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Abstract

Background: Efficient regulation of bacterial genes in response to the environmental stimulus results in unique
gene clusters known as operons. Lack of complete operonic reference and functional information makes the
prediction of metagenomic operons a challenging task; thus, opening new perspectives on the interpretation of
the host-microbe interactions.

Results: In this work, we identified whole-genome and metagenomic operons via MetaRon (Metagenome and whole-
genome opeRon prediction pipeline). MetaRon identifies operons without any experimental or functional information.
MetaRon was implemented on datasets with different levels of complexity and information. Starting from its
application on whole-genome to simulated mixture of three whole-genomes (E. coli MG1655, Mycobacterium
tuberculosis H37Rv and Bacillus subtilis str. 16), E. coli 20 draft genome extracted from chicken gut and finally on 145
whole-metagenome data samples from human gut. MetaRon consistently achieved high operon prediction sensitivity,
specificity and accuracy across E. coli whole-genome (97.8, 94.1 and 92.4%), simulated genome (93.7, 75.5 and 88.1%)
and E. coli c20 (87,91 and 88%,), respectively. Finally, we identified 1,232,407 unique operons from 145 paired-end
human gut metagenome samples. We also report strong association of type 2 diabetes with Maltose phosphorylase
(K00691), 3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase (K21279) and an uncharacterized protein
(K07101).
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Conclusion: With MetaRon, we were able to remove two notable limitations of existing whole-genome operon
prediction methods: (1) generalizability (ability to predict operons in unrelated bacterial genomes), and (2) whole-
genome and metagenomic data management. We also demonstrate the use of operons as a subset to represent the
trends of secondary metabolites in whole-metagenome data and the role of secondary metabolites in the occurrence
of disease condition. Using operonic data from metagenome to study secondary metabolic trends will significantly
reduce the data volume to more precise data. Furthermore, the identification of metabolic pathways associated with
the occurrence of type 2 diabetes (T2D) also presents another dimension of analyzing the human gut metagenome.
Presumably, this study is the first organized effort to predict metagenomic operons and perform a detailed analysis in
association with a disease, in this case type 2 diabetes. The application of MetaRon to metagenomic data at diverse
scale will be beneficial to understand the gene regulation and therapeutic metagenomics.

Keywords: £scherichia coli, Metagenomic, Operon prediction, Secondary metabolites, Microbiome

Background

Bacteria present in diverse environments adaptively tran-
scribe to flourish in dynamic conditions [1-3]. They sur-
vive in such conditions through the organization and
clustering of two or more genes into a regulatory unit
known as an operon [4-9]. Operons play an important
role in the evolution of new proteins, enzymes, and path-
ways; and are vital for the production of natural products
- many of which have therapeutic importance [10-14].

Contemporary studies have abundantly identified natural
products helpful in treatment/prevention of cancer, diabetes,
and lowering cholesterol [15]. Many of these products have
operonic origins [16, 17]. Metagenomic access to novel envi-
ronments also underscored the potential of operons in iden-
tification and functionality of uncultured microbial
communities (taxonomic profiling, secondary metabolites,
drug discovery and many others) [17-25].

Most whole-genome operon prediction methods de-
pend on experimental or functional information in com-
bination with computational parameters [11]; however,
experimental/functional information about operons is
absent in metagenomic data. Few whole-metagenome
studies focused on exploring the operonic aspect of the
environment including secondary metabolites and differ-
entially abundant pathways of operonic origin [26—-30].

Metagenomic operon prediction thus remains an
understudied plane. Operons aiding microbial survival
are crucial in understanding the gene regulation, identi-
fication of new pathways and novel products in diverse
environmental settings. Experimental identification of
metagenomic operons is an intensive and challenging
process due to everchanging formulation of operons
with respect to environmental stimulus. Therefore, com-
putational operon prediction is an efficient way to iden-
tify operons. Metagenomic data contains a cumulative
mixture of environmental DNA from millions of cultiv-
able and uncultivable microbes. However, to our know-
ledge, there is no computational pipeline dedicated to
predicting metagenomic operons without any functional

information. Considering the importance of operons in
bacterial survival, the development of a convenient auto-
mated solution independent of functional and experi-
mental information is indispensable.

To overcome the limitations mentioned above, we
present MetaRon, a Metagenomic and whole-genome op-
eron prediction pipeline for shotgun sequencing data.
MetaRon is a user-friendly pipeline that performs neces-
sary downstream data processing (de novo assembly, gene
prediction, de novo promoter prediction and proximon
prediction), before identifying the operons from the meta-
genomic sample. In case of availability of pre-assembled
metagenome and genes, MetaRon also predicts the op-
erons, directly from scaftigs. The pipeline performs
operon prediction with high sensitivity based on co-
directionality, intergenic distance, and presence/absence
of a promoter upstream and downstream of a gene. This
pipeline will be beneficial in studying microbial gene regu-
lation, pathways and secondary metabolites.

Methods

Implementation

MetaRon is developed and implemented in python 3.7.
One successful run of MetaRon produces several tab
delimited and fasta files containing different levels of
information. This information will be used for further
analysis of metagenomic operons.

Data input

MetaRon executes two type of workflows depending on
the user input. The process parameter “ago” (Assembly,
Gene prediction and Operon prediction) performs
downstream data processing using trimmed and quality
controlled metagenomic or whole-genome shotgun se-
quencing reads (Fig. 1). This includes de novo assembly
via IDBA [31] and prediction of genes via Prodigal [32].
Alternatively, the user can also input assembled metage-
nomic scaftigs and gene prediction file (.gff), by specify-
ing the process parameter “op” (Operon Prediction).
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Fig. 1 A detailed workflow demonstrating the prediction and analysis of metagenomic operons via MetaRon

Simulation Studies

The selection of “op” process will skip the downstream 1.
data processing steps directing the program to perform
operon prediction only, as shown in Fig. 1. At this point
it is important to mention that MetaRon only accepts

gene prediction files produced by Prodigal and Meta- 2.
GeneMark. The program requires the user to specify the
gene prediction tool used to identify genes. 3.

Feature extraction

Once MetaRon reaches the point where it contains de

novo assembled scaftigs and gene prediction file, either

via process “ago” or “op”, the process of operon predic- 4.
tion is the same (Fig. 1).

The data_extraction() module mines the gene
prediction file (.gff file) and parses information
including gene name, gene start and end coordinates,
gene direction, and scaftig name into a matrix.

Next, the module seq_info() creates a dictionary of
the scaftig name and scaftig length.

The output matrices of data_extraction() and
seq_info() are used to calculate the upstream and
downstream intergenic regions of the genes via
upstream_coordinates_extraction() and
downstream_coordinates_extraction() modules,
respectively.

Subsequently, UPS_DSS_Slicing() trims down the
upstream and downstream coordinates longer than
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700 bp to 700 bp. Also, if the upstream or
downstream region of a gene is shorter than 15 bp,
it will be assigned a tag “short_ups” and “short_dss”,
respectively (Fig. 1). These sequences will be
ignored in forthcoming steps since signatures for
promoter or terminator only appears on/after 15 bp.

5. The consequent step is the extraction of upstream
and downstream sequence based on the trimmed
coordinates (<= 700 bp). Module getsource()
extracts scaftig information from the scaftig file in
the form of a dictionary (d).

6. The getgenstring_ups(), and getgenstring dss()
modules extracts fasta sequence from the dictionary
(d) using the trimmed upstream and downstream
coordinates. The upstream fasta sequence is then
used to predict the promoters.

The above-mentioned steps will produce a list of genes
with trimmed coordinates and their sequences (up-
stream and downstream sequences). These coordinates
will be used to identify the proximons from the metage-
nomic data.

Proximon identification

MetaRon will now identify the co-directional gene clus-
ters and calculate the intergenic distance (IGD) (Eq. 1)
between the genes in the clusters through IGD_calc().
Intergenic distance is by far the most common param-
eter used for the prediction of operons in whole-
genomes [6, 12, 14, 33-35]. The intergenic distance
(IGD) between two genes is calculated as:

IGD (G1,G2) = (start(G2) - end(G1)) + 1 (1)

Where, G1 and G2 are two adjacent co-directional
genes, start (G2) refers to the beginning position of sec-
ond gene in the pair on the genome, while end (G1) re-
fers to the last nucleotide position of the first gene.

Various operon prediction methods use different range
of intergenic distance to identify operons. Based on a
thorough review of literature, MetaRon defines a flexible
(<601 bp) maximum threshold for Intergenic distance,
which was also used by fuzzy genetic algorithm to iden-
tify operons [36]. This threshold is defined as a stretchy
parameter due to extremely personalized and diverse
definition of IGD in various bacterial species [11]. Fur-
thermore, there is no universal threshold for intergenic
distance defined for microbes. For metagenomic data,
where there are millions of unrelated microbes, a flexible
range of intergenic distance will ensure engulfing of all
operonic genes in the gene cluster. However, a flexible
threshold for intergenic distance will also allow the
addition of many non-operonic genes into the cluster.
These non-operonic genes will be removed later. Since
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these gene clusters are based on proximal genes and co-
directionality, they are known as proximons.

The proximons gene clusters also struggle to accur-
ately identify the transcription unit boundary (TUB).
Hence, there is a need to accurately identify the tran-
scription unit boundary within each proximons clus-
ter, that will not only remove the non-operonic genes
from the cluster but also delimit consecutive operons
that were identified as one proximon. These delimited
gene clusters with TUB defined will be called
operons.

Operon prediction

The module promoter_prediction() integrates Neural
Network Promoter Prediction 2.0 (NNPP), to predict the
upstream promoter for each of the genes in the co-
directional closely packed gene clusters [37]. The output
is organized into a matrix via Promoter_file_parse().
The promoter prediction matrix will be integrated with
proximon table and TUBs will be defined, using Prom_
IGD_Clustering().

At this moment, an operon is defined as a cluster of
two or more co-directional and closely packed genes
with a promoter upstream of the first gene. As the struc-
ture of operon indicates, an operon starts with a pro-
moter and ends with a terminator, sandwiching multiple
genes within. However, the presence of a promoter
downstream of the last gene of the operonic cluster
could also signify the end of an operon and start of a
new TUB for gene (i + I). Therefore, to redefine, an op-
eron is a gene cluster delimited by an upstream and
downstream promoter indicating the start and end of
the operon, respectively.

Unlike Prom_IGD_Clustering(), where co-directionality,
IGD and presence of promoter were considered to define
an operon, the module Promoter clustering() predicts
the operons without considering intergenic distance at all.
The pipeline compiles and exports the proximon pairs,
and operons in tab-delimited files. Moreover, transitional
information such as gene prediction file, upstream and
downstream coordinates and fasta files are also available
to the user for further analysis (Fig. 1).

MetaRon was implemented on whole-genome,
simulated genomes, draft genome and whole-
metagenomes, thus demonstrating its performance
consistency at different levels of data complexity. The
reason was to test the pipeline with different levels of
data complexity, both in terms of diversity, informa-
tion and data format such as, whole-genome or mul-
tiple scaftigs. For each of the data input, operons
were identified, however, only the metagenomic data
was analyzed in detail for its association with type 2
diabetes (T2D).
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Data analysis

After identification of operons from 145 human gut
microbiome samples. We carried out a comprehensive
analysis of metagenomic operons, which mainly includes
a comparative analysis of biosynthetic gene clusters
(BGCs) from operonic origin and whole-scaftig, in
addition to the differential pathway analysis from opero-
nic gene clusters.

Secondary metabolite identification

Secondary metabolites were identified separately from
operonic and complete scaftig sequences using anti-
SMASH (v3.0) (antibiotic and secondary metabolites
analysis shell) with default parameters [38]. The opero-
nic sequences were available as the final output file pro-
duced by MetaRon, while scaftigs were available as the
output of de novo assembly in the data processing step
of MetaRon. A comparative approach was devised to ob-
serve the abundance of secondary metabolites in opero-
nic sequences as well as scaftigs for control and type 2
diabetic group of individuals.

Functional mapping and pathway analysis

A mapping activity was being carried out all this while
where raw metagenomic reads from all 145 samples
were individually mapped to the operonic sequences
using BOWTIE2 [39]. The resulting 145 sam files were
processed using SAMtools [40]. This includes the con-
version of sam files to bam and finally to fastq file for-
mat. The raw metagenomic reads aligned to the
operonic sequences were then analyzed for differential
pathways via a standalone pipeline for functional analysis
FMAP (Functional Mapping and Analysis Pipeline) [41].
Mapping hits that qualified through the default FMAP
settings (sequence identity =>80%, e-value => le-10)
mapped to the KEGG Orthology (KO) database [42, 43].
The mapped reads were then normalized to the total
number of paired-end reads. The normalized abundance
for each sample was calculated as the number of reads
aligned to a gene divided by total read count, followed
by a summation of all the genes in the pathway. FMAP
pipeline also mapped of raw metagenomic reads to the
UniRef100 [44] reference database using DIAMOND
[45] and estimated the gene abundance to identify the
differentially abundant pathways and modules.

Results and discussion

Most of the previous whole-genome operon prediction
methods depend highly on experimental and functional
information such as microarray data, metabolic path-
ways, Gene Ontology (GO), and Cluster of Orthologous
Groups (COGs). Unavailability of such information in
most instances of metagenomic data makes metagenon-
mic operon prediction a tricky task [34, 46-52]. We
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addressed these limitations via MetaRon, by accurately
predicting metagenomic operons independent of func-
tional or experimental information. Although, Vey
(2013) demonstrated that metagenomic operons can be
identified without any functional or experimental infor-
mation [53], handling of huge metagenomic data manu-
ally is often tedious and prone to errors. Therefore,
MetaRon presents an automated, improved and univer-
sal solution towards the prediction of operons in whole-
genome and metagenome shotgun sequencing data.

Data sources

MetaRon utilizes multiple data types and sources. Raw
reads of Escherichai coli K-12 MG1655 (SRP029211),
Whole-genome of Escherichia coli MG1655 (NC_
000913.3), Bacillus subtilis 168 (NC_000964), Mycobac-
terium tuberculosis H37Rv (NC_000962) and Escherichia
coli C20 draft genome (NGBR00000000.1) were down-
loaded from the NCBI, Genome database. Human gut
metagenomic shotgun sequencing reads from 145 Chin-
ese individuals (Table 1), were retrieved from the Euro-
pean Bioinformatics Institute (SRP008047) [54].

MetaRon application

Whole-genome

E. coli K-12 MG1655 is considered as the gold standard
in terms of operons, since it contains the most complete
set of operonic information validated experimentally.
That is the reason, most of the operon prediction
methods were designed and tested on it. We also imple-
mented MetaRon on illumine HiSeq reads of E. coli K-
12 MGI655 as the first run. 82 scaftigs were assembled
by MetaRon via IDBA [55]. Scaftigs with length less than
or equal to 500 bp were removed. The remaining scaftigs
resulted in 4227 genes, predicted using prodigal [32]. In
the first step, MetaRon identified 822 co-directional
proximal gene clusters (IGD < 601 bp), containing 2955
genes. These gene clusters were named as proximons,
since they were identified based on direction and inter-
genic space, as defined by proximon proposition [56—

Table 1 Number of samples belonging to each group of

individuals

Category Count
Disease Lean Female (DLF) 12
Disease Lean Male (DLM) 26
Disease Obese Female (DOM) 13
Disease Obese Male (DOM) 20
Normal Lean Female (NLF) 13
Normal Lean Male (NLM) 24
Normal Obese Female (NOF) 13
Normal Obese Male (NOM) 24
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58]. The proximon cluster length range from binary (2
genes) to 32 genes, with no proximons of length 17, 21,
23, 24, 26, 27, 28 and 29 (Fig. 2).

Of the 822 proximal clusters, a third of the clusters
demonstrated binary configuration, followed by proxi-
mons of length three (19.7%), four (11.8) and greater
(35.5%). At this point, it is imperative to highlight that no
Transcription Unit Boundary (TUB) is defined in the
proximal gene clusters. This means that a proximon might
enclose more than one operon or non-operonic genes.

Next, the prediction of promoters further removed the
non-operonic genes and clearly defined the transcription
unit boundary within the proximons. These filtered
proximons are now called operons. The operonic gene
clusters contains a promoter upstream of the first and
downstream of the last operonic gene. As expected,
addition of a stringent structural parameter (promoter)
increased the number of operons of length 2,3 and 4 to
364 (43.9%), 176 (21.2%) and 110 (13.2%) operons, re-
spectively. About 21.7% of operons have length ranging
between five and sixteen. The proportion of operons
with length 2—4 increased to 78% as compared to 64.5%
of proximon clusters (Fig. 3). The resultant 828 operons
contains 2893 genes while, the longest operon is 16
genes long [59-62]. MetaRon achieved a sensitivity, spe-
cificity and accuracy of 97.8, 94.1 and 92.4%, respect-
ively, when compared with DOOR database [60, 62].

These results corroborate with the fact that most of
the operons in E. coli KI2 genome have binary
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organization [63, 64]. The percentage of binary operons
hold a significant importance in accessing the operon
predictions since, most of the operons in microbial ge-
nomes are binary [14]. An increase in the proportion of
such operons in comparison with proximal gene clusters
signifies the removal of false positives and improved
sensitivity.

Simulated genomes

In order to test MetaRon with more complex data, we
simulated illumine raw reads from whole-genomes of E.
coli MG1655, M. tuberculosis H37Rv and B. subtilis 168.
The sole reason for this simulation was to create a
controlled diversity using genomes belonging to the
dominant phyla of the microbiome ie. B. subtilis 168
(firmicutes), M. tuberculosis H37Rv (actinobacteria) and
E. coli MG1655 (proteobacteria) [65]. The simulation of
above mentioned 13,266,813 bp long genomes resulted
in two million reads simulated at 15X depth via NeSSM
(Next-Generation Simulator for Metagenomics) [66].
MetaRon assembled the simulated reads into 232 scaftigs
containing 12,481 genes. Next, 2514 proximons were
identified with a gene count of 10,625 genes. The proxi-
mons range from 2 to 36 genes in length. In the pro-
ceeding step, 2579 operons containing 8749 genes are
identified. On comparison with DOOR database
MetaRon demonstrated the sensitivity, specificity, and
accuracy of 93.7, 75.5, and 88.1%, respectively. Since,
there is no metagenomic operon prediction method

600 -

500 -

400 -

300 -

No. of Clusters

200 A

100 -

5 10

—— EcoliProximon
—— EcoliOperon

Cluster Lenath

Fig. 2 The distribution of operonic and proximonic gene clusters by length
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available to draw a comparison. We compared MetaRon
with MetaProx database, which identified proximons
and functional gene clusters from the metagenomic data
[56]. The results achieved are encouraging enough to
move on to more diverse and complex analysis.

E. coli C20 draft genome operon prediction

In the third stage of MetaRon implementation and per-
formance evaluation, we identified operons from E. coli
C20 draft genome isolated from the metagenome of
chicken gut. MetaRon identified 4544 genes from 4,640,
940 bp long genome and resulted in 841 proximons and
946 operons containing 3937 and 2409 genes respect-
ively. The percentage of binary operons significantly
increased from 32% (268 proximons) to 71% (673 op-
erons). MetaRon achieved a sensitivity, specificity, and
accuracy of 87, 91, and 88%, respectively [60, 62].

On comparison with the reference, 68% of the operons
discretely mapped to a single reference operon while
20% mapped to more than one operon. Twelve percent
of the operons expressed less than 50% identity with the
reference hence they were considered as novel or no-hits
(Fig. 4). Some variation in the operonic genes could be
expected due to the fact that similar genomes could

demonstrate variable operonic settings in different con-
ditions [67-70].

Since metagenome data does not have a complete ref-
erence, based on which a reference-based-assembly
could be performed, De novo assembly usually produces
multiple contigs/scaftigs, rather than one long stretch of
DNA; hence multiple operonic configurations were ob-
served (Fig. 5). Unlike the proximon proposition, where
the majority of the proximons were mapped to more
than one operon in a subset fashion, 66% of the operons
identified via MetaRon matched precisely to one refer-
ence operon as a perfect match. About 8% of the op-
erons show an exact match with one or more extra gene.
This is known as a subset (Fig. 5). 4% of the predicted
operons displayed contrary formation known as a super-
set, i.e., the predicted operon contains one or more extra
genes as compared to reference operon. (Fig. 6). The
subset formations could be due to the distribution of an
operon between two scaftigs or different transcription
unit boundary (Fig. 5). Furthermore, there were 5% in-
stances when one predicted operon was matched to
more than one consecutive operons (bridge-1) or one
reference operon was matched to more than one pre-
dicted operon (bridge-2). Bridge configurations could be
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due to altered transcription unit boundary or the inabil-
ity of the NNPP tool to identify the promoter.
Metagenomic data demonstrates new microbial func-
tions under different levels of stress and environmental
stimulus [11]. Many unique operonic organizations are
likely to appear as a response to environmental stimuli.
This leads to the formation of new or altered operonic
configurations such as subsets, supersets or unique op-
erons. In the case of E. coli C20, 17% of predicted op-
erons have less than 50% or no match with the reference
(Fig. 6). Such unique organizations may well carry

precious insights about the microbial activity for a par-
ticular environment regarding bacterial products and
pathways [11]. Such insights at metagenomic scale could
be valuable in understanding disease condition, its pre-
vention and possibly the cure as well.

Application to type 2 diabetes metagenomes

MetaRon was further implemented on shotgun sequen-
cing reads from the gut of 145 Chinese individuals (74
Type 2 Diabetic (T2D), 71 controls) [54]. The two
groups of individuals are further divided into four sub-

-

64%

63%

62%

61%

60%

Percentage (%)

59%

58% I l|

:! i

57% !
DLF DLM

Group of Individuals

= Total Operons

Fig. 7 Percentage of binary operons identified in each of the eight group of individuals from metagenomic dataset. The bars also demonstrate
the number of metagenomic operons (grey) and operonic genes (black) in each group of individual

DOF DOM NLF NLM NOF NOM

N Total operonic genes

3,000

2,500
2,000

1,500

x 1000

1,000

500

!I
| | i i
> || !

0

==@==9% of binary operons




Zaidi et al. BMC Genomics (2021) 22:60

groups in each category based on gender, weight and
diabetic/non-diabetic (Table 1). MetaRon identified 3,
868,389 operons containing 12,414,125 genes (Fig. 7).
This makes up almost 50% of the total 23,280,123 genes.
Removing operonic redundancy produced 1.23 million
unique operons. The longest operon is 185 genes long.
The proportion of binary operons was consistently high
in all group of individuals (Fig. 7). On average more than
61% operons had binary setting. The non-redundant set
of operon sequences will be used for further analysis in-
cluding identification of biosynthetic gene clusters and
differential pathway analysis.

Technical reasons such as quality of assembly and
contig/scaffold length could negatively affect the operon
prediction. Furthermore, computational promoter pre-
diction being a tough task might result in missing out
some operons. Nevertheless, MetaRon performed well at
all levels of complexity and the above-mentioned reasons
would not undermine the utility of MetaRon.

Prediction of secondary metabolites

We identified biosynthetic gene clusters (BGCs) from
operonic sequences as well as whole-metagenome as-
sembly (Fig. 8). The idea was to demonstrate the
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association of disease via secondary metabolites (SMs)
and also, observe the extent of information operons hold
in the metagenomic data. Figure 8 presents a holistic
view of the secondary metabolites (SMs) predicted from
the operonic sequences and the metagenomic assembly
of each group of individuals. As expected, there is a not-
able change in the abundance of SMs from healthy
condition to diabetic state (Fig. 9). Another novel obser-
vation is the similar patterns of SMs in operonic se-
quences and whole-metagenomic assembly (Fig. 9). We
normalized the data to test the significance of change in
abundance of the secondary metabolites from healthy to
disease condition using student’s T-test (95% confidence
interval). Several SMs showed significant variance in
concentration, as shown in Fig. 10.

Functional mapping and analysis

Many functional features of the human gut microbiota
have shown correlation with health and disease condi-
tion. We evaluate the differential abundance of the
operonic pathways in association with health and disease
condition. The FMAP analysis (See Methodology) was
performed between all groups of individuals as men-
tioned in Table 1. None of the pathways demonstrated
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Fig. 9 Abundance of Secondary Metabolites predicted from operonic sequences followed the same trends as Secondary Metabolites predicted

from whole-metagenomic scaftigs across both disease and controls

differential abundance across all control and disease
samples. With exception of Type 2 Diabetic lean female
(DLF) versus healthy lean female (NLF). No variance in
patterns was observed across any group of individuals.
The result demonstrates a significant downregulation in
several pathways from control to the DLF category of
the disease group (p < 0.0I). To validate if the identified
pathways are reported to have association with type 2
diabetes, we tested and found that most of our findings
are consistent with the published literature [71-80].
However, here we also report three pathways to have
strong association with type 2 diabetes, namely, Maltose

phosphorylase (K00691), 3-deoxy-D-glycero-D-galacto-
nononate 9-phosphate synthase (K21279) and an
uncharacterized protein (K07101). The Maltose phos-
phorylase catalyzes the phosphorylation process of mal-
tose, resulting in the production of glucose 1-P and
glucose. The pathway also overlaps with the glycan deg-
radation [81]. The pathway has never been reported to
have any association with T2D, however, glycogen phos-
phorylase pathway is consistently reported to have
strong association with the disease [82, 83]. Further in-
vestigation could provide much clear insights into the
role of maltose phosphorylase in the occurrence of T2D.
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Conclusion

This study presents a convenient publicly available com-
mand line pipeline for the processing of Metagenomic
data and operon prediction in shotgun sequencing data.
A major advantage of MetaRon is that it identifies meta-
genomic operon independent of any experimental or
functional information. MetaRon is therefore the second
pipeline that performs systemic identification of metage-
nomic operons and the first one to do so without any
prior functional or experimental information. Consider-
ing the complexity and incompleteness of metagenomic
data, the pipeline predicts metagenomic operons with
very high specificity. This study is also one of the first at-
tempts to perform a detailed downstream analysis of the
metagenomic operons and explaining the occurrence of
the disease from the operonic point of view.

The differential abundance of operonic secondary me-
tabolites and pathways demonstrated the same trend as of
whole metagenome, thus highlighting the amount of in-
formation carried by the operons. It also suggests that for
the association of secondary metabolites with disease/
healthy condition, operons could also act as a subset to
represent the whole-metagenomic sample. MetaRon
promises to be a useful pipeline in the identification of op-
erons from whole-genome and metagenome shotgun se-
quencing data. It is quite certain that more in-depth
investigation, aided with wet-lab resources, could provide
insightful findings about the diverse microbial biosphere.
In this research, the analysis was performed separately on
the MetaRon predicted operons, however, in the future we
plan to integrate the prediction of secondary metabolites,
pathway annotation and graphical representation within
the pipeline.
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