jersey MLP Grain yield (GY), fat yield, milk yield, protein yield, fat yield Bayesian Ridge regression (BRR)
[61] cows
2 2012 Pérez- Wheat MLP GY and days to heading (DTHD) BL, BayesA, BayesB, BRR, Reproducing
Rodriguez Kernel Hilbert Spaces (RKHS)
etal. [62] regression
3 2012 Gonzalez- Maize MLP GY, female flowering (FFL) or days to silking, male flowering RKHS regression, BL
Camacho time (MFL) or days to anthesis, and anthesis-silking interval
et al. [6] (ASI)
4 2015 Ehret et al. Holstein-Friesian and ~ MLP Milk yield, protein yield, and fat yield GBLUP
[63] German Fleckvih
cattle
5 2016 Gonzalez- Maize and wheat MLP GY Probabilistic neural network (PNN)
Camacho
et al. [64]
6 2016 McDowell [65]  Arabidopsis, maize MLP Days to flowering, dry matter, grain yield (GY), spike grain, time  OLS, RR, LR, ER, BRR
and wheat to young microspore.
7 2017 Rachmatia Maize DBN GY, female flowering (FFL) (or days to silking), male flowering ~ RKHS, BL and GBLUP
et al. [66] (MFL) (or days to anthesis), and the anthesis-silking interval
(ASI)
8 2018 Maetal [67]  Wheat CNN and  Grain length (GL), grain width (GW), thousand-kernel weight RR-BLUP, GBLUP
MLP (TW), grain protein (GP), and plant height (PH)
9 2018 Waldmann Pig data and TLMA MLP Trait number of live born piglets GBLUP, BL
[68] $2010 data
10 2018 Montesinos- Maize and wheat MLP Grain yield GBLUP
Lopez et al.
[70]
11 2018 Montesinos- Maize and wheat MLP Grain yield (GY), anthesis-silking interval (ASI), PH, days to head- BMTME
Lopez et al. ing (DTHD), days to maturity (DTMT)
[71]
12 2018 Bellot et al. Human traits MLP and  Height and bone heel mineral density BayesB, BRR
[72] CNN
13 2019 Montesinos- Wheat MLP GY, DTHD, DTMT, PH, lodging, grain color (GQ), leaf rust and SVM, TGBLUP
Lopez et al. stripe rust
[73]
14 2019 Montesinos- Wheat MLP GY, DH, PH GBLUP
Lopez et al.
[74]
15 2019 Khaki and Maize MLP GY, check yield, yield difference LR, regression tree
Wang [75]
16 2019 Azodi et al. 6 species MLP 18 traits rBLUP, BRR, BA, BB, BL, SVM, GTB
[77]
17 2019 Liuetal [78]  Soybean CNN GY, protein, oil, moisture, PH rrBLUP, BRR, BayesA, BL
18 2020 Abdollahi- Holstein bulls MLP and  Sire conception rate GBLUP, BayesB and RF
Arpanahi et al. CNN
[79]
19 2020 Zingaretti Strawberry and MLP and  Average fruit weight, early marketable yield, total marketable RKHS, BRR, BL,
et al. [80] blueberry CNN weight, soluble solid content, percentage of culled fruit
22 2020 Montesinos-  Wheat MLP Fusarium head blight BRR and GP
Lopez et al.
[81]
20 2020 Waldmann Pig data CNN Trait number of live born piglets GBLUP, BL
et al. [43]
21 2020 Pook et al. Arabidopsis MLP and  Arabidopsis traits GBLUP, EGBLUP, BayesA
[82] CNN
23 2020 Pérez- Maize and wheat MLP Leaf spot diseases, Gray Leaf Spot Bayesian ordered probit linear model
Rodriguez
etal. [83]

RF denotes random forest. Ordinal least square (OLS), Classical Ridge regression (RR), Classical Lasso Regression (LR) and classic elastic net regression (ER).
Bayesian Lasso (BL), DBN denotes deep belief networks. GTB denotes Gradient Tree Boosting. GP denotes generalized Poisson regression. EGBLUP denotes
extended GBLUP
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trait combinations measured in 300 tropical inbred lines.
Opverall, the three methods performed similarly, with only
a slight superiority of RKHS (average correlation across
trait-environment combination, 0.553) over RBFNN
(across trait-environment combination, 0.547) and the lin-
ear model (across trait-environment combination, 0.542).
These authors concluded that the three models had very
similar overall prediction accuracy, with only slight super-
iority of RKHS and RBENN over the additive Bayesian
LASSO model.

Ehret et al. [63], using data of Holstein-Friesian and
German Fleckvih cattle, compared the GBLUP model
versus the MLP (normal and best) and found non-
relevant differences between the two models in terms of
prediction performance. In the German Fleckvieh bulls
dataset, the average prediction performance across traits
in terms of Pearson’s correlation was equal to 0.67 (in
GBLUP and MLP best) and equal to 0.54 in MLP nor-
mal. In Holstein-Friesian bulls, the Pearson’s correlations
across traits were 0.59, 0.51 and 0.57 in the GBLUP,
MLP normal and MLP best, respectively, while in the
Holstein-Friesian cows, the average Pearson’s correla-
tions across traits were 0.46 (GBLUP), 0.39 (MLP nor-
mal) and 0.47 (MLP best). Furthermore, Gonzalez-
Camacho et al. [64] studied and compared two classi-
fiers, MLP and probabilistic neural network (PNN). The
authors used maize and wheat genomic and phenotypic
datasets with different trait-environment combinations.
They found that PNN was more accurate than MLP. Re-
sults for the wheat dataset with continuous traits split
into two and three classes showed that the performance
of PNN with three classes was higher than with two
classes when classifying individuals into the upper cat-
egories (Fig. 5a). Depending on the maize trait-
environment combination, the area under the curve
(AUC) criterion showed that PNN30% or PNN15%
upper class (trait grain yield, GY) was usually larger than
the AUC of MLP; the only exception was PNN15% for
GY-SS (Fig. 5b), which was lower than MLP15%.

McDowell [65] compared some conventional gen-
omic prediction models (OLS, RR, LR, ER and BRR)
with the MLP in data of Arabidopsis, maize and
wheat (Table 2A). He found similar performance be-
tween conventional genomic prediction models and
the MLP, since in three out of the six traits, the MLP
outperformed the conventional genomic prediction
models (Table 2A). Based on Pearson’s correlation,
Rachmatia et al. [66] found that DL (DBN = deep be-
lief network) outperformed conventional genomic pre-
diction models (RKHS, BL, and GBLUP) in only 1
out of 4 of the traits under study, and across trait-
environment combinations, the BL outperformed the
other methods by 9.6% (RKHS), 24.28% (GBLUP) and
36.65% (DBN).
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Convolutional neural network topology were used by
Ma et al. [67] to predict phenotypes from genotypes in
wheat and found that the DL method outperformed the
GBLUP method. These authors studied eight traits: grain
length (GL), grain width (GW), grain hardness (GH),
thousand-kernel weight (TKW), test weight (TW), so-
dium dodecyl sulphate sedimentation (SDS), grain pro-
tein (GP), and plant height (PHT). They compared CNN
and two popular genomic prediction models (RR-BLUP
and GBLUP) and three versions of the MLP [MLP1 with
8-32-1 architecture (i.e., eight nodes in the first hidden
layer, 32 nodes in the second hidden layer, and one node
in the output layer), MLP2 with 8-1 architecture and
MLP3 with 8-32-10-1 architecture]. They found that
the best models were CNN, RR-BLUP and GBLUP with
Pearson’s correlation coefficient values of 0.742, 0.737
and 0.731, respectively. The other three GS models
(MLP1, MLP2, and MLP3) vyielded relatively low Pear-
son’s correlation values, corresponding to 0.409, 0.363,
and 0.428, respectively. In general, the DL models with
CNN topology were the best of all models in terms of
prediction performance.

Waldmann [68] found that the resulting testing set MSE
on the simulated TLMAS2010 data were 82.69, 88.42, and
89.22 for MLP, GBLUP, and BL, respectively. Waldmann
[68] used Cleveland pig data [69] as an example of real
data and found that the test MSE estimates were equal to
0.865, 0.876, and 0.874 for MLP, GBLUP, and BL, respect-
ively. The mean squared error was reduced by at least
6.5% in the simulated data and by at least 1% in the real
data. Using nine datasets of maize and wheat,
Montesinos-Lopez et al. [70] found that when the G xE
interaction term was not taken into account, the DL
method was better than the GBLUP model in six out of
the nine datasets (see Fig. 6). However, when the G xE
interaction term was taken into account, the GBLUP
model was the best in eight out of nine datasets (Fig. 6).

Next we compared the prediction performance in
terms of Pearson’s correlation of the multi-trait deep
learning (MTDL) model versus the Bayesian multi-trait
and multi-environment (BMTME) model proposed by
Montesinos-Lopez et al. [71] in three datasets (one of
maize and two of wheat). These authors found that
when the genotype x environment interaction term was
not taken into account in the three datasets under study,
the best predictions were observed under the MTDL
model (in maize BMTME = 0.317 and MTDL = 0.435; in
wheat BMTME = 0.765, MTDL = 0.876; in Iranian wheat
BMTME = 0.54 and MTDL = 0.669) but when the geno-
type x environment interaction term was taken into ac-
count, the BMTME outperformed the MTDL model (in
maize BMTME =0.456 and MTDL =0.407; in wheat
BMTME =0.812, MTDL=0.759; in Iranian wheat
BMTME = 0.999 and MTDL = 0.836).
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Bellot et al. [72], in a study conducted on complex hu-
man traits (height and heel bone mineral density), com-
pared the predictive performance of MLP and CNN with
that of Bayesian linear regressions across sets of SNPs
(from 10k to 50k, with k =1000) that were preselected
using single-marker regression analyses. For height and
heel bone mineral density, all methods performed simi-
larly, but in general CNN was the worst. The performance
of MLP was highly dependent on SNP set and phenotype.
The authors found in general terms that CNN perform-
ance was competitive with that of linear models, but they
did not find any case where DL outperformed the linear
model by a sizable margin (Table 2B).

In another study, Montesinos-Lépez et al. [73] per-
formed a benchmark study to compare univariate deep
learning (DL), the support vector machine and the con-
ventional Bayesian threshold best linear unbiased predic-
tion (TGBLUP). They did not find large differences
between the three methods. However, in many cases the
TGBLUP outperformed the other two methods. The best
prediction performance with the interaction term (I) was
with the TGBLUP model, with gains of 17.15% (DTHD),
16.11% (DTMT) and 4.64% (Height) compared to the
SVM method, and gains of 10.70% (DTHD), 8.20%
(DTMT) and 3.11% (Height) compared to the DL model.
Without the interaction term (WI), no statistical
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Table 2 Prediction performance in terms of Pearson’s correlation reported by McDowell (2016); A). Prediction performance in terms
of Pearson'’s correlation reported by Bellot et al. (2018); B) for traits height and heel bone mineral density. In set “BEST,” the 10k or
50 k were chosen the top most-associated SNPs, with k= 1000, with the lowest P-values in a GWAS on the TRN set for each trait. In

set "UNIF,” the genome was split in windows of equal physical length and the most associated SNP within each window was
chosen. MLP denotes multilayer perceptron and CNN convolutional neural networks
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differences were found between the three methods
(TGBLUP, SVM and DL) for the three traits under
study. Finally, when comparing the best predictions of
the TGBLUP model that were obtained with the geno-
type x environment interaction (I) term and the best
predictions of the SVM and DL models that were ob-
tained without (WI) the interaction term, we found that
the TGBLUP model outperformed the SVM method by
1.90% (DTHD), 2.53% (DTMT) and 1.47% (Height), and
the DL method by 2.12% (DTHD), 0.35% (DTMT) and
1.07% (Height).

Montesinos-Lépez et al. [74], in a study of durum
wheat where they compared GBLUP, univariate deep
learning (UDL) and multi-trait deep learning (MTDL),
found that when the interaction term (I) was taken into
account, the best predictions in terms of mean arctan-
gent absolute percentage error (MAAPE) across trait-
environment combinations were observed under the
GBLUP (MAAPE =0.0714) model and the worst under
the UDL (MAAPE =0.1303) model, and the second best
under the MTDL (MAAPE =0.094) method. However,
when the interaction term was ignored, the best predic-
tions were observed under the GBLUP (MAAPE =
0.0745) method and the MTDL (MAAPE =0.0726)
model, and the worst under the UDL (MAAPE =0.1156)
model; non-relevant differences were observed in the
predictions between the GBLUP and MTDL.

Khaki and Wang [75], in a maize dataset of the 2018
Syngenta Crop Challenge, evaluated the prediction per-
formance of the MLP (deep learning) method against
the performance of Lasso regression and regression tree.
The training set consisted of 2267 maize hybrids planted
in 2247 locations between 2008 and 2016, and the par-
ticipants were asked to predict (testing set) the yield per-
formance in 2017. They predicted grain yield, check
yield (average yield across all hybrids of the same loca-
tion) and the yield difference. The yield difference was
the difference between the grain yield and the check
yield, and indicated the relative performance of a hybrid
against other hybrids at the same location [76]. They
found that in general the MLP model with 20 hidden
layers outperformed conventional genomic prediction
models (LR and RT) and also the MLP model with only
one hidden layer (SNN) (Table 3A), but the best per-
formance was observed in the GY trait.

Azodi et al. [77], using data of six plant species and 18
traits across different training population sizes and
marker densities, compared the performance of six lin-
ear and five non-linear machine learning models, includ-
ing DL models. They concluded that across all traits and
species, no one algorithm performed best; however, pre-
dictions based on a combination of results from multiple
algorithms (i.e., ensemble predictions) performed con-
sistently well. While linear and non-linear algorithms
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Table 3 Prediction performance in terms of root mean square
error of prediction (RMSE) of the four models (MLP_20, LR,
MLP_1, RT) reported by Khaki and Wang (2019); A) in a maize
dataset. MPL_20 denotes the MLP model with 20 hidden layers,
and MPL_1 denotes the MLP model with 1 hidden layer.
Prediction performance in terms of Pearson’s correlation of 6
species across traits evaluated with 11 methods (Azodi et al,,
2019); B). SVR denotes support vector regression. SVR_lin
denotes SVR with linear kernel, SYR_poly denotes SVR with
polynomial kernel, SVR_rbf denotes SVR with kernel Radial Basis
Function

A Model Trait RMSE

MLP_20 Yield 12.79

Check yield 11.38

Yield difference 124

LR Yield 214

Check yield 19.87

Yield difference  13.11

MLP_1  Yield 18.04

Check yield 15.18

Yield difference  15.19

RT Yield 15.03

Check yield 14.87

Yield difference  15.92

B Method Maize Rice Sorghum Soy Spruce Switch-grass

mBLUP 044 034 063 046 032 061
BRR 044 039 063 046 032 0.61
BayesA 042 038 063 047 032 061
BayesB 043 038 063 046 032 061
BL 044 039 062 046 032 0.61
SVR_lin 041 038 062 043 019 0.6
SVR_poly 043 038 063 041 033 061
SVR_rbf 039 038 063 004 034 0.6
RF 043 04 058 036 035 0.57
GTB 037 038 058 04 033 0.56
MLP 0.17 0.08 045 044 028 045

performed best for a similar number of traits, the per-
formance of non-linear algorithms varied more between
traits than that of linear algorithms (Table 3B). On the
other hand, the results of Liu et al. [78] in soybean show
that DL models outperformed conventional genomic
prediction models (rrBLUP, BRR, BayesA, BL) using
Pearson’s correlation as a metric. Among the deep learn-
ing models in three of the five traits, the MLP model
outperformed the other DL methods (dualCNN, deepGS
and singleCNN) (Table 4A).

Abdollahi-Arpanahi et al. [79] conducted a study re-
lated to the sire conception rate (SCR) of 11,790 Hol-
stein bulls genotyped with 58k single nucleotide
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polymorphisms (SNPs). In terms of mean square error
of prediction, they reported that the best prediction per-
formance was observed in the gradient boosting method
(3.976), followed by Bayes B (4.036), GBLUP (4.049), RF
(4.186), CNN (4.269) and MLP (4.428). A similar pattern
was observed in terms of average Pearson’s correlation
where the boosting method was the best (0.358),
followed by Bayes B (0.338), GBLUP (0.333), RF (0.316),
CNN (0.291) and MLP (0.264).

In strawberry and blueberry, Zingaretti et al. [80] also
compared conventional genomic prediction models (BL,
BRR, BRR-GM and RKHS) with CNNs (a type of DL
model). They found in real datasets that when averaged
across traits in the strawberry species, prediction accur-
acies in terms of average Pearson’s correlation were 0.43
(BL), 0.43 (BRR), 0.44 (BRR-GM), 0.44 (RKHS), and 0.44
(CNN). By trait, the BRR-GM was best in average fruit
weight prediction, BL, BRR, and RKHS were best for
early marketable yield, and RKHS and BRR-GM for total
marketable weight, whereas CNN performed the best in
soluble solid content and percentage of culled fruit [80].
In general, these authors found that linear Bayesian
models were better than convolutional neural networks

Table 4 Prediction performance in soybean for five traits of
eight methods in terms of Pearson’s correlation (taken from Liu
et al, 2019); A). Methods dualCNN, deepGS and singleCNN are
different versions of CNN. Prediction performance in terms of
Average Spearman Correlation (ASC) and mean square error
(MSE) with genotype x environment interaction (l) and without
genotype X environment interaction (WI) in a wheat dataset for
trait Fusarium head blight (FHB) severity data (Montesinos-
Lopez et al, 2020; B)

A Method Yield Protein  Oil Moisture  Height
dualCNN 0452 0619 0668 0463 0615
DeepGS 0.391 0.506 0.531 0.31 0452
Dense 0449 0.603 0657 0427 0612
singleCNN 0463 0573 0627 0449 0.565
rrBLUP 0412 0392 0.39 0413 0458
BRR 0422 0392 039 0413 0458
Bayes A 0419 0393 0388 0415 0458
BL 0419 0.394 0388 0416 0458

B Interaction Type ASC SE MSE SE
\ BRR 0.584 0012 3015 0.169
I NDNN 0626 0.013 1.891 0.088
I GP 0.596 0.01 2457 0.121
I PDNN 0.627 0012 1912 0.073
Wi BRR 0436 0018 4481 0.25
WI NDNN 0635 0.013 1.872 0.084
Wi GP 0431 0018 3418 0.186
Wi PDNN 0.584 0014 2853 0412

Page 14 of 23

for the full additive architecture, whereas the opposite
was observed under strong epistasis. For blueberry, these
authors [80] did not find statistical differences between
BL and BRR (average Pearson’s correlation: 0.42), but
these two Bayesian methods outperformed CNNs (aver-
age Pearson’s correlation: 0.40).

Montesinos-Lopez et al. [81] report that the best per-
formance in terms of Average Spearman Correlation
(ASC) occurred under the deep learning models [normal
deep neural network (NDNN) and Poisson deep neural
network (PDNN)], while the worst was under the Bayes-
ian (BRR) and classic generalized Poisson model (GP)
(Table 4B). However, Table 4B also shows that without
genotype x environment interaction (WI), the NDNN
models were better than the PDNN models, but when
taking WI into account, no differences were observed
between these deep learning models. They also found
that the PDNN model outperformed the GP model by
5.20% (in terms of ASC) under I, and 35.498% (in terms
of ASC) under WI. With regard to the BRR model, the
PDNN model was superior by 7.363% (in terms of ASC)
under I, and by 33.944% (in terms of ASC) under WI.
The same behavior is observed in Table 4B under the
MSE metrics, where we can see that the deep learning
models were the best, but without the genotype x envir-
onment interaction, the NDNN models were slightly
better than the PDNN models.

Waldmann et al. [43] also used the TLMAS2010 data
from the Waldmann et al. [68] article and found that
under the CNN, the MSE was equal to 62.34 while the
GBLUP and BL produced mean MSE over folds of 88.42
and 89.22, respectively. This implies that the improve-
ment for the simulated data was 29.5 and 30.1%, respect-
ively. Under the real pig dataset [69], the observed MSE
were 3.51, 3.64 and 3.61 for the CNN, GBLUP and BL
models, respectively; this means that CNN gained only
3.57% over the GBLUP and only 2.78% over the BL
model [43]. Pook et al. [82] found that in the simulated
dataset, local CNN (LCNN) outperformed conventional
CNN, MLP, GBLUP, BNN, BayesA, and EGLUP
(Table 5A). However, with the real Arabidopsis dataset,
the prediction performance of the DL models (MLP,
CNN and LCNN) was slightly worse than that of con-
ventional genomic prediction models (GBLUP, BayesA
and EGBLUP) (Table 5B).

A neural network for modeling ordinal data using a
data augmentation approach was proposed by Pérez-
Rodriguez et al. [83]. The authors proposed using the
Generalized EM algorithm. The predictive ability of the
proposed model was tested using two datasets: 1) Sep-
toria, a fungus that causes leaf spot diseases in field
crops, forage crops and vegetables which was evaluated
on CIMMYT wheat lines; and 2) Gray Leaf Spot, a dis-
ease caused by the fungus Cercospora zeae-maydis for
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maize lines from the Drought Tolerance maize program
at CIMMYT. The authors evaluated several performance
measures (Brier Score, Missclassification Error Rate,
Mean Absolute Error, Spearman correlation coefficient)
and concluded that in general the proposed neural net-
work had better performance than the Bayesian ordered
probit linear model that is widely used in ordinal data
analysis.

Pros and cons of DL methods

Even with few applications in GS, DL models are attract-
ive and promising tools for the following reasons: (a) DL
models naturally capture, without the need to specify
additional terms in the predictor (like interactions), non-
additive effects and complex relationships and interac-
tions in large datasets, which is key for capturing the
whole genetic merit; (b) they efficiently handle not only
large data, but also raw data like images without any
preprocessing (feature engineering not required); for this
reason, DL models more efficiently incorporate large
numbers of omics data (Metabolomics, microbiomics,
phenomics, Proteomics, Transcriptomics, etc.) in the
same model, which is not possible with most machine
learning and statistical learning methods; (c) frameworks
for DL are very flexible because their implementation al-
lows training models with continuous, binary, categorical
and count outcomes, with many hidden layers (1,2, ...),
many types of activation functions (RELU, leakyRELU,
sigmoid, etc.), many optimizers (Adam, sgd, rmsprop,
adagrad, adadelta, adamax, nadam), and many latent var-
iables by using autoencoder or embedding as a genera-
tive latent variable model, many topologies that can
capture very complex linear and nonlinear patterns in
the data, and allows many types of inputs (images, num-
bers, etc.); (d) there is much empirical evidence that the
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larger the dataset, the better the performance of DL
models, which offers many opportunities to design spe-
cific topologies (deep neural networks) to deal with any
type of data in a better way than current models used in
GS, because DL models with topologies like CNN can
very efficiently capture the correlation (special structure)
between adjacent input variables, that is, linkage disequi-
librium between nearby SNPs; (f) some DL topologies
like CNN have the capability to significantly reduce the
number of parameters (number of operations) that need
to be estimated because CNN allows sharing parameters
and performing data compression (using the pooling op-
eration) without the need to estimate more parameters;
and (g) the modeling paradigm of DL is closer to the
complex systems that give rise to the observed pheno-
typic values of some traits. For these reasons, the incorp-
oration of DL for classical breeding pipelines is in
progress and some uses of DL are given next: 1) for the
prediction of parental combinations, which is critical for
choosing superior combinational homozygous parental
lines in F1-hybrid breeding programs [84], 2) for model-
ling and predicting quantitative characteristics, for ex-
ample, to perform image-based ear counting of wheat
with high level of robustness, without considering vari-
ables, such as growth stage and weather conditions [85],
3) for genetic diversity and genotype classification, for
example, in Cinnamomum osmophloeum Kanehira
(Lauraceae), DL was applied to differentiate between
morphologically similar species [86], and 4) for genomic
selection (see Table 1).

Because DL has many advantages, it is extremely
popular and its applications are everywhere. Neverthe-
less, DL is not a panacea since it is not the best option
in all types of problems; some of the caveats of this DL
methodology for GS are: (a) it is not really useful for

Table 5 Prediction performance in terms of Pearson’s correlation for the simulated and real Arabidopsis datasets (Pook et al., 2020)

A). Predictive ability on different traits with

Trait architecture GBLUP BayesA EGBLUP MPL CNN LCNN
10 additive QTL 0.639 0.66 0.635 0.637 0.627 0.666
1000 additive QTL 0516 0538 0543 0524 0538 0.606
10 epistatic QTL 0511 0527 0519 0.503 0491 0572
1000 epistatic QTL 0416 0414 0448 0.395 0403 0401
10 locally linked epistatic QTL 0.488 0501 0529 0.504 0.544 0.625
1000 locally linked epistatic QTL 0.524 0523 0.541 0519 0517 0.51
B). Predictive ability for the Arabidopsis traits
Trait architecture GBLUP BayesA EGBLUP MLP CNN LCNN
Average predictive ability (all) 039 0382 0382 0316 0312 034
Average predictive ability (training set < 100) 0404 039 0.399 03 0.299 0.326
Average predictive ability (100 < training set < 250) 0.364 0.358 0.354 0318 0.311 0.327
Average predictive ability (training set > 250) 0477 0477 0472 0.358 037 0456
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inference and association studies, since its parameters
(weights) many times cannot be interpreted as in many
statistical models; also, since neither feature selection
nor feature importance is obvious, for this reason, the
DL methodology inhibits testing hypotheses about the
biological meaning with the parameter estimates; (b)
when studying the association of phenotypes with geno-
types, it is more difficult to find a global optimum, since
the loss function may present local minima and maxima;
(c) these models are more prone to overfitting than con-
ventional statistical models mostly in the presence of in-
puts of large dimensions, since to efficiently learn the
pattern of the data, more hidden layers and neurons
need to be taken into account in the DL models; how-
ever, there is evidence that these problems can be solved
under a Bayesian approach and some research is going
in this direction to implement DL models under a
Bayesian paradigm [87]; but two of the problems under
the Bayesian framework are how to elicit priors and the
fact that considerably more computational resources are
required; (d) considerable knowledge is required for
implementing appropriate DL models and understanding
the biological significance of the outputs, since this re-
quires a very complex tuning process that depends on
many hyper-parameters; (e) although there is very user-
friendly software (Keras, etc.) for DL, its implementation
is very challenging since it depends strongly on the
choice of hyper-parameters, which requires a consider-
able amount of time and experience and, of course, con-
siderable computational resources [88, 89]; (f) DL
models are difficult to implement in GS because gen-
omic data most of the time contain more independent
variables than samples (observations); and (g) another
disadvantage of DL is the generally longer training time
required [90].

Trends of DL applications

In the coming 10years, DL will be democratized via
every software-development platform, since DL tools will
incorporate simplified programming frameworks for easy
and fast coding. However, as automation of DL tools
continues, there’s an inherent risk that the technology
will develop into something so complex that the average
users will find themselves uninformed about what is be-
hind the software.

Nowadays, unsupervised methods (where you only
have independent variables [input] but not dependent
variables [outcomes]) are quite inefficient, but it is ex-
pected that in the coming years, unsupervised learning
methods will be able to match the “accuracy and effect-
iveness” of supervised learning. This jump will dramatic-
ally reduce the cost of implementing DL methods, which
now need large volumes of labeled data with inputs and
outputs. In the same direction, we expect the
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introduction of new DL algorithms that will allow test-
ing hypotheses about the biological meaning with par-
ameter estimates (good for inference and explainability),
that is, algorithms that are not only good for making
predictions, but also wuseful for explaining the
phenomenon (actual functional biology of the phenotype)
to increase human understanding (or knowledge) of
complex biological systems.

In the coming years, we expect a more fully automated
process for learning and explaining the outputs of imple-
mented DL and machine learning models. This means
that it is feasible to develop systems that can automatic-
ally discover plausible models from data, and explain
what they discovered; these models should be able, not
only to make good predictions, but also to test hypoth-
eses and in this way unravel the complex biological sys-
tems that give rise to the phenomenon under study.

General considerations

GS as a predictive tool is receiving a lot of attention in
plant breeding since it is powerful for selecting candidate
individuals early in time by measuring only genotypic in-
formation in the testing set and both phenotypic and
genotypic information in the training set. For this rea-
son, this predictive methodology has been adopted for
crop improvement in many crops and countries. GS can
perform the selection process more cheaply and in con-
siderably less time than conventional breeding programs.
This will be key for significantly increasing the genetic
gain and reducing the food security pressure since we
will need to produce 70% more food to meet the de-
mands of 9.5 billion people by 2050 [1]. Thanks to the
ever-increasing data generated by industry, farmers, and
scholars, GS is expected to improve efficiency and help
make specific breeding decisions. For this reason, a wide
range of analytical methods, such as machine learning,
deep learning, and artificial intelligence, are now being
adapted for application in plant breeding to support ana-
lytics and decision-making processes [91].

The prediction performance in GS is affected by the
size of the training dataset, the number of markers, the
heritability, the genetic architecture of the target trait,
the degree of correlation between the training and test-
ing set, etc. Deep learning can be really powerful for pre-
diction if used appropriately, and can help to more
efficiently map the relationship between the phenotype
and all inputs (markers, all remaining omics data, im-
aginary data, geospatial and environmental variables,
etc.) to be able to address long-standing problems in GS
in terms of prediction efficiency.

We found that DL has impressive potential to provide
good prediction performance in genomic selection.
However, there is not much evidence of its utility for
extracting biological insights from data and for making
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robust assessments in diverse settings that might be dif-
ferent from the training data. Beyond making predic-
tions, deep learning could become a powerful tool for
synthetic biology by learning to automatically generate
new DNA sequences and new proteins with desirable
properties.

However, more iterative and collaborative experimenta-
tion needs to be done to be able to take advantage of DL
in genomic selection. In terms of experimentation, we
need to design better strategies to better evaluate the pre-
diction performance of genomic selection in field experi-
ments that are as close as possible to real breeding
programs. In terms of collaborative work, we need to
strengthen interdisciplinary work between breeders, bio-
metricians, computer scientists, etc., to be able to auto-
matically collect (record) more data, the costs of which
continue to decrease. The data should include not only
phenotypic data, but also many types of omics data (meta-
bolomics, microbiomics, phenomics using sensors and
high resolution imagery, proteomics, transcriptomics,
etc.), geoclimatic data, image data from plants, data from
breeders’ experience, etc., that are high quality and repre-
sentative of real breeding programs. Then, with all col-
lected data, we need to design efficient topologies of DL
models to improve the selection process of candidate indi-
viduals. This is feasible because DL models are really
powerful for efficiently combining different kinds of inputs
and reduce the need for feature engineering (FE) the in-
put. FE is a complex, time-consuming process which
needs to be altered whatever the problem. Thus, FE con-
stitutes an expensive effort that is data dependent and re-
quires experts’ knowledge and does not generalize well
[92]. However, this is an iterative process (with trial and
error) where all the members of this network (breeders,
biometricians, computer scientists, molecular biologists,
etc.) need to contribute their knowledge and experience to
reach the main goal. In this way, it is very likely that the
process of selecting candidate individuals with GS will be
better than the conventional selection process. For ex-
ample, before 2015, humans were better than artificial ma-
chines at classifying images and solving many problems of
computer vision, but now machines have surpassed the
classification ability of humans, which was considered im-
possible only some years ago. In 2016, a robot player beat
a human player in the famed game AlphaGo, which was
considered an almost impossible task. DL also outper-
formed 136 of 157 dermatologists in a head-to-head der-
moscopic melanoma image classification task [93].

However, this task of DL (i.e., selecting the best candi-
date individuals in breeding programs) requires not only
larger datasets with higher data quality, but also the ability
to design appropriate DL topologies that can combine and
exploit all the available collected data. This is important
since the topologies designed for computer vision
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problems are domain specific and cannot be extrapolated
straightforwardly to GS. For example, in GS most of the
time the number of inputs is considerably larger than the
number of observations, and the data are extremely noisy,
redundant and with inputs of different origins. However,
since intelligence relies on understanding and acting in an
imperfectly sensed and uncertain world, there is still a lot
of room for more intelligent systems that can help take
advantage of all the data that are now being collected and
make the selection process of candidate individuals in GS
extremely more efficient.

We found no relevant differences in terms of predic-
tion performance between conventional genome-based
prediction models and DL models, since in 11 out of 23
studied papers (see Table 1), DL was best in terms of
prediction performance taking into account the genotype
by interaction term; however, when ignoring the geno-
type by environment interaction, DL was better in 13
out of 21 papers. This in part is explained by the fact
that not all data contain nonlinear patterns, not all are
large enough to guarantee a good learning process, were
tuned efficiently, or used the most appropriate architec-
ture (examples: shallow layers, few neurons, etc.); in
addition, the design of the training-tuning-testing sets
may not have been optimal, etc. However, we observed
that most of the papers in which the DL models outper-
formed conventional GS models were those in which
different versions of CNN were used. There is also a lot
of empirical evidence that CNN are some of the best
tools for prediction machines when the inputs are raw
images. Some experts attribute the many successful
commercial applications of DL (which most of the time
reach or exceed human performance level) to the build-
ing and improvement of this type of topologies that in
part are also responsible for the term deep learning
coined to denote artificial neural networks with more
than one hidden layer. CNNs are different than MLP be-
cause they are able to more efficiently capture spatial
structure patterns that are common in image inputs. For
this reason, CNNs are being very successfully applied to
complex tasks in plant science for: (a) root and shoot
feature identification [94], (b) leaf counting [95, 96], (c)
classification of biotic and abiotic stress [97], (d) count-
ing seeds per pot [98], (e) detecting wheat spikes [99],
and (f) estimating plant morphology and developmental
stages [100], etc. These examples show that DL is play-
ing an important role in obtaining better phenotypes in
the field and indirectly affects genomic prediction per-
formance. Although DL does not always outperform
conventional regression methods, these examples show
that DL is accelerating the progress in prediction per-
formance, and we are entering a new era where we will
be able to predict almost anything given good inputs.
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In this contribution, we attempt to clarify issues that
have being preventing the use of DL methods at the
breeding level, for instance, that DL is a complete “black
box” methodology, without much statistical fundamen-
tals. There is a widespread sense that implementing DL
into a breeding pipeline is not straightforward without a
strong statistical/computing background associated to
the use of super computers - both limiting factors for
some modest breeding programs. Although the learning
curve for DL can be slow, in the Appendix we show a
maize toy example with 5 folds cross validation.

Finally, since nowadays GS requires high-throughput
genotyping systems and biometrics expertise that might
not easily accessible to breeding programs in develop-
ing countries, increased sharing of genomic resources,
genomic data, quantitative genetics and biometrics
expertise between developed countries, developing re-
gions and emerging economies will be the key to global
food security in an era of rapid climate and environ-
mental change.

Conclusions

Deep learning is a disruptive technology that has im-
mense potential for applications in any area of predictive
data science. An essential requirement is the availability
of high quality and sufficiently large training data. How-
ever, based on the considered publications on the use of
DL for genomic selection, we did not find strong evi-
dence for its clear superiority in terms of prediction
power compared to conventional genomic prediction
models. We obtained evidence that DL algorithms are
powerful for capturing nonlinear patterns more effi-
ciently than conventional genomic prediction models
and for integrating data from different sources without
the need for feature engineering. DL algorithms also
have a lot of potential to improve prediction accuracy by
developing specific topologies for the type of data at
hand in plant breeding programs. For these reasons, it is
of paramount importance to adopt this disruptive tech-
nology in GS and be able to increase its efficiency and
accuracy. However, DL models cannot be adopted for
GS blindly in small training-testing data sets.

Appendix

Maize toy example with 5 folds CV with only one
inner CV
rm. (list = Is()).

library (Isa).

library (keras).

library (BMTME).

library (plyr).

library (tidyr).

library (dplyr).
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#####n####Set seed for reproducible results######
HERBHAHHHAHRAH,

use_session_with_seed(45).

##n##n#########Loading the MaizeToy Datasets##
HERBHAHHHHHRAH,

data(“MaizeToy”).

head (phenoMaizeToy).

####p#####O0rdering the data #############H##HH
HERHHHHHHAHRHHHE,

phenoMaizeToy<—(phenoMaizeToy
MaizeToy$Env,phenoMaizeToy$Line),])

rownames (phenoMaizeToy)=1:nrow (phenoMaizeToy).

head (phenoMaizeToy,8).

#Hn#rHAERAR#R A EA#Design  matrices####HHAHAFRFHIH
HERHHHHHRHRHHHHHHHHAH,

LG- cholesky (genoMaizeToy).

ZG- model. matrix(~0+as.factor (phenoMaizeToy$Line)).

7.G- ZG %*%LG.

Z.E- model.matrix(~0+as.factor (phenoMaizeToy$Env)).

ZEG <- model.matrix(~ 0 + as.factor  (phenoMaize-
Toy$Line):as.factor (phenoMaizeToy$Env)).

G2 < - kronecker (diag (length (unique (phenoMaize-
Toy$Env))), data.matrix (genoMaizeToy)).

LG2 < - cholesky(G2).

Z.EG< - ZEG %*% LG2.

#####n######Selecting the response variable#######
RERHHAHHHHRHHHHHE,

Y < - as.matrix (phenoMaizeToy[, —c(1, 2)]).

[order (pheno-

#### Training testing sets wusing the BMTME
package##############H.
pheno <- dataframe (GID =phenoMaizeToy[, 1],

Env= phenoMaizeToy][, 2],

Response=phenoMaizeToy][, 3]).

CrossV <— CV.KFold (pheno, DataSetID = ‘GID’, K=5,
set_seed=123).

########Grid of hyperparameters######its #i####
HEHHAHH HHBHHHHHRRRRHHHHHRRRH,

Stage <- expand.grid (units_M=seq(33,67,33),epochs_
M = 1000, Dropout = c(0.0,0.05,0.15, 0.25, 0.35)).

####pH#########Function  for  averaging  the
predictions############.

summary. BMTMECV <- function (results, informa-
tion = ‘compact’, digits =4, ...) {.

results % > %.

group_by(Environment, Trait, Partition) % > %.

summarise (MSE = mean((Predicted-Observed)”"2),

MAAPE =mean (atan (abs (Observed-Predicted)/abs
(Observed)))) % > %.

select (Environment, Trait, Partition, MSE, MAAPE)
% > %.

mutate_if(is.numeric, funs (round(., digits))) % > %.

as.data.frame() - > presum.

presum % > % group_by(Environment, Trait) % > %.
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summarise (SE_MAAPE =sd (MAAPE, narm.=T)/
sqrt(n()), MAAPE = mean (MAAPE, na.rm. = T),

SE_MSE =sd (MSE, na.rm. = T)/sqrt(n()), MSE = mean
(MSE, narm. =T)) % > %.

select (Environment, Trait, MSE, SE_MSE, MAAPE,
SE_MAAPE) % > %.

mutate_if(is.numeric, funs (round(., digits))) % > %.

as.data.frame() - > finalSum.

out <- switch (information,

compact = finalSum,

complete = presum,

extended = {.

finalSum$Partition <- ‘All’.

presum$Partition <— as.character (presum$Partition).

presum$SE_MSE < - NA.

presum$SE_MAAPE <- NA.

rbind (presum, finalSum).

}

)

return (out).

}

#######Final X and vy for fitting the model#######
HREH#HHHHEHHS,

y = (phenoMaizeToy][, 3]).

X = cbind(Z.E,Z.G).

##unansnsa##Outer Cross-validation#############H
HRBHHHHAE.

digits = 4.

Names_Traits = colnames(Y).

results = data.frame().

t=1.

for (o in 1:5){.

tst_set = CrossV$CrossValidation_list[[0]].

X_trn = (X[-tst_set,])

X_tst = (X [tst_set,])

y_trn = (y[-tst_set]).

y_tst = (y [tst_set]).

nCVI = 1 ####Number of folds for inner CV.

i=1.

#u#######Matrices for saving the output of inner
CV#HBBRHHHHBRHHHHBBRHHH R,

Tab_pred_MSE = matrix (NA,ncol =length (Stagel[,1]),
nrow = nCVI).

Tab_pred_Epoch = matrix (NA,ncol =length (Stage[,1]),
nrow = nCVI).

Tab_pred_Units = matrix (NA,ncol = length (Stagel[,1]),
nrow = nCVI).

Tab_pred_Drop = matrix (NA,ncol = length (Stagel[,1]),
nrow = nCVI).

X_trl = X_trn.

y_trl=y_trn.

for (stage in seq_len(dim (Stage) [1])) {.

X _trll = X_trl.

y_trll =y trL
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units_M < - Stage [stage, 1].

epochs_M < - Stage [stage, 2].

Drop_per = Stage [stage, 3].

build_model<—-function() {.

model <- keras_model_sequential().

model % > %.

layer_dense(units = units_M, activation = “relu”, input_
shape = ¢ (dim(X_trII) [2])) % > %.

layer_dropout(rate = Drop_per) % > %.

layer_dense(units = 1, activation = “relu”).

model % > % compile(.

loss = “mse”,

optimizer = optimizer_adamy(),

metrics = ¢(“mse”)).

model}.

model<-build_model().

model % > % summary().

print_dot_callback <- callback_lambda(.

on_epoch_end = function (epoch, logs) {.

if (epoch %% 20 == 0) cat(“\n”).

cat(“.”)

})

########Fitting the model with Early stopping###
#H###,

early_stop <- callback_early_stopping(monitor = “val_
loss”,mode = ‘min’,patience =50).

#p#na#####Fit of the model for each values of the
grid##############HHE.

model_Final<-build_model().

model_fit_Final<—model_Final % > % fit(.

X_trIl, y_trll,

epochs = epochs_M, batch_size =72,

###shuffled = F,

validation_split = 0.2,

verbose = 0,callbacks = list (early_stop, print_dot_callback)).

#H#########Saving the output of each hyperpara
meter##########BHEH#AHHE,

No.Epoch_Min = length (model_fit_Final$metrics$val_
mean_squared_error).

Min_MSE = model_fit_Final$metrics$val_mean_
squared_error[No.Epoch_Min].

Tab_pred_MSE][i,stage] = Min_MSE.

Tab_pred_Units[i,stage] = units_M.

Tab_pred_Epoch[i,stage] = No.Epoch_Min [1].

Tab_pred_Dropli,stage] = Drop_per.

}

####n########Selecting the optimal hyperparameters
HERHRHHHHHHHES,

Median_MSE_Inner = apply (Tab_pred_MSE,2,median).

Units_Inner = apply (Tab_pred_Units,2,max).

Drop_Inner = apply (Tab_pred_Drop,2,max).

Epoch_Inner = apply (Tab_pred_Epoch,2,median).

Pos_Min_MSE = which (Median_MSE_Inner==min
(Median_MSE _Inner)).
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Units_O=Units_Inner[Pos_Min_MSE].

Epoch_O = Epoch_Inner[Pos_Min_MSE].

Drop_O = Drop_Inner[Pos_Min_MSE].

###un#####Refitting the model with the optimal
values#######HH##HHHBHAH.

model_Sec < —keras_model_sequential().

model_Sec % > %.

layer_dense(units = Units_O, activation = “relu”, input_
shape = ¢ (dim(X_trn) [2])) % > %.

layer_dropout(rate = Drop_O) % > %.

layer_dense(units =1).

model_Sec % > % compile(.

loss = “mean_squared_error”,

optimizer = optimizer_adam(),

metrics = c(“mean_squared_error”)).

ModelFited <-model_Sec % > % fit(.

X_trn, y_trn,

epochs = Epoch_O, batch_size =30,

#u##### validation_split = 0.2,early_stop,

verbose = 0, callbacks = list (print_dot_callback)).

####Prediction of testing set
BREHHAAHBHBHARHRR R AR AHHHHRY

Yhat = model_Sec % > % predict(X_tst).

y_p = Yhat.

y_p_tst = as.numeric(y_p).

###########Saving the predicctions of each outer-
testing set########HFHAFAHAL.

results<-rbind (results, data.frame (Position = tst_set,

Environment = CrossV$Environments [tst_set],

Partition = o,

Units = Units_O,

Epochs = Epoch_O,

Drop_Out = Drop_O,

Observed = round(y [tst_set], digits), #$response, digits),

Predicted = round(y_p_tst, digits),

Trait = Names_Traits[t])).

cat(“CV = “0,"\n").

}

Results
####HH####### Average  of  prediction
BREHHAHHHHHAAHH R R HRHHRR R R HHAH R RS,
Pred_Summary = summary. BMTMECV (results = results,
information = ‘compact’, digits = 4).
Pred_Summary.

performance
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