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Abstract

Background: The mechanism of body growth in mammals is poorly understood. Here, we investigated the
regulatory networks involved in body growth through transcriptomic analysis of pituitary and epiphyseal tissues of
smaller sized Debao ponies and Mongolian horses at the juvenile and adult stages.

Results: We found that growth hormone receptor (GHR) was expressed at low levels in long bones, although growth
hormone (GH) was highly expressed in Debao ponies compared with Mongolian horses. Moreover, significant
downregulated of the GHR pathway components m-RAS and ATF3 was found in juvenile ponies, which slowed the
proliferation of bone osteocytes. However, WNT2 and PLCβ2 were obviously upregulated in juvenile Debao ponies,
which led to premature mineralization of the bone extracellular matrix. Furthermore, we found that the WNT/Ca2+

pathway may be responsible for regulating body growth. GHR was demonstrated by q-PCR and Western blot
analyses to be expressed at low levels in long bones of Debao ponies. Treatment with WNT antagonistI decreased
the expression of WNT pathway components (P < 0.05) in vitro. Transduction of ATDC5 cells with a GHR-RNAi
lentiviral vector decreased the expression of the GHR pathway components (P < 0.05). Additionally, the expression
of the IGF-1 gene in the liver was lower in Debao ponies than in Mongolian horses at the juvenile and adult stages.
Detection of plasma hormone concentrations showed that Debao ponies expressed higher levels of IGF-1 as
juveniles and higher levels of GH as adults than Mongolian horses, indicating that the hormone regulation in
Debao ponies differs from that in Mongolian horses.

Conclusion: Our work provides insights into the genetic regulation of short stature growth in mammals and can
provide useful information for the development of therapeutic strategies for small size.
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Background
Domestic animals’ body size is a crucial index for deter-
mination of horse breeds and has become a priority fac-
tor in animal breeding. It is closely related to their
physiological function, production performance, disease
resistance and adaptability to the external environment
[1, 2]. Given the high value of this trait, in-depth investi-
gations into its genetic aspects in domestic species have

been conducted. To date, molecular elements related to
body size have been investigated in pigs and cows as well
as in humans [3–8]. The related studies have indicated
that SNPs in the GH1 gene [3] and haplotypes with a
long sweep on X chromosome [4] are associated with
body size in pigs. The growth pattern of body and organ
in pigs with growth hormone receptor (GHR) knockout
mutations are similar to those in human with Laron syn-
drome, which is a rare and autosomal recessive disorder
caused by loss-of-function mutations in the GHR gene
[5]. Cattle with the haplotype combination H3H3 (CC-
GG-CC-AA-CC) which varied in the STAT3 gene
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promoter regions is significantly enhanced body size
than that with haplotype combination H1H1 (AA-AA-
AA-AA-TT) and H2H3 (CC-GG-AC-GA-CC), respect-
ively [6]. Whole-genome sequence analysis has shown
that the genetic architecture of stature in cattle is similar
to that in humans [7]. However, many more height-
related genes have been identified in humans than in
these other mammals [8].
Like all domestic animals, horses have evolved into

many different populations with widely varying body
sizes through natural and artificial selection. A few stud-
ies on the genetic aspects of body size in horses have
been conducted. For example, a genome-wide associ-
ation study based on SNPs identified two chromosomal
loci near the LCORL/NCAPG gene and the ZFAT gene
that have already been shown to influence body height
in humans [9]. In addition, a whole-genome sequencing
study on two miniature Shetland ponies and one
standard-sized Shetland pony revealed four synergistic
variants including in ADAMTS17, OSTN, GHI and
HMGA2 that limit wither height to 87 cm and seemingly
reveal the main reason for the short stature of miniature
ponies [10]. A complementary genome analysis of ponies
and tall horses identified the genomic loci related to
body height and metabolic traits and discovered that
HMGA2 c.83G > A (p.G28E) variants were significantly
altered in Welsh ponies, suggesting that the highly re-
lated loci in the ponies were highly efficient in altering
metabolic pathways [11]. However, body size is a com-
plex quantitative trait controlled by multiple genes.
Thus, the molecular pathways regulating body height in
horses remain unclear.
Body size depends largely on long bone growth and

endocrine hormone signaling. Bones themselves, as well
as other endocrine organs can act synergistically to pro-
mote growth [12, 13]. In this study, we sequenced the
transcriptomes of the pituitary gland and long bone tis-
sues from Debao ponies (DPs) and Mongolian horses
(MHs). The DP and MH are registered standard native
horse breeds in China. The DP, which is less than 106
cm in height, originated in Debao County in the
Guangxi Zhuang Autonomous Region of southwestern
China and is well adapted to the local mountain envir-
onment. The MH, which is 122 cm to 142 cm in height,
is one of the oldest horse breeds inhabiting the Mongo-
lian Plateau; this breed is adaptable and exhibits strong
disease resistance and hardiness on rough terrain [14,
15]. Previous reports have indicated that the DP has a
genetic relationship with the MH [16] although both
populations have undergone long-term natural and arti-
ficial selection over the course of their evolution that has
resulted in significant differences in height. However, lit-
tle is known about the molecular mechanism determin-
ing the body size of DPs. Hence, we systematically

screened the key genes involved in the regulatory net-
work of growth body size to reveal the correlation be-
tween the expression patterns of candidate genes and
body size traits and to further elucidate the molecular
pathways influencing body size.

Results
Identification of differentially expressed genes (DEGs) in
DPs
Height analysis revealed obvious differences between
DPs and MHs. DPs exhibited no significant differences
in height between the juveniles (less than 3 years) and
adults (more than 3 years) stages, while MHs did exhibit
significant differences in height. DPs reached an the
adult height at an early age, and the body length, chest
circumference, canon bone circumference, neck length
and head length increased similarly to the body height
(Table 1). DPs and MHs exhibited significant differences
in body height at the juvenile stage (P < 0.05) and at the
adult stage (P < 0.005) (Additional file 1).
We constructed and sequenced an RNA-seq library

from 24 samples of pituitary and epiphyseal tissues taken
from three DPs and three MHs at the juvenile and adult
stages (Fig. 1a), as these tissue types are related to body
size development [12, 13]. A total of 11,344 DEGs were
obtained by RNA-seq, of which 7436 were differentially
expressed between the two breeds at the same stage (ju-
venile or adult). Specifically, 2761 and 563 DEGs in the
pituitary and 1908 and 2204 DEGs in the long bone
epiphysis were identified between MHs and DPs at the
juvenile and adult stages, respectively. In addition, 3958
genes were differentially expressed between the different
developmental stages in the same breed; 1358 and 970
DEGs were identified in the MH pituitary and long bone
epiphysis, while 1018 and 562 DEGs were identified in
the DP pituitary and long bone epiphysis, respectively
(Fig. 1b). The sample correlation results showed that the
pituitary samples were clusterd together independent of
breed and developmental stage, while almost all long
bone samples (except MH adult sample 4) were clus-
tered by breed (Additional file 2). Cluster analysis of the
different developmental stages of DPs and MHs showed
significant differences between pituitary and epiphyseal
tissues in the two breeds at the two developmental
stages (Fig. 1c).
Significant differences were found in matrix metallo-

proteinases (MMPs) and collagen in long bone tissues
between adult and juvenile horses. Greater enrichment
of relevant pathways was observed at the juvenile stage
than at the adult stage. However, the MAPK signaling
pathway was less enriched at the juvenile stage than at
the adult stage. In addition, significant differences were
found in the WNT signaling pathway, the PI3K-Akt sig-
naling pathway, cell junctions and cell surfaces in the
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pituitary glands between adult and juvenile horses
(Fig. 1d). This finding suggests that in DPs, the MAPK
signaling pathway may participate in limiting long bone
growth at the juvenile stage.
As shown in the Venn diagram, 82 DEGs in the long

bone epiphysis overlapped between the two breeds of
horses at different stages, while 266 DEGs in pituitary
tissue overlapped (Fig. 2a). The volcano plot shows that
GH and TSHB were significantly upregulated in the pitu-
itary tissues of juvenile DPs and MHs, while GHR was
significantly downregulated in the long bones of juvenile
DPs and MHs. GHR expression was significantly lower
in DPs than in MHs. In addition, the expression of genes
related to the epiphyseal cell matrix, such as ALPL, COL
and MMP was significantly higher in MHs than in DPs,
while the expression of GH, TSH and IGF-1 in the pitu-
itary was significantly higher in juvenile DPs than in ju-
venile MHs (Fig. 2b).

DPs exhibit excessive GH expression and low GHR
expression
GH expression and GHR expression were differed sig-
nificantly in the tissues of the two breeds (Fig. 2c). GH
expression in the juvenile DP pituitary (DPPJ) was 13-
fold higher than that in the juvenile MH pituitary
(MHPJ) (Additional file 3). Although GHR expression in
the juvenile DP long bone (DPLBJ) was 1.4-fold lower
than that in the juvenile MH long bone (MHLBJ) (Add-
itional file 4). Analysis of protein levels showed that GH
expression in the pituitary tissue was higher in DPs than
that in MHs at both stages, although this difference was
not found in long bone tissues (Additional file 5). Thus,
we found that DPs have high expression of GH and low
expression of GHR. Low expression of GHR may lead to
GH insensitivity. Previous studies have shown that idio-
pathic dwarfism is associated with extremely low

expression of GHR [17, 18]. Thus, we hypothesized that
the low expression of GHR may be related to the small
size of DPs.
GH is synthesized and secreted mainly by GH cells in

the anterior pituitary and is very important for the
growth and development of bone and the maintenance
of bone mass. When GH and GHR are expressed simul-
taneously, they act on target cells through a correspond-
ing signaling pathways (Fig. 2d). Through analysis of the
coexpression network linking GH and GHR, we found
that many genes related to extracellular matrix (ECM)
development were associated with these cellular signal-
ing pathways (Fig. 2e).
GH stimulates the production of IGF-1, and IGF-1 acts

as a surrogate marker for GH. The results of this study re-
vealed that the expression of IGF-1 was higher in the liver
in MHs than in DPs at both the adult and juvenile stages
(Additional file 6). In addition, GH expression was ex-
tremely high in the DP pituitary of DPs compared with
the pituitary of MHs at the juvenile stage (P < 0.001)
(Fig. 3a). Transcript levels alone are not sufficient to pre-
dict protein levels in many situations. In additon, other
hormones have been shown to be different in the two
horse breeds. For example, common glycoprotein alpha
(CGA) and TSHB are positively and negatively regulated
by triiodothyronine (T3), respectively. We found no sig-
nificant differences in CGA or TSHB expression between
adult DPs and MHs; however, the opposite result was ob-
served in juvenile horses (Fig. 3b, c).
To determine the effects of additional relevant hor-

mones on the body height of DPs, the concentrations of
T3, T4, IGF-1, GH and TSH in plasma were determined
by radioimmunoassay. Plasma hormone concentrations
differed significantly among the groups. The T3 and T4
concentrations were higher in adult MHs than in DPs
(P < 0.001), but did not differ at the juvenile stage in

Table 1 Height Data from Debao Ponies and Mongolian Horses

NO. Age
(year)

Sex Height
(m)

Body length
(m)

Bust
(m)

Canon bone circumference(m) Neck circumference
(m)

Head circumference
(m)

Pony1 1 female 1 0.95 1.1 0.13 0.49 0.4

Pony2 1 female 0.93 0.93 0.94 0.12 0.35 0.37

Pony3 1 female 1 0.93 1.02 0.14 0.4 0.37

Pony4 4 female 0.94 0.82 0.97 0.12 0.37 0.35

Pony5 5 female 0.88 0.85 0.94 0.13 0.4 0.36

Pony6 4 female 0.97 0.85 0.99 0.13 0.44 0.4

Horse1 1 female 1.27 1.29 1.4 0.06 0.65 0.52

Horse2 1 female 1.25 1.32 1.46 0.07 0.65 0.55

Horse3 1 female 1.24 1.25 1.39 0.07 0.61 0.52

Horse4 4 female 1.35 1.28 1.69 0.07 0.66 0.53

Horse5 4 female 1.37 1.43 1.6 0.07 0.71 0.54

Horse6 4 female 1.43 1.48 1.74 0.06 0.73 0.53
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these two breeds; the T3 and T4 concentrations in adult
MHs were significantly higher than those in juvenile
MHs (P < 0.001), while those in DPs displayed the op-
posite trend; and the TSH content in juvenile DPs was
lower than that in MHs (P < 0.01) (Fig. 3d). Moreover,
the concentrations of GH and IGF-1 differed between
the two horse breeds at the juvenile stage. In DPs, the
IGF-1 and the GH concentrations were higher in juve-
niles than in adults (P < 0.01 and P < 0.001, respect-
ively). However, in MHs, the plasma concentration of
GH in juveniles was similar to that in adults, while the
IGF-1 concentration was higher in adults (P < 0.001)
(Fig. 3e). The different changes in hormone concentra-
tions between these groups indicated that these genes
may play an important role in the hypothalamus in regu-
lating body size.

In vitro validation of the key genes in signaling pathways
related to short stature
According to the above experimental results, the GHR
and WNT signaling pathways are relevant to the regula-
tion of body growth. To obtain a reliable dataset for
RNA-seq analysis, we conducted a series of in vitro ex-
periments. Knockout or silencing of key genes to ob-
serve phenotypic changes is the primary strategy for
verification experiments. GHR expression in long bone
tissue was much lower in juvenile DPs than in MHs
(P < 0.001) (Fig. 4a). Moreover, targeted GHR-RNAi
constructs were selected for packaging according to the
characteristics of the ATDC5 cell line from mice. When
ATDC5 cells reached 80% confluence, the optimal
multiplicity of infection (MOI) was approximately 10
(Additional file 7). Lentiviral knockdown experiments

a b

c d

Fig. 1 Summary of high-throughput sequencing data for the Debao pony (DP) and Mongolian horse (MH). a Schematic of the DP and MH
groups. b Numbers of genes up/downregulated in the two breeds of horses at the two developmental stages (JS vs AS, juvenile stage vs adult
stage). c Cluster analysis of the different developmental stages of DPs and MHs. The overall hierarchical clustering map based on FPKM values
was generated with the log10 (FPKM+ 1) values. Red indicates strongly expressed genes, and blue indicates weakly expressed genes. The colors
from red to blue indicated log10 (FPKM + 1) values from large to small. d GO and KEGG enrichment results for the DEGs in the MHPA vs DPPA
and MHLBJ vs DPLBJ comparisons. MHPJ, juvenile Mongolian horse pituitary; MHPA, adult Mongolian horse pituitary; MHLBJ, juvenile Mongolian
horse long bone; MHLBA, adult Debao pony long bone; DPPJ, juvenile Debao pony pituitary; DPPA, adult Debao pony pituitary; DPLBJ, juvenile
Debao pony long bone; DPLBA, adult Debao pony long bone
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Fig. 2 Expression levels of GH and GHR genes in pituitary and epiphyseal tissues from Debao ponies and Mongolian horses, as determined by
RNA-seq. a Venn diagram showing the numbers of the DEGs in the comparisons between pituitary and epiphyseal tissues between the two
breeds. b Volcano plots highlighting the DEGs in blue (P < 0.05) and red (q < 0.05) for the DPPJ vs MHPJ and DPLBJ vs MHLBJ comparisons DPPJ,
juvenile Debao pony pituitary; MHPJ, juvenile Mongolian horse pituitary; DPLBJ, juvenile Debao pony long bone; MHLBJ, juvenile Mongolian horse
long bone. c Integrative Genomics Viewer visualization of GH and GHR gene RNA-seq data from the DP and MH pituitary and long bone tissue
samples. Red indicates the reference gene tracks (ENSECAG00000002986 GHR;ENSECAG00000009392 GH); yellow and blue indicate the GHR and
GH gene RNA-seq data tracks, respectively; the Y-axis shows the different samples; the X-axis shows a genome coordinate ruler that indicates the
size of the region considered. d Interactions of GH and GHR and their effects on downstream cell signaling pathways. e The coexpression
network linking GH and GHR revealed several key genes, such as ATF3, EGR3, SOX2, SOX5, and RUNX2
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showed that GHR expression in ATDC5 cells was signifi-
cantly decreased after transfection (Additional file 8).
The expression of the GHR, m-RAS and ATF3 genes,
which are related to the GHR pathway, in transfected
cells was lower than that in untransfected cells
(P < 0.05) (Fig. 4b). Furthermore, the apoptosis rate of
the control cells was lower than that of the untrans-
fected cells, and the apoptosis rate of the blank cells was
lower than that of the GHR-knockdown cells. In

contrast, the apoptotic rate of virus-transfected cells was
relatively high (P < 0.05) (Fig. 4c, Additional file 9).
The role of the WNT signaling pathway was verified in

two cell lines, one of which was a horse bone marrow
mesenchymal stem cell (BMSC) line. The other cell line
used for validation was ATDC5. First, the cell line was
obtained and identified: Highly active horse BMSCs were
obtained, and the expression of the transcription factor
Nanog and the surface markers CD44, CD90, and CD105

Fig. 3 Expression levels of key genes in pituitary tissues from Debao ponies and Mongolian horses. a Expression levels of GH genes in pituitary tissues
from Debao ponies and Mongolian horses. b, c Expression levels of TSHB and CGA in pituitary tissues from Debao ponies and Mongolian horses. d
Determination of plasma T3, T4, and TSH concentrations in Mongolian horses and Debao ponies during the juvenile and adult stages. e Determination
of plasma GH and IGF-1 concentrations of in Mongolian horses and Debao ponies during the juvenile and adult stages. (*P < 0.01, **P<0.05, ***P<0.001)

Fig. 4 Expression levels of key genes in the long bone epiphyseal tissues from Debao ponies and Mongolian horses. a Expression levels of GHR in
long bone tissues from Debao ponies and Mongolian horses. b Expression of the GHR signaling pathway in a lentivirus-infected cell line. c
Detection of apoptotic cells by FACS. d Gene expression in the WNT5A signaling pathway in osteoblasts. e Gene expression in the WNT5A
signaling pathway in ATDC5 cells. (*P < 0.01, **P < 0.05, ***P < 0.001)
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in the cell line was determined. After induction and differ-
entiation, the resulting osteoblasts were determined to be
in good condition and became nodular (Additional file 10).
Alizarin red stained the bone nodules formed by osteo-
blasts red, and Alcian blue stained the regions with accu-
mulated proteoglycans and hyaluronic acid blue
(Additional file 10). The expression of COL and ALPL in
osteoblasts increased significantly with the increasing in-
duction time (Additional files 11 and 12). Second, the ex-
pression of WNT pathway genes in osteoblasts induced for
14 days was detected by quantitative real-time PCR (q-
PCR) (Additional file 13). The expression of WNT5A and
WNT2 gions osteoblasts decreased significantly (P < 0.05).
However, CAMK2A expression did not change signifi-
cantly, suggesting that the noncanonical WNT pathway
might not be altered in the bone tissue of DPs (Fig. 4d).
The expression of the WNT pathway genes in the ATDC5

cell line was similarly detected by q-PCR (Additional file 14),
WNT4 expression was increased, although WNT11,
WNT5A and WNT2 expression was decreased (P < 0.05);
additionlly, FZD2, PLCɡ2 and PLCβ2 expression was de-
creased in this cell line (Fig. 4e). In summary, these in vitro
cell validation assays showed that the WNT5A and WNT2
genes acted through the PLCβ2 pathways via WNT antago-
nists in ATDC5 cells and horse BMSCs.
In addition, we investigated whether alterations in up-

stream transcription factors or in SNPs in the key gene
GHR. The sequences of all transcription factor genes
from Equus caballus (Assembly EquCab3.0) were ob-
tained from an animal transcription factor database
(http://www.bioguo.org/AnimalTFDB). In total, 71 tran-
scription factor genes were coexpressed with GHR, and
11 of these genes might play important roles in regulat-
ing the expression levels of GHR (Fig. 5a). In our study,

Fig. 5 Transcription factor genes that coexpressed with GHR in Debao ponies and Mongolian horses. a Transcription factor genes coexpressed
with GHR and coexpression relationships in the long bone tissues from the two breeds. b Location of the SNP in the GHR of the Debao pony
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the 5000 bp nucleotide sequence upstream of the GHR
transcription start site was investigated in DPs and MHs.
One SNP, a non-synonymous mutation chr21 23,969,
806 C-T of GHR (Fig. 5b) was found in DPs. Binding
motifs analysis was performed, and the results revealed
that SNPs led to differences in transcription factor bind-
ing motifs. This result implies that the SNP in GHR pro-
moters might alter the binding motifs and lead to the
different gene expression levels in the two breeds.

Activation of bone signaling cascades is significantly
altered in DPs
On the basis of the transcriptome sequencing results be-
tween DP and MH pituitary and epiphyseal tissues, can-
didate genes were screened, and q-PCR and Western
blot analysis were the used to verify the accuracy of the
transcriptome data (Additional files 3, 4, 5 and 6). The

transcriptome data were considered from a biogenetics
perspective to determine the possible regulatory path-
ways controlling short stature in DPs. The above results
indicated that in juvenile DPs, the pituitary gland se-
cretes high levels of GH, while the epiphyses exhibit a
lack of GHR. GHR, m-RAS and ATF3, which are in-
volved in the GHR pathway, were found to be signifi-
cantly down regulated, by 75.2, 41 and 34.9%,
respectively, in ATDC5 cells with GHR-RNAi lentivirus-
mediated knockdown. Thus, bone growth in DPs may be
inhibited via downregulation of the GHR pathway
(Fig. 6a). However, WNT2,WNT5A,PLCɡ2 and FZD2
were noticeably downregulated, by 96.5, 61, 53.3 and
61%, respectively, in transfected ATDC5 cells. Such
changes may increase the concentration of Ca2+ through
WNT pathway activation and Ca2+ export from cells via
solute carrier family 8 member A3 (SLC8A3) and

Fig. 6 Signaling pathways regulating short stature in the Debao pony. a The GHR signaling pathway regulates short stature in the Debao pony. b
The WNT5A and TLR2 signaling pathways regulate short stature in the Debao pony. Genes with upregulated expression compared with that in
the juvenile Mongolian horse are shown in red, while genes with downregulated expression are shown in blue
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transient receptor potential cation channel subfamily V
member 4 (TRPV4) channels promote mineralization
and early epiphyseal closure in coordination with
changes in the expression of ALPL and epiphyseal fac-
tors, and stimulate osteoclastogenesis to enhance bone
resorption via the TLR pathway (Fig. 6b).

Discussion
Since 2007, when a draft genome of a thoroughbred
mare was obtained, research on horses has entered a
new era [19]. Gene expression levels in tissues from 8
breeds of horses were studied, and 75,116 transcripts
were found, among which 20,302 protein-coding gene
loci were accurately identified [20, 21]. A high-
throughput study on body size correlations in horses
confirmed that many genes are closely related to body
height [9–11]. In addition, a genome-wide scan of the X
chromosome of the DP using an Equine SNP70 Bead-
Chip revealed that five regions on the X chromosome
are under strong selection. The candidate regions in-
clude SMS, DKC1, etc., which are involved in bone de-
velopment, GH secretion and fat deposition; these genes
may also be related to body height [22]. Furthermore, an
Equine 70 K SNP genotyping array was used for
genome-wide detection of copy number variations
among domestic DPs, MHs and Yili horses, and 60, 42
and 91 genes were found to overlap with the breed-
specific, respectively. Thus, these genes may be relevant
to breed-specific traits [16]. A study using an Equine
SNP 65 BeadChip also revealed that a new candidate
gene, T-box transcription factor 3 (TBX3), exhibited the
greatest differentiation and most significant association
with body size among the examined genes and is thus
likely to be the dominating factor controlling the small
stature of the DP. TBX3 was elected independently in
the DP, suggesting that there were multiple origins of
small stature in horses [23]. However, these studies did
not clearly reveal the molecular mechanism underlying
short stature in the DP.
In this study, we selected MHs and DPs with different

body heights for RNA-seq analysis and found that the
expression levels of multiple genes were related to the
heights of the two breeds. GHR expression in long bone
tissue was 1.4-fold lower in DPs than in MHs, while GH
expression was 13-fold higher, similar to the changes ob-
served for dwarfism syndrome caused by familial dwarf-
ism, idiopathic dwarfism and GHR mutation [17, 18]
(Additional files 3 and 4). The routine treatment for
these diseases is injection of recombinant GH, but this
often causes transient hyperglycemia, peripheral edema,
fluid retention and other side effects. Therefore, research
on short- stature animals with normal physiological ac-
tivities can reveal the physiological mechanism under-
lying the small size phenomenon and aid in the

development of treatments for dwarfism and other
diseases.
In many patients, the short stature is caused by an im-

balance in changes in the body’s growth axis. The
GHRH-GH-IGF axis, which is regulated by neuroendo-
crine factors, affects the growth and development of
mammals. We thus collected the blood from these two
breeds and measured hormone concentrations. We
found that DPs exhibited unique physiological character-
istics during the development of short stature, including
high plasma IGF concentrations, low plasma GH con-
centrations, and high tissue GH expression levels. The
results regarding plasma hormone levels were similar to
those obtained for pygmies in Africa [24], but signifi-
cantly different from those obtained for GHR-knockout
animal models [5, 25]. This discrepancy may be due to
the differences between knockout mice and natural
dwarfs. Notably, thyroid hormone is an important regu-
lator of bone growth [26]. Our transcriptome data
showed a significant difference in TSH levels but no dif-
ference in TSHR levels between the two horses at the ju-
venile stage. Specifically, the plasma TSH levels in
juvenile DPs were lower than those in juvenile MHs,
while the plasma T3 and T4 concentrations in adult DPs
were higher than those in adult MHs. The expression of
CGA in tissues was consistent with that of TSH [27].
CGA regulates synthesis and secretion by affecting T3
and indirectly mediates the role of TSH in DPs. These
results indicated that a change in the TRH-TSH-T3T4
growth axis might be contributing of short stature in
DPs; however, the expression of TSHR in the pituitary
tissue of juvenile DPs was not altered. Therefore, TSH
may not be the main driver of short stature in DPs.
The hormones secreted by the pituitary gland and the

development of long bones directly determine the body
size of animals. We found that GH was highly expressed
in pituitary and long bone tissues and that a lack of
GHR expression in long bones may be the main cause of
short stature in DPs. Although all GHRs function en-
tirely through GH signaling, they still cannot meet the
needs for bone growth in juvenile DPs, which may lead
to the short stature of these horses. This pattern of
GHR, characterized by low expression and deficiency, is
similar to that observed in many dwarfism diseases [17,
18]. Most studies on body size have addressed the
physiological characteristics of GHR deficiency, but few
have explained the causes of GHR deficiency. We further
studied the SNPs in GHR and found that in DPs, GHR
harbors SNP loci that may lead to its altered transcrip-
tion. The GHR SNP in DPs identified in this study was
located in the promoter region, and it may be influenced
by environmental factors or epigenetic factors, including
methylation, in evolutionary genetics. Therefore, we
speculate that compared with other horses of normal

Fang et al. BMC Genomics           (2021) 22:58 Page 9 of 15



body size, DPs may exhibit not only polymorphisms in
key genes in the growth axis but also alterations in the
relevant important signaling pathways.
The transcriptome data obtained in this study showed

a significant difference in the expression of Suppressor
of Cytokine Signaling 1 (SOCS1) in bone tissue between
juvenile DPs and MHs and that the expression of SOCS1
was obviously increased in DPs. Moreover, SOCS family
members, most prominently SOCS1, were upregulated
in epiphyseal tissues of DPs. SOCS1 promotes ubiquitin-
mediated degradation of JAK2 [28]. SOCS2 is a key regu-
lator of GHR sensitivity and is a GH-stimulated,
STAT5b-regulated gene that acts in a negative feedback
loop to downregulate GHR signaling [29].
Recent studies have made major strides in elucidating

the mechanism of human JAK2 tyrosine kinase activa-
tion by GHR [30]. No significant differences in gene ex-
pression related to this pathway were identified in our
study. However, we found that GH and GHR may reduce
the height of DPs by downregulating the MAPK signal-
ing cascade. The MAPK pathway is responsible mainly
for the transcription of ATF3, and studies have shown
that ATF3 has a proapoptotic effect [31, 32]. In addition,
the RNA-seq data revealed that the expression of EGR1,
a zinc finger transcription factor-encoding gene located
in the commonly deleted region (CDR) on chromosome
5q, was also decreased by the RNA-seq data. EGR1 has
been found to play a role in promoting apoptosis or
inhibiting growth in many cancer studies [33, 34]. Per-
haps these two transcription factors inhibit the prolifera-
tion and transformation of chondrocytes in each region
of the cartilage by reducing apoptosis, leading to slow
chondrocyte growth and abnormal development.
Bone tissue development involves numerous signaling

molecules and signal transduction pathways. These in-
clude mainly the bone morphogenetic protein (BMP),
TGFβ1 and WNT protein families. We found that
WNT5A and FZD2 expression in DPs was significantly
upregulated compared with that in MHs (Fig. 4d). These
genes belong to the noncanonical WNT/Ca2+ pathway,
which is the main cell signaling pathway leading to Ca2+

deposition [35]. Thus, the levels of both intracellular and
extracellular Ca2+ in DPs may be increased through the
noncanonical WNT signaling pathway, leading to epi-
physeal closure and cessation of growth. The expres-
sion of SLC8A3, TRPV4, TRPV5 and ALP in the long
bone tissue of juvenile DPs was also obviously in-
creased (Fig. 6b). SLC8A3 and TRPV4/5 are the key
genes encoding Ca2+ transport channels on the cell
membrane [36, 37]. ALP is the decisive factor leading
to bone mineralization [38, 39]. High expression of
these genes in long bone tissue cells may increase
Ca2+ transport, thus accelerating the mineralization of
the osteoblast ECM.

In addition, significant changes were identified in IHH,
MMP23/25/8/9/11, TIMP4, COL10A1, SOX9/6/5/8/11,
COL2A1, COL9A1/2, COL11A1, SOX5, MMP11 and
TIMP4. Except for SOX5, MMP11 and TIMP4, these
genes were upregulated. The changes in these genes
were consistent with changes in genes involved in cartil-
age development [40, 41]. These results showed that the
cells in the four regions of the epiphyseal plate changed
rapidly under stimulation by the corresponding factors
(Fig. 6b).
Studies have shown that the TLR2 and MyD88 path-

ways play an important role in bone loss caused by in-
fection [42, 43]. Our results showed that the genes in
inflammation-related signaling pathways were upregu-
lated. TNFSF14 is also a member of the tumor necrosis
factor receptor superfamily [44]. The protein encoded by
this gene can promote transcription-related activation of
proteins in osteoclasts, lead to the proliferation, growth,
maturation and activation of osteoclasts, inhibit the pro-
liferation and differentiation of osteoblasts, and promote
the apoptosis of osteoblasts [45].
Molecular experiments showed that the collected

horse bone marrow cells expressed the stem cell tran-
scription factor Nanog and surface markers CD44, CD90
and CD105. According to previous literature, these
markers are characteristic of BMSCs [46, 47]. q-PCR as-
says confirmed that COL2A1, COL1A2, COL6A1 and
ALPL (Additional file 11) were expressed in induced os-
teoblasts. As the induction time increased, the expres-
sion of most genes increased gradually, while COL1A2
expression peaked its maximum on the 21st day, consist-
ent with findings of Yoo et al. regarding COL expression
[48]. The expression of ALPL is used to evaluate the ac-
tivity of osteoblasts, and high ALPL expression is consid-
ered a key indicators of osteoblast induction [49]. The
expression of ALPL increasing the induction time in the
current study. However, due to the reduced activity of
the induced cells,gene expression was not observed over
30 days. As the understanding of signaling pathways has
expanded, an increasing number of scholars have used
signaling pathway inhibitors to investigate the import-
ance of pathways [50, 51]. We selected WNT antago-
nistI as a blocker of the WNT signaling pathway
according to the literature [52, 53] and determined the
optimal concentration to improve the results.

Conclusions
The body size phenotype is the most direct manifest-
ation of phenotypic differences among animals and is
also a key characteristic used to identify livestock breeds.
Our experiments showed that the important genes M-
Ras and ATF3 in the GHR signaling pathway were
downregulated in the DP, indicating that changes in this
pathway may drive important functions in this breed. In
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addition, the expression of PLCɡ2 in the WNT signaling
pathway was increased, which could increase Ca2+ ex-
port from cells through the transporters TRPV4 and
SLC8A3 on the cell membrane. In addition, ECM, ALPL,
IHH, MMP23, TIMP4, COL10A1, Sox9, Sox6, Sox8,
Sox11, COL2A1, COL9A1 and other factors were found
to promote the early occurrence of biomineralization
and epiphyseal closure in juvenile DPs. These two path-
ways may mediate the development of short stature. The
purpose of this study was to reveal the molecular mech-
anism of short stature by analyzing the difference in
body height between DPs and MHs. Our findings pro-
vide insight into the genetic regulation of growth short
stature in mammals and can be used as a reference for
the development of therapeutic strategies for small size.
However, the association of these signaling pathways
with body size traits in ponies needs further validation.

Methods
Collection of animal tissue samples
Animals were killed at the slaughterhouse, and we col-
lected the tissues for our study. The health of all animals
included in the study, was assessed by local veterinar-
ians. Pituitary glands and the ends of long bones were
obtained from six heathy female DPs and six heathy fe-
male MHs (three juveniles and three adults per breed)
for transcriptomic analysis. In addition, liver, pituitary
gland and long bone epiphyseal tissues were obtained
from six healthy female DPs and six healthy female MHs
(three juveniles and three adults per breed) for q-PCR
and Western blot analysis. Whole blood samples and
plasma samples were collected from ten healthy DPs and
ten healthy MHs (five juveniles and five adults per
breed) for SNP detection and hormone content deter-
mination. All tissues and samples were immediately snap
frozen in liquid nitrogen and stored at − 80 °C until fur-
ther use.

RNA extraction
Each sample was individually ground (with a mortar and
pestle under continuous liquid N2 chilling) into a fine
powder before RNA extraction. Samples were stored at
− 80 °C. Total RNA was extracted from 30mg of tissue
by using the hot phenol method. In brief, cell pellets
were resuspended and washed once in Buffer A (50 mM
sodium acetate and 10mM EDTA, pH = 5.2). After col-
lecting the cells by centrifugation, the pellets were resus-
pended in Buffer A containing 1% SDS and immediately
added to hot phenol. After incubation at 65 °C for 5 min
and centrifugation for 10 min at 4 °C, the RNA-
containing supernatants were transferred to a new tube
for ethanol precipitation, washed and dissolved in
DEPC-treated water. The RNA was further purified with
two phenol-chloroformextraction extraction steps and

was then treated with RQ1 DNase (Promega) to remove
DNA. The quality and quantity of the purified RNA
were determined by measuring the absorbance ratio at
260 nm/280 nm (A260/A280) using a SmartSpec Plus
(Bio-Rad). The integrity of the RNA was further verified
by 1.5% agarose gel electrophoresis [54].
Ribosomal RNA was removed from the RNA samples

(10 μg) using a RiboMinus rRNA Depletion Kit
(Ambion), and the resulting samples were used to pre-
pare directional RNA-seq libraries. The purified mRNA
was then iron-fragmented at 95 °C before being sub-
jected to end repair and 5′ adaptor ligation. Then, re-
verse transcription (RT) was performed using RT
primers containing a 3′ adaptor sequence and a ran-
domized hexamers cDNA was purified and amplified,
and all 200–500 bp PCR products were purified, quanti-
fied and stored at − 80 °C until they were used for
sequencing.

Processing of raw RNA-seq data and evaluation and
alignment of clean data
For high-throughput sequencing, libraries were con-
structed following the manufacturer’s instructions,
and an Illumina GAIIx system was used to collect
data via 151 bp single-end sequencing (ABlife Inc.,
Wuhan, China) [55]. Read quality was evaluated using
FastQC [56]. Any reads less than 30 bp in length were
removed using Btrim (with a parameter setting of-l =
30) [57], and the remaining reads were used for fur-
ther analysis. The reads were mapped to the horse
genome (EquCab 3.0). The Salmon software (version
1.1.0) was used to map the reads to the reference
cDNA sequences and calculate the transcript per mil-
lion mapped reads value of each transcript using the
quasi-mapping method [58].

Analysis of DEGs
To determine whether a gene was differentially
expressed, we used the following thresholds: fold change
(FC) > 2 or (FC) < − 2 and P-value (P) < 0.05. The P-
value for differential expression was calculated in the R
environment (version 3.6.3, https://www.r-project.org/)
using the EdgeR package [59] (version 3.28.1), because it
has good performance in the identification of DEGs
from using biological triplicates [60]. EdgeR was down-
loaded from the Bioconductor website (www.
bioconductor.org). To predict gene function and calcu-
late the functional category distribution frequency,
Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) analyses were employed using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) bioinformatics resource.
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Validation by q-PCR
In this study, q-PCR was performed on GHR and GH to
validate the validity of the RNA-seq data. The expression
was normalized to that of the reference gene GAPDH
[61]. The primers are described in Additional files 13
and 14. The same RNA samples used for RNA-seq were
used for q-PCR. One microgram of RNA was reverse
transcribed using a Prime Script™ RT Reagent Kit
(Takara) following the manufacturer’s instructions. q-
PCR was performed in a Bio-Rad S1000 with Bestar
SYBR Green RT-PCR Master Mix (DBI Bioscience) [62].

Statistical analysis
All data were analyzed using SPSS 20.0 (SPSS, Inc., Chi-
cago, USA). For relative quantitation, the F = 2-ΔΔCt

method was used, where 2-ΔΔCt reflected the relative
expression level of the target gene in each sample rela-
tive to that in the control group. The remaining observa-
tions were paired; thus, a paired samples t-test was
performed. P < 0.05 was considered to indicate statisti-
cally significance.

Construction of an RNAi lentiviral vector
Based on the GHR gene sequence, we designed a se-
quence targeting the GHR gene for RNAi: 5 ‘- GCTG
CAAGAATTGCTCATGAA − 3’. The GV493 vector
(frame structure: hU6-CBh-gcGFP-IRES-puromycin,
Shanghai Genechem Co., Ltd.) was used to construct the
lentiviral vectors GV493-GHR-RNAi-a and GV493-
GHR-RNAi-b. Single-stranded primers containing AgeI
and EcoRI restriction sites were synthesized. Double-
stranded DNA was generated by primer annealing. T4
DNA ligase was used to ligate the double-restriction-site
target vector, and the double-stranded DNA was
annealed. Competent cells were then transformed and
positive bacterial colonies were identified via PCR [63].
Plasmid extraction and sequencing were carried out and
the qualified plasmids were used in the follow-up
experiment.

RNAi lentiviral packaging
ATDC5 cells were treated 24 h before transduction. The
cell density was adjusted to 5 × 106cells/15 ml, and cells
were cultured in a 10 cm cell culture dish at 37 °C in 5%
CO2. Cells were transduced at 70–80% confluence.
Serum-free medium was added 2 h before transfection.
The prepared DNA solution (GV vector plasmid, 20 μg;
pHelper1.0 vector plasmid, 15 μg; pHelper2.0 vector
plasmid, 10 μg) and transduction reagent (Shanghai Gen-
echem Co., Ltd.) were added to centrifuge tubes to a
total volume of 1 ml. The centrifuge tubes were incu-
bated at room temperature for 15 min, and the transduc-
tion mixtures were then added to ATDC5 cells and
cultured for 6 h. The culture medium containing the

transfection mixture was then dicarded, and the cells
were washed with 10 ml of phosphate-buffered saline
(PBS). Then, 20 ml of serum was added to the cells,
which were then cultured for 48–72 h. The ATDC5 cell
supernatant was collected and centrifuged at 4 °C and
4000×g for 10 min. The supernatant was filtered through
a 0.45 μm filter and centrifuged at 4 °C and 25,000 r/min
for 2 h and discarded. Virus preservation solution was
added to resuspend the pellet and the solution was cen-
trifuged at 10000 r/min for 5 min. The supernatant was
subpacked, and ATDC5 cells were cultured in 96-well
plates (4 × 104 cells/well, 100 μl). Gradient dilutions of
lentiviral particles were added, and cells were cultured
for 24 h. Then complete medium was added. The ex-
pression of fluorescent protein was observed after 4 days
and the viral titer was calculated [64].

Lentiviral transduction
ATDC5 cells were subcultured at 80% confluence in 6-
well plates (3–5 × 104 cells/well, 2 ml). ATDC5 cells at
20% confluence were infected with lentivirus. The cells
were then divided into two groups: a negative control
group and an RNAi lentivirus-infected group. Transduc-
tion was performed with and without puromycin. The
culture medium was replaced after 16 h and the cells
were photographed after 72 h [65].

Apoptosis analysis
Cells were treated with apoptosis assay kit resgents
(eBioscience 88–8007), washed with ice-cold PBS, resus-
pended in binding buffer, and then incubated with
Annexin V-APC for 10 min at room temperature in the
dark. Finally, the apoptotic cells were analyzed by a
FACS (Becton-Dickinson, USA).

Isolation and culture of horse BMSCs
BMSCs originally isolated from MHs were used in our
laboratory at passage 3 (P3). After adult horses were
slaughtered, the sternum was removed and sterilized
with 75% alcohol. The following procedures were per-
formed under sterile conditions. Two ends of the ster-
num were washed out with medium containing 1%
penicillin and streptomycin in PBS, and the wash fluid
was collected in 15ml sterile centrifuge tubes for centri-
fugation of at 1500 r/min for 5 min. The supernatant
was suspended in complete medium (DMEM/F-12 con-
taining, 15% FBS, 0.1% penicillin, and 0.1% strepto-
mycin) and inoculated in a flask at a density of 5 ×
106cells. The supernatant was cultured in an incubator
at 37 °C, in 5% CO2 and 100% humidity. After 48 h, half
of the supernatant was replaced. At 70–80% confluence,
the cells were digested with trypsin and passaged at a
ratio of 1:3.
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Induction of horse BMSCs differentiation into osteoblasts
BMSCs at P3 cells were divided into an induction group
and a noninduction group. The cells were 70–80% con-
fluent, induction medium (osteogenic induction
medium: 0.1 mM dexamethasone, 10 mM beta-
glycerophosphate disodium hydrate, 50 mg/l Vc) was
added to the induction group. Cells were cultured for
28 days, and the medium was replaced every other day.
The control undifferentiated group continued to be cul-
tured in a general culture medium, and the cell state was
photographed and noted daily.

Alizarin red and Alcian blue staining
After 7, 14 and 21 days of culture, Alizarin red and
Alcian blue staining were performed on the induced and
noninduced cells, respectively. When the cells were 70–
80% confluent, they were washed with PBS 3 times for 2
min each and were then fixed with 4% paraformaldehyde
at room temperature for 30 min. The cells were then
washed with PBS 3 times for 2 min each stained with so-
lution for 5 min and washed again with PBS 3 times for
2 min each. Finally, the cells were visualized under the
micoscope.

MTT assay with ATDC5 cells and osteoblasts
An MTT assay was used to evaluate cell proliferation.
The mouse chondroprogenitor cell line ATDC5 was ob-
tained from TongPai (Shanghai) Biotechnology Co., Ltd.
Cells were cultured in a 96-well plate at a density of 1 ×
105 cells/ml and incubated in complete medium at
37 °C. After 24 h, WNT antagonistIwas added to in
serum-free medium at different concentrations, with 3
replicates per concentration. After 4 h of incubation, the
medium was replaced with PBS, and 20 μl of 20 mM
MTT was added and incubated for 3 h at 37 °C. After 3
h, DMSO was added to dissolve the purple formazan
crystals. The cell plates were placed on a horizontal
shaker for 5 min to complete dissolution. The optical
density was measured in an enzyme-linked immunoassay
reader at an excitation wavelength of 490 nm [63]. Ana-
lyses were performed in triplicate.
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