Liu et al. BMC Genomics (2020) 21:61
https://doi.org/10.1186/512864-020-6455-x

BMC Genomics

RESEARCH ARTICLE Open Access

Comparison of multiple algorithms to
reliably detect structural variants in pears

Yueyuan Liu®, Mingyue Zhang', Jieying Sun, Wenjing Chang, Manyi Sun, Shaoling Zhang and Jun Wu"

Check for
updates

Abstract

Background: Structural variations (SVs) have been reported to play an important role in genetic diversity and trait
regulation. Many computer algorithms detecting SVs have recently been developed, but the use of multiple
algorithms to detect high-confidence SVs has not been studied. The most suitable sequencing depth for detecting
SVs in pear is also not known.

Results: In this study, a pipeline to detect SVs using next-generation and long-read sequencing data was
constructed. The performances of seven types of SV detection software using next-generation sequencing (NGS)
data and two types of software using long-read sequencing data (SVIM and Sniffles), which are based on different
algorithms, were compared. Of the nine software packages evaluated, SVIM identified the most SVs, and Sniffles
detected SVs with the highest accuracy (> 90%). When the results from multiple SV detection tools were combined,
the SVs identified by both MetaSV and IMR/DENOM, which use NGS data, were more accurate than those identified
by both SVIM and Sniffles, with mean accuracies of 98.7 and 96.5%, respectively. The software packages using long-

study of diversity in other crops.

read sequencing data required fewer CPU cores and less memory and ran faster than those using NGS data. In
addition, according to the performances of assembly-based algorithms using NGS data, we found that a
sequencing depth of 50x is appropriate for detecting SVs in the pear genome.

Conclusion: This study provides strong evidence that more than one SV detection software package, each based
on a different algorithm, should be used to detect SVs with higher confidence, and that long-read sequencing data
are better than NGS data for SV detection. The SV detection pipeline that we have established will facilitate the

Keywords: SV detection, NGS, Long-read sequencing, Sequencing depth, Accuracy of SVs, SV calling pipeline

Background

Structural variants (SVs), which include deletions, inser-
tions, inversions, duplications and translocations, are de-
fined as rearrangements in chromosomes larger than 50
nucleotides [1]. Translocations can also be classified as
intra-chromosomal translocations (ITXs) and inter-
chromosomal translocations (CTXs), based on whether
the chromosome of the source locus is the same as that
of the target locus [2]. Deletions, insertions and duplica-
tions are called unbalanced SVs because they give rise to
copy number variants (CNVs), while inversions and
translocations are called balanced SVs [2]. It is clear that

* Correspondence: wujun@njau.edu.cn

Yueyuan Liu and Mingyue Zhang contributed equally to this work.

Center of Pear Engineering Technology Research, State Key Laboratory of
Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University,
Nanjing 210095, Jiangsu, China

K BMC

SVs play an important role in biological processes, and
the identification of SVs is crucial for studying human
genetic diversity, gene and genome variants, evolution
and disease [3, 4]. SVs have been shown to be related to
human diseases, such as immune escape of tumor cells
[5], chronic hepatitis B virus infection [6] and heart fail-
ure [7]. SVs such as insertions and deletions and CNVs
have been shown to contribute to natural variation of
plants and have played a significant role in the differenti-
ation of complex traits, domestication, evolution and
adaptation [8, 9]. For example, a CNV involving four
genes that define the Female locus in cucumber, which
arose from a recent 30.2-kb duplication in a meiotically
unstable region, gave rise to gynoecious plants [10]. The
study of single nucleotide polymorphisms (SNPs), InDels
and CNVs in tomato revealed introgressions from wild
species and the mosaic structure of the genomes of

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6455-x&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:wujun@njau.edu.cn

Liu et al. BMC Genomics (2020) 21:61

cherry tomato accessions [11]. In ‘Su Shuai’ apple, SVs
in 17 genes associated with disease resistance, 10 genes
relevant to gibberellin and 19 genes related to fruit flavor
were identified [12].

Pear is the third most important fruit species of the
Rosaceae and is widely cultivated all over the world. The
Pyrus genus is genetically diverse with thousands of cul-
tivars, and studying SVs in Pyrus can lead to a better un-
derstanding of genetic diversity among cultivars and the
genetic basis for complex traits. Previous studies have
shown that SVs can influence crop traits, domestication,
and evolution [8—12], but little is known about the SVs
in Pyrus. Moreover, SV detection software was originally
developed and tested using the human genome or the
genome of the model plant Arabidopsis thaliana, so this
software may not efficiently detect SVs in pear. Sequen-
cing of the genome of Pyrus bretschneideri cv. ‘Dang-
shansuli’ pear, a variety that originated in China, in 2013
[13], revealed that it shows large differences from the A.
thaliana genome. For example, the A. thaliana genome
is smaller (only 125Mb) and has fewer repetitive se-
quences than the genomes of pear and most fruit crops
[13]. Thus, the development of a pipeline to detect SVs
in Pyrus is of great significance for facilitating studies of
genome complexity in the Rosaceae.

Recently, the availability of next-generation sequen-
cing (NGS) and long-read sequencing data has greatly
facilitated the characterization of SVs because variants
of different sizes and types can be detected and
breakpoints can accurately be identified at base-pair
resolution [14—16]. NGS generates short reads ranging
from 35bp to 700bp in length, while the long reads
generated by third generation sequencing technology
are over 10kb in length [17]. A sufficient sequencing
depth is required to detect SVs. For the human gen-
ome, 35-bp paired-end reads with an average depth of
>30x were used to build an accurate consensus se-
quence and characterize a million SNPs and 400,000
SVs [18]. A lower sequencing depth, > 10x, was found
to be sufficient for detecting SVs when using reads
over 10kb in length [16]. However, the most suitable
sequencing depth for detecting SVs in pear has not
been determined.

To date, many approaches have been developed to de-
tect SVs using NGS data. These algorithms are classified
into four distinct categories based on the method used
to detect SVs: read depth, read pairs, split reads, and as-
sembly [19]. Algorithms based on read-depth signals can
detect duplications and deletions using all mapped reads,
but only at coarse resolution [20]. Read-depth algo-
rithms are more effective for detecting larger (>1kb)
CNVs. However, they cannot detect inversions. Read-
pair algorithms are more popular for detecting SVs be-
cause of their relative simplicity and their ability to

Page 2 of 15

detect all SV types [21-23]. Split read-based callers can
work with low-coverage NGS data and identify SVs with
base resolution. However, the disadvantages of split-read
callers are that they cannot detect larger SVs such as du-
plications, inversions, translocations, and more complex
variants because some short reads may map to many lo-
cations in the reference genome [24, 25]. When using
assembly-based callers (de novo and reference-based as-
sembly callers), short reads need to be assembled into
longer sequence stretches called contigs before detection
[26]. Because the contigs are longer than individual
reads, SVs are called with high confidence. Many soft-
ware packages have been developed for detecting more
types of SVs with higher accuracy by integrating mul-
tiple algorithms (such as DELLY [27] and Lumpy [28])
or merging the outputs of multiple software (such as
FusorSV [29], MetaSV [30] and Parliament2 (https://
github.com/dnanexus/parliament2)). Callers using NGS
data have a high rate of SV miscalling due to errors in
alignment or de novo assembly, especially in repetitive
regions that cannot be spanned with short reads [31]. To
overcome these issues, software using long-reads such as
SVIM [32] and Sniffles [16] have been developed; these
algorithms are mostly based on split reads. The func-
tions and features of each type of SV-calling software are
known, but the reliability of using different combinations
of software for detecting SVs has not been studied.

In this paper, we evaluated the effectiveness of sev-
eral types of SV detection software in Pyrus. The
pear cultivar chosen was ‘Yali’ (P. bretschneideri),
which is genetically closely related to ‘Dangshansuli’
(P. bretschneideri) and is one of the primary pear
cultivars grown in China. This cultivar is also
exported to other countries where it is known as
Asian pear. We have conducted a systematic analysis
using ‘Yali’ genome NGS and long-read sequencing
data to compare the performances of several com-
monly used SV-calling software packages using short
reads, namely Pindel [25], BreakDancer [33], IMR/
DENOM [34], Platypus [35], DELLY [27], Lumpy
[28], and MetaSV [30], and software packages using
long reads, namely SVIM [32] and Sniffles [16]. The
effects of different sequencing depths on SV detec-
tion were investigated, and the most appropriate se-
quencing depth for detecting SVs in Pyrus was
determined by comparing the number of SVs de-
tected and the computational resources required for
different sequencing depths. Moreover, we investi-
gated the overlap in SVs identified by all possible
combinations of two or three software packages to
obtain high-confidence SVs. Then, the reliability of
selected ‘Yali’ pear SVs was verified using
visualization tools. Our findings lay the foundation
for subsequent studies of SVs, and the pipeline we

https://github.com/dnanexus/parliament2
https://github.com/dnanexus/parliament2

Liu et al. BMC Genomics (2020) 21:61

constructed can be used to reliably detect SVs in
other crops.

Results

Sequencing and mapping of the ‘Yali’ genome

Short read sequencing of the pear ‘Yali’ genome was
conducted using the IITumina HiSeq™ 2000 platform for
pair-end sequencing, and the sequencing depth was 60x.
A total of 103,584,796,150-bp reads were obtained, and
the GC content was 39%. The quality of the raw rese-
quencing data was determined using FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/)
software. After using Trimmomatic [36] to filter the low
quality sequencing data, 97.84% of the reads were kept.
Of the clean reads, 97.15% were mapped to the ‘Dang-
shansuli’ pear genome using Burrows-Wheeler-Aligner
(BWA) software [37]. Seven SV detection software pack-
ages using NGS data (Table 1) were then used to iden-
tify SVs in “Yali’.

Long-read sequencing data for ‘Yali’ were generated
using the PacBio platform, and the sequencing depth
was 30x. A total of 2,977,899 subreads were obtained.
The average subread length was 6 kb and the N50 was 8
kb. Two SV detection software packages (Sniffles and
SVIM) using long read sequencing data (Table 1) were
selected to identify SVs in ‘Yali’.

SVs between ‘Yali’ and the reference genome detected
using different algorithms and sequencing data
Depending on the performances of the nine SV callers,
which are based on different algorithms (Table 1), up to
eight types of SVs in the ‘Yali’ genome were detected: in-
sertions, deletions, inversions, duplications, transloca-
tions, MNPs (multiple nucleotide polymorphisms),
CTXs and ITXs (Table 1). Deletions were the only SVs
detected by all nine callers. The number of SVs detected
by the nine callers, categorized based on type and length,

Table 1 Comparison of the nine types of SV detection software

Page 3 of 15

is shown Fig. 1. Of the nine SV callers, SVIM detected
the highest number of SVs. The software with assembly-
based algorithms called fewer SVs than the other types
of software, and Platypus called the fewest SVs. Al-
though both DELLY and Lumpy use split-read and read-
pair algorithms, DELLY called a higher number of SVs
and more types of SVs than Lumpy. Detailed informa-
tion about the number of SVs called by each software
package is shown in Fig. 1.

For Pindel, which uses an split-read algorithm, short
reads need to be broken into smaller fragments and
mapped separately to the reference genome [25]. A total
of 22,548 SVs were found using Pindel: 1178 insertions,
11,445 deletions, 9791 inversions and 134 duplications
(Fig. 1). Deletions accounted for the largest proportion
(50.76%) of the SVs and inversions accounted for the
second largest proportion (43.42%). Compared with de-
letions and inversions, the numbers of insertions and
duplications were very small, accounting for 5.22 and
0.59% of the SVs, respectively. In addition, Pindel could
not detect insertions greater than 200 bp in length in the
‘Yali’ pear genome. Therefore, Pindel performed better
in detecting small insertions and deletions and only de-
tected a limited number of large SVs (>1kb) (Fig. 1).

BreakDancer detects SVs using a read-pair algorithm;
reads that map with an abnormal insert size or orienta-
tion are collected and then classified as insertions, dele-
tions, inversions, or translocations [33]. Using
BreakDancer, a total of 8682 SVs were detected: 90 in-
sertions, 6900 deletions, 1398 inversions, and 294 ITXs.
Of the SVs 79.47% were deletions, and no insertions lon-
ger than 400bp were identified (Fig. 1). Therefore,
BreakDancer is not suitable for detecting small variants
or large insertions in pear.

IMR/DENOM [34] utilizes local de novo assemblies
and iterative read mapping to the reference sequence to
identify SVs [38]. IMR/DENOM called a total of 8398

Data type Detection Detectable SV types Algorithms
tools INS DEL INV DUP ITX CTX TRA MNPs

lllumina data Pindel Yes Yes Yes Yes No No No No SR
BreakDancer Yes Yes Yes No Yes Yes No No RP
DELLY Yes Yes Yes Yes No No Yes No RP + SR
IMR/DENOM Yes Yes No No No No No No AS
LUMPY No Yes Yes Yes No No Yes No RP + SR
Platypus Yes Yes No No No No No Yes AS
MetaSV Yes Yes Yes Yes Yes Yes Yes No -

PacBio data Sniffles Yes Yes Yes Yes No No Yes No SR
SVIM Yes Yes Yes Yes No No No No SR

Notes. An overview of the nine SV callers, including the types of SVs detected (INS: insertion, DEL: deletion, INV: inversion, DUP: duplication, TRA: Translocation,
ITX: intra-chromosomal translocation, CTX: inter-chromosomal translocation) and the mutation signals used (SR: split reads, RP: read pairs, AS: assembly). The

symbol -’ indicates that the algorithm is chosen by the user

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Liu et al. BMC Genomics (2020) 21:61

Page 4 of 15

a Pindel b DELLY ¢ BreakD:
- real ancer
::Z:- . s0-75bp 8000 7800+
60004 Bl 75-100bp 60004 5800+
I 100-200bp 4 4
50004 .I n 3 200-3006p 4000 I H n ﬂ 3800 H
e =3 3004000, - 1800- -
6007 P 1500+
5 5004 =3 400-500bp 5 12004 N
El Mw-I [500-1000bp 2 émou-
2 300 IH = >lkp z 700 I 2 H H
- 5004
200 - 20048~ ﬂ - I_II‘\
100 100 67
: il . l = |
| 504
204
o T T - il By od T T = i "‘.HH o ol IIHH’_”_|
& §\°° o & & & & & N] N N -
¥ S & ¥ & & & °
SV types SV types SV types
d e f
000 IMR/DENOM s00 Platypus 90007 Lumpy
3500 8000+
3000 I 400 70004
2500 J
o1l o
. 500 200 47004
400 5 5
'g 300 glso Esznn-
Z 200 |—| z. 717004 I H
1004 Bl m _ 200 =
60 100 200
40 150
20 H 0 1004 HH
gl | , s 0= ul |l .]
& s o« & & 'f &
& & & l & S & bﬁ«"
g SV types h SV types 1 SV types
25001 MetaSV 2000 Shiffles 120000 SVIM
60004 100000
55004 80000
5000 60000
3500 II H II 4000 I Anuunillﬂ
15004 A m 3000- -1 = 20000 -
20007 14000-
12001 E1s00 £ 11000
2001 Hm H 5004 IHHH H HI‘I - 2000- HI‘IHH HH_H H
150 300 1000-
800-
1004 2004 600
0 o = mar=ia| 2":
& & o & & & o & & o o .,e*
\e*‘ ¢ \e‘& §§\\a\ & 4 \e*éi\ Q@“y & & & s,é‘a\
SV types SV types SV types
Fig. 1 The number and types of SVs were called by seven software packages (Pindel, DELLY, BreakDancer, IMR/DENOM, Platypus, Lumpy, MetaSV)
using next-generation sequencing data (60x sequencing depth), and two software packages (Sniffles, SVIM) applied long-read sequencing data
(30x sequencing depth). The panel labels in Pindel (a) are also applied to DELLY (b), BreakDancer (c), IMR/DENOM (d), Platypus (e), Lumpy (f),
MetaSV (g), Sniffles (h), SVIM (i)

J

SVs (2514 insertions, 5884 deletions). IMR/DENOM
could detect large insertions (> 1 kb) but it could not de-
tect large deletions in ‘Yali’ (> 1 kb) (Fig. 1).

Platypus [35] detects deletions and insertions when
using the assembly option, but this caller detected fewer
and smaller SVs than the other callers; only 92 inser-
tions, 776 deletions and 886 other complex SVs were de-
tected. Moreover, Platypus could not call insertions
longer than 300 bp, and over 50% of the SVs identified
ranged from 50bp to 75bp in length. Therefore, this
software performed better in detecting small insertions
and deletions (Fig. 1).

DELLY has the ability to integrate pair-end data from
libraries with different insert sizes with split-read data,
making it a versatile tool for analyzing SVs using deep
whole-genome sequencing data [27]. Using DELLY, 1054
insertions, 20,991 deletions, 2976 inversions and 4217 du-
plications were identified (Fig. 1). About 30% of deletions
were longer than 1kb. Similar to Pindel, DELLY could not

detect insertions longer than 200bp. However, unlike
Pindel, DELLY was not capable of detecting inversions and
duplications less than 100bp in length. Moreover, more
than 97% of the inversions and more than 94% of the dupli-
cations called by DELLY were greater than 1 kb in length.
Lumpy [28] integrates multiple algorithms including those
using read pairs, split reads and read depth. It detected 24,
072 deletions, 127 inversions, and 4620 duplications. Over
35% of deletions, 44% of inversions and 87% of duplications
were longer than 1kb (Fig. 1). Therefore, Lumpy has
superior sensitivity in detecting SVs longer than 1 kb.
MetaSV [30] detects SVs by merging the outputs of
other SV detectors, such as Pindel, BreakDancer and
Lumpy. It can also detect insertions by analyzing soft-
clipped reads from alignments and improve the break-
points of SVs using local assembly. To further compare
the accuracy of SVs called by Pindel, BreakDancer and
Lumpy, we only used the merge option without soft-
clip-based analysis or local assembly. According to the

Liu et al. BMC Genomics (2020) 21:61

merged results, 689 insertions, 26,770 deletions, 9381 in-
versions and 2057 duplications were detected (Fig. 1).
Almost all insertions and inversions ranged from 50 bp
to 100bp in size, and over 50% of deletions were be-
tween 50 bp and 100 bp in length. More than 50% of du-
plications were longer than 1 kb.

Sniffles, which uses long-read sequencing data [16],
detects SVs from long-read alignments using a split-read
algorithm with the NGMLR aligner. It detected 6556
insertions, 19,774 deletions, 242 inversions and 633 du-
plications (Fig. 1). The other software package using
long-read sequencing data, SVIM [32], detects SVs in a
process consisting of three steps: collection, clustering
and combining of SVs from read alignments. SVIM de-
tected 242,429 insertions, 67,950 deletions, 1019 inver-
sions and 8609 duplications. SVIM detected more SVs
than Sniffles, suggesting that SVIM detects SVs with
higher sensitivity (Fig. 1).

The SVs identified by multiple software are more accurate
We next investigated the overlap between SVs detected
by multiple SV callers that use NGS data (each based on
a different algorithm). The Integrative Genomics Viewer
(IGV) browser was first used to confirm the presence of
the SVs called by each caller. We randomly selected 660
deletions ranging from 50 bp to 500 bp in length from
the output of single callers using NGS data. The accur-
acies of each type of software are shown in Add-
itional file 8. The accuracies of Pindel (58%) and
BreakDancer (58%) were lower than those of the other
callers. For Pindel, the accuracy in calling SVs ranging
from 50 bp to 75bp in size was 75% while the accuracy
in calling SVs ranging from 400 bp to 500 bp in size was
33%. Therefore, Pindel detected small SVs with high

Page 5 of 15

sensitivity and confidence, with accuracy decreasing as
SV length increased. The DELLY and Lumpy algorithms
performed similarly, and the accuracy of SVs called by
DELLY (63%) was a little better than that of Lumpy
(60%). For the IMR/DENOM and Platypus software
packages, which are based on assembly, the average ac-
curacies of SV detection (81 and 66%, respectively) were
higher than those of the other types of software, demon-
strating that callers based on assembly algorithms detect
SVs with higher confidence. The accuracy of the SVs
called by MetaSV (70%), which were merged from the
results of Pindel, BreakDancer and Lumpy, was higher
than that of each caller alone. Therefore, the SVs called
by merging outputs from multiple callers are more ac-
curate than single SV caller.

According to the performances of the seven software
packages using NGS data, Pindel, BreakDancer, IMR/
DENOM and DELLY were selected for finding overlap-
ping SVs (Table 2). Because the SVs called by MetaSV
were merged from the outputs of Pindel, BreakDancer
and Lumpy, we simply combined the outputs of MetaSV
and IMR/DENOM to identify overlapping SVs and de-
termine whether they were more accurate. We found
the number of overlapping SVs from random combina-
tions of Pindel, BreakDancer, IMR/DENOM and DELLY
(Table 2). Based on the percentages of overlapping inser-
tions, deletions, inversions and duplications identified by
each software, DELLY performed better than the other
three software packages (Table 2).

When focusing on Pindel and DELLY, we found very
little overlap in the insertions identified by the two pro-
grams, with only 0.25% of Pindel insertions and 0.28% of
DELLY insertions overlapping. However, greater than
80% of inversions were predicted by both software. A

Table 2 The number of structural variations detected by individual algorithms and combinations of algorithms

Combination Insertion Deletion Inversion Duplication
Pindel 1178 11,445 9791 134
DELLY 1054 20,991 2976 4217
BreakDancer 90 6900 1398 0
IMR/DENOM 2514 5884 0 0
Pindel-DELLY 3 8782 7997 89
Pindel-BreakDancer 0 7616 6442 0
Pindel-IMR/DENOM 1 502 0 0
DELLY-BreakDancer 0 1192 129 0
DELLY-IMR/DENOM 307 5152 0 0
BreakDancer-IMR/DENOM 0 4729 0 0
Pindel-DELLY-IMR/DENOM 1 443 0 0
Pindel-DELLY-BreakDancer 0 7613 6441 0
DELLY-BreakDancer-IMR/DENOM 0 4423 0 0
Pindel-BreakDancer-IMR/DENOM 0 361 0 0

Liu et al. BMC Genomics (2020) 21:61

high percentage, 66.42%, of the duplications identified
by Pindel were also identified by DELLY, but only 2.11%
of those identified by DELLY were also identified by Pin-
del. There was a higher number of overlapping deletions,
with 76.73% of Pindel deletions also identified by
DELLY, and 41.83% of DELLY deletions identified by
Pindel.

The number of overlapping SVs between IMR/
DENOM and Pindel and between IMR/DENOM and
DELLY were shown in Table 2, respectively. Since IMR/
DENOM can only detect insertions and deletions (Table
1), the number of inversions and duplications overlap-
ping with those identified by the other three software
packages was 0. Only one insertion and 502 deletions
were detected by both Pindel and IMR/DENOM. Of the
deletions identified by IMR/DENOM, 8.53% were also
identified by Pindel, and 66.54% of the Pindel deletions
overlapped with the IMR/DENOM deletions. For IMR/
DENOM and DELLY, 307 insertions and 5152 deletions
were discovered by both programs. Of the DELLY inser-
tions, 26.06% were identified by IMR/DENOM, and
12.21% of IMR/DENOM insertions were identified by
DELLY. However, 45.02% of the DELLY deletions over-
lapped with those identified by IMR/DENOM, while
over 85% of IMR/DENOM deletions were identified by
DELLY. IMR/DENOM and BreakDancer had no over-
lapping insertions, while the number of overlapping de-
letions was 4729.

There were few overlapping insertions between Break-
Dancer and DELLY and between BreakDancer and Pin-
del. However, a large number of deletions were called by
both BreakDancer (100% overlapped with Pindel dele-
tions) and Pindel (66.54% overlapped with BreakDancer
deletions). Although 100% of the BreakDancer deletions
also overlapped with those identified by DELLY, only
568% of DELLY deletions were identified by
BreakDancer.

When comparing the combination of three software
packages, few of the insertions called by Pindel, DELLY
and IMR/DENOM overlapped, and no insertions called
by these programs overlapped with those called by
BreakDancer. However, there was better overlap in the
deletions called by combinations of three software. Al-
though Pindel, DELLY and IMR/DENOM shared fewer
than 10% of deletions with each other, when comparing
the output of Pindel, DELLY and BreakDancer, all of the
deletions identified by BreakDancer, 66% of the deletions
identified by Pindel and 36.27% of deletions identified by
DELLY overlapped. A high number of overlapping inver-
sions was also observed when combining DELLY (100%),
BreakDancer (100%) and Pindel (65.78%). When com-
paring DELLY, BreakDancer and IMR/DENOM, 21.07%
of deletions identified by DELLY, 75.17% of those identi-
fied by IMR/DENOM and 64.10% of those identified by

Page 6 of 15

BreakDancer overlapped. When comparing Pindel, IMR/
DENOM and BreakDancer, 3.16% of deletions identified
by Pindel, 5.23% of those identified by BreakDancer and
6.14% of those identified by IMR/DENOM overlapped.

To confirm the accuracy of SVs from multiple soft-
ware packages using NGS data, we randomly chose 940
overlapping SVs from the output of two software pack-
ages combined and three packages combined. The aver-
age accuracy of overlapping deletions was higher than
the accuracy of deletions called by a single software
package (Additional file 8). Moreover, the accuracies of
SVs identified by the combinations Pindel and DELLY,
Pindel and BreakDancer, and DELLY and BreakDancer
were lower than those of SVs identified by the combina-
tions Pindel and IMR/DENOM, DELLY and IMR/
DENOM, and BreakDancer and IMR/DENOM. The
average accuracy of overlapping SVs identified by Pindel,
DELLY and BreakDancer was lower than that of overlap-
ping SVs identified by Pindel, DELLY and IMR/
DENOM; DELLY, BreakDancer and IMR/DENOM,; and
Pindel, BreakDancer and IMR/DENOM. In particular,
the average accuracy of overlapping deletions from
MetaSV, which included the merged results of Pindel,
BreakDancer and Lumpy, and IMR/DENOM was greater
than 90%. This indicates that the SVs detected by a com-
bination of assembly-based software and multiple
algorithm-based software were more accurate than those
detected by the other combinations of software.

To further validate the accuracy by long-read rese-
quencing data, we randomly selected 300 SVs identified
by the software packages from Sniffles (100 SVs), SVIM
(100 SVs) and Sniffles_SVIM (SVs). The average accuracy
of SVs detected by Sniffles was greater than 95%, while
the accuracy of SVs detected by SVIM was less than
80%. The SVs overlapping between Sniffles and SVIM
were high confidence SVs with an accuracy greater than
96%. Compared with algorithms using NGS data, the al-
gorithms using long-read sequencing data detected SVs
with higher accuracy, and large SVs with more confi-
dence. However, the SVs overlapping between MetaSV
and IMR/DENOM were more accurate than those over-
lapping between Sniffles and SVIM, which suggests that
SVs detected by a combination of assembly-based soft-
ware and multiple algorithm-based software are the
most accurate.

We then annotated the SVs detected by five individual
callers, three using NGS data, each based on a different
algorithm (Pindel, DELLY, and IMR/DENOM), and two
using long-read sequencing data (Sniffles, which de-
tected more SVs, and SVIM, which detected higher-
confidence SVs), and observed the number of genes
within SVs commonly identified by these callers (Fig. 2).
Among the callers based on paired-read algorithms,
DELLY was chosen because it performed better than

Liu et al. BMC Genomics (2020) 21:61

Page 7 of 15

21000 -

19500
19027

18000 1
P2

<

IMR/DENOM
Pindel
DELLY
SVIM () I I

Sniffles

T T T T T T 1
30000 25000 20000 15000 10000 5000 0

combinations of software packages

3000 S
1649
1500
916 896
481 4
i 43398 306 5g 264 244 234 139 117 s
0- . . . - . . ——

Fig. 2 Comparison of the number of genes within SVs identified using NGS-based software and long-read sequencing-based software. The
yellow bars indicate the number of SVs identified by an individual software package and the black bars indicate the number of SVs identified by

SVIM

i

BreakDancer and Lumpy. The assembly-based caller IMR/
DENOM was chosen because it detected more SVs than
Platypus. The split-read-based caller, Pindel was chosen
because it was better able to detect SVs less than 100 bp
in length. A total of 264 genes within SVs were detected
using the five software packages. These genes were sub-
jected to functional enrichment analysis using both the
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of
Genes and Genomes) databases (results are shown in
Additional files 1 and 2). These 264 genes will be the main
targets for future functional studies of the variants be-
tween ‘Yali’ and ‘Dangshansuli’ pear. A total of 403 genes
within SVs were commonly detected by the callers using
NGS data, and 4495 genes within SVs were commonly de-
tected by the callers using long-read sequencing data
(Additional file 3: Figure S1(a) and (b), respectively). The
results of GO and KEGG analysis of these genes are
shown in Additional files 4, 5, 6 and 7.

Effect of sequencing depth on SV detection

To determine the most appropriate sequencing depth
for detecting SVs in pear, the performances of all soft-
ware packages using NGS data (except MetaSV) and
both software packages using long-read sequencing data
at different sequencing depths were compared. Seqtk
was used to obtain NGS (10x, 20x, 30x, 40x, 50x, 60x)
and long-read sequencing (5%, 10x, 15x, 20x, 25%, 30x)

data at different sequencing depths (Fig. 3). For IMR/
DENOM and Platypus, the number of SVs increased as
sequencing depth increased to 50x. When the NGS
depth increased to 60x, the number of variants called by
IMR/DENOM and Platypus did not change too much,
and even decreased. Based on this analysis, for assembly-
based software an NGS depth of 50x is sufficient for de-
tecting SVs in Pyrus. For Pindel, BreakDancer, DELLY,
Lumpy, Sniffles and SVIM, the number of SVs called ob-
viously increased as the sequencing depth increased.
Therefore, for split read-based and read pair-based soft-
ware, the higher the depth of sequencing, the higher the
number of SVs detected in Pyrus.

The computational time, the number of CPU cores
required, and memory cost also need to be considered
when determining the most suitable sequencing
depth. Therefore, software performance at different
sequencing depths was also evaluated. The perform-
ance of each SV caller was determined based on the
mean computational time and computational memory
cost with different parameters. The running time and
maximum memory occupancies for the eight callers
at different sequencing depths are shown in Fig. 4.
When running DELLY, BreakDancer, Lumpy and
SVIM, threads cannot be set, so the default CPU core
was one. However, for Pindel, IMR/DENOM and
Sniffles, different threads can be set to decrease the

Liu et al. BMC Genomics (2020) 21:61 Page 8 of 15
P
a Insertion b Inversion
BreakDs 10000=y
300000 ' BreakDancer 0000 : lz\'e‘dkf)ancer
umpy
200000 ™ Platypus 8000 — MewSV
- B Pindel ' W DELLY
100000 el 7000: Pindel I
- DELLY 6000~ Sniffles
I SVIM
10000 B MetaSV -
. 8000- . 3300
2 6000+ I IMRDENOM E
E 40004 S“‘:?:S 2 23004 II
2000 s -=nuil 13004 - I II
1200
1000 10001
800
600:
400+ 500~
200,
o 0:
BreakDancer Platypus Pindel DELLY MetaSV IMR/DENOM Sniffles SVIM BreakDancer ~ Lumpy MetaSV DELLY Pindel Sniffles SVIM
Software Software
Y Deletion d Duplication
90000= mmmm IMRDENOM
W Pindel
32333: B BreakDancer 80009 easv
mem DELLY e Lumpy
60000 Ly 6000 DELLY
50000+ m Sniffles
40000-k "W Pindel 40001 SVIM
30000=y =N MciaSV
Platypus.
o g] antl ||||
£ 20000+ SvIM 2 =
E
2 15000 II I £ 10007
10000~
2l -l so0-
600
400
400
2001 200
T T T 0=
IMR/DENOM BreakDancer DELLY Lumpy Pindel MetaSV Platypus Sniffles SVIM Pindel MetaSV Lumpy DELLY Sniffles SVIM
Software Software
Fig. 3 The number of four SV types (Insertion (a), Inversion (b), Deletion (c), Duplication (d)) were identified by nine software packages at different
sequencing depths. There are six bars for each software, and each bar indicates the number of variants identified at the different sequencing depth.
The sequencing depths for software using NGS data are 10x, 20x, 30x, 40x, 50x and 60x, and those for software using long-read sequencing data are
5%, 10%, 15%, 20%, 25X, and 30x

computational time for SV detection depending on
the running environment. Therefore, we set the
thread to 50 for these programs to improve the de-
tection efficiency. The number of CPU cores for
Platypus can be specified, and we used 50 CPU cores.
Platypus was able to detect SVs much faster than
IMR/DENOM; Platypus required only about 3 min
while IMR/DENOM required more than 10h. As the
depth of sequencing increased, so did the computa-
tional time, memory and the number of CPU cores
required (Fig. 4). IMR/DENOM required more CPU cores
and memory than the other programs. Sniffles was faster
than SVIM, and both programs required the same amount
memory. To sum up, for NGS data, DELLY is recom-
mended because it requires less computational time and
memory and because combinations of software that
include DELLY identify more overlapping SVs than those
that do not. If enough CPU cores and free memory on the
server machine are available, IMR/DENOM is more
suitable because of its high sensitivity and accuracy in
detecting SVs. For long-read sequencing data, both Sniffles
and SVIM are recommended, since SVIM can detect more
SVs and Sniffles detects SVs with high confidence.

Workflow for detecting accurate SVs

The goal of this study was to detect SVs with higher ac-
curacy using the ‘Yali’ resequencing data. To facilitate
the study of SVs in the future, we set up a workflow for
SV detection based on the different algorithms evaluated
in this study (Fig. 5). The workflows for SV detection
using NGS data and long-read sequencing data were
similar. Therefore, we describe the workflow for NGS
data as an example. Firstly, quality control of the raw
resequencing data was done, trimming the reads to ob-
tain clean reads. Secondly, we mapped the clean reads to
the ‘Dangshansuli’ reference genome. Thirdly, nine SV-
calling software were used to detect SVs, and the overlap-
ping SVs were identified using multiple types of software.
The seven software packages using NGS data were mainly
classified into two categories: software based on a single
algorithm and software based on multiple algorithms. Pin-
del uses split reads and BreakDancer uses read pairs.
IMR/DENOM and Platypus are based on assembly. The
algorithms of Lumpy and DELLY are similar and both use
read pairs and split reads. The algorithms of MetaSV
merge outputs from multiple software. The overlapping
SVs identified by multiple software packages were more

Liu et al. BMC Genomics (2020) 21:61

Page 9 of 15

A - b, c
Pindel 7*’14 17 IMR/DEN! 36 60 DELLY f’ 108
16
250 L
F1.3 F355 50 106
- — 15 - = .
g CI CIC =
E200 = > E 104
: R g g]
& 5 = 5 = 5
150 2 T =y 102 =
it " [34.5
100 D 20 r 100
- - T T T - 1 T 34
P p hd 10 98
8 T T T T T T
S 10x 20x 30x 40x 50x. 60x
2 Sequencing depth
]
T T T T T T T
10x 20x 30x 40x 50x 60x 10x 20x 30x 40x 50x 60x
d Sequencing depth € Sequencing depth f
BreakDancer A1 40 Lumpy A Platypus A
60 60 F12
H.s
50 50 / 15
2 F03 F 5 F 103
g E : £ P
- 40 g 5 40 e 3o S
£ 5 E 5 E 5
=) s e s Ho =
30 20 30 rs
r0.5
20 20
5 Lo
10
10 10 A 10
7 T T T T T T T T T T T T T T
10x 20x 30x 40x 60x 10x 20x 30x 40x 50x 60x 10x 20x 30x 40x 50x 60x
Sequencing depth h Sequencing depth Sequencing depth
& | Sniffles A SVIM f
10
25 4.1
Ls.s
8 20 4.0
z 273 €]
£ sz & 2
g F3.98
E 58"
= = =
- 3.8
45 10
3.7
La 5
T

T T
30; 5 10:
Sequencmg 5eplh x x x

S!caﬁencin g ﬁgﬁm
Fig. 4 Effect of sequencing depth on the running efficiency of eight types of software (Pindel (a), IMR/DENOM (b), DELLY (c), BreakDancer (d),
Lumpy (e), Platypus (f), Sniffles (g), SVIM (h)). The cost of time, CPU cores and memory were compared at different sequencing depth

T T
25x 30x

accurate. This high accuracy is essential when selecting
SVs for further study.

Discussion

In our study, we compared the sensitivities, accuracies
and computational equipment requirements of seven
common software packages using ‘Yali' pear NGS data
and two software packages using ‘Yali’ pear long-read se-
quencing data to provide insights for choosing the most
appropriate SV-calling program. Detecting more SV types
and decreasing the false discovery rate and increasing the
sensitivity of SV detection have always been a concern for
researchers studying SVs. Software developers have also
focused on improving the sensitivity of SV detectors [27—
29]. Here, we focused on the performance of seven soft-
ware packages using NGS data (Fig. 1) and found that
each software has its own advantages and disadvantages.
For example, MetaSV detected many more SVs than the
other packages tested; however, before running MetaSV,
the VCF (variant call format) files of Pindel, BreakDancer,

Lumpy or other software need to be prepared, which is a
cumbersome process. Not all software can detect
insertions, and all programs except IMR/DENOM had
limitations in the length of insertions detected. Using
SAMtools, the mean sequence insert size of ‘Yali' was
found to be 320 bp. Only IMR/DENOM can detect inser-
tions > 300 bp (Fig. 1), which explains why IMR/DENOM
was the only caller able to detect insertions longer than
the sequence inserts. Breakdancer, DELLY, Lumpy and
MetaSV were more sensitive in detecting large deletions
and Pindel was more sensitive in detecting small SVs
(Fig. 1); this is because read-pair algorithms are less sensi-
tive in detecting small SVs, which are below the standard
deviation for insert size [14, 25, 27, 28]. Of the two
software packages using long-read sequencing data, SVIM
showed higher sensitivity, probably because SVIM collects,
clusters and combines SV signatures from read alignments
[32]. By contrast, Sniffles detects SVs from analysis of
split-read alignments, high-mismatch regions and sequen-
cing depth and coverage [16].

Liu et al. BMC Genomics (2020) 21:61

Page 10 of 15

NGS dj\ta/

Data quality control
FastQC

Data trimming
Trimmomatic

Read alignment
BWA

N
7~

NGS software

Data Pre-processing

Raw sequences

Conversion
SAMtools

Q‘g reads

Data trimming
Smrtlink

Read alignment
NGMLR

/
N

Long reads software

Sniffles
(split reads)

SVIM
(split reads)

N Pindel
= (split reads)
e
> 5 BreakDancer
= 5 (read pairs)
= 9
2 2 IMR/DENOM,
= = Platypus (assembly)
=
2 DELLY, Lumpy, MetaSV
(multiple algorithms)
)
=
=
8| @
> »
— o
s =
S
=
£ <
s <
2
-
N

\ 4

Structural variant filtering

I

Finding overlapping structural variants

|

Structural variant validation

High-confidence
structural variants

Fig. 5 The overall workflow for SV detection based on four algorithms using NGS and long-read sequencing data

Validating the presence of SVs has been a challenge for
researchers using the pear genome, but progress has been
made in other model systems. For the human genome, a
map of SVs was constructed based on whole-genome se-
quencing data from 185 human genomes, and most SVs
were mapped to nucleotide resolution [39]. Many types of
SV-calling software have been developed, and the sensitiv-
ities and false discovery rates of these callers have been

tested using known SVs [28, 29]. In maize and rice, SVs
were identified and mapped using the results of pan-
genome analyses of population structure and diversity [40,
41]. However, the SVs in pear populations are unknown
and characterizing high-confidence SVs is crucial for study-
ing SVs using a single sample of pear. To evaluate the ac-
curacy of different SV callers, we first compared the
accuracy of SVs called by each software package, then

Liu et al. BMC Genomics (2020) 21:61

selected five software packages for finding overlapping SVs,
and finally validated the accuracy of the overlapping SVs.
The overlapping SVs from multiple packages had higher
confidence then single software package.

Sequencing costs are often the biggest limitation for
many laboratories [42]. For single nucleotide variant and
small InDel detection, an average sequencing depth of 30x
is the standard [43, 44]. But for SV detection, sensitivity
and breakpoint detection can improve with increasing se-
quencing depth [42]. In our study, we found that the depth
of NGS and long read sequencing absolutely affected the
number of SVs called (Fig. 3), the cost of sequencing (Fig.
4) and the speed of variant calling (Fig. 4). Increasing se-
quencing depth within a certain range can increase the
number of SVs identified and reduce the false discovery
rate of variant calling when using NGS data. For IMR/
DENOM and Platypus, the number of SVs called did not
change with sequencing depths greater than 50x, and the
computational time, number of CPU cores and memory re-
quired also showed no remarkable change. Therefore, when
using IMR/DENOM and Platypus to detect SVs, the appro-
priate sequencing depth is 50x. By contrast, we did not
identify an optimal sequencing depth for Pindel, DELLY,
BreakDancer, Lumpy, MetaSV or software using long-read
sequencing data (Sniffles and SVIM). For NGS-based cal-
lers with split-read, read-pair and read-depth algorithms
and long-read sequencing-based callers with split-read algo-
rithm, as the sequencing depth increased, the number of
SVs called and the computational time, number of CPU
cores and memory needed also increased.

Conclusions

An SV detection pipeline using NGS and long-read sequen-
cing data has been developed for application in pear, and
this pipeline can be used for the study of SVs in other crops.
Seven different types of SV-calling software packages using
NGS data and two packages using long-read sequencing
data were compared. SVIM detected SVs with the highest
sensitivity, and Sniffles called SVs with the highest confi-
dence. The SVs detected by software packages using long-
read sequencing data showed higher accuracy than those
using NGS data and also required less time, fewer CPU
cores and less memory. A combination of multiple software
packages is recommended for the detection of more types of
SVs with higher accuracy. For NGS data, a sequencing
depth of 50x is the most suitable for detecting SVs in pear
based on the performance of assembly algorithm-based soft-
ware. This information about the accuracy of SV detection,
computational equipment requirements and suitable se-
quencing depth will benefit researchers engaged in the study
of SVs. This study has provided important insights into
methods for improving SV detection that can be applied in
future studies of crop genomes.

Page 11 of 15

Methods

Pear accession sequencing

‘Yali’ plants were grown in an experimental nursery at
Changli Fruit Research Institute, Hebei Academy of
Agricultural Sciences, China. Young leaves were col-
lected 15 days after flowering, and extraction of DNA for
NGS was performed using the Qiagen DNeasy 96 Plant
Kit (Cat. no. 69181) following the manufacturer’s proto-
col. Paired-end sequencing libraries with an insert size
of approximately 350 bp were sequenced on the Illumina
HiSeq™ 2000 platform at the Biomarker Technologies
Company (Beijing, China).

Long-read sequencing data have high error rates: ~
15% with PacBio sequencing, and as high as ~ 40% with
Oxford Nanopore sequencing [45]. We selected PacBio
sequencing technology, and libraries for PacBio genome
sequencing were constructed following the standard pro-
tocols from Pacific Biosciences. In brief, high molecular
weight genomic DNA was sheared to a target size of 20
kb, followed by damage repair and end repair, blunt-end
adaptor ligation, and size selection. Finally, the libraries
were sequenced on the PacBio Sequel platform.

Quality control of NGS sequencing data

FastQC was used to check raw sequencing data in FASTQ
format during the first major step of sequence data pre-
processing (fastqc -o yali_fastq yali_1.fq yali_2.fq). Based on
the FastQC results, the overall quality values of raw se-
quence reads were calculated and reported in FASTQ for-
mat [46]. Trimmomatic, which is a fast, multithreaded
command line tool for trimming paired-end and single reads
produced by Illumina NGS technology [36], was used to
trim reads using the following parameters: java —jar
trimmomatic-0.36jar PE -phred33 -trimlog logfile yali 1.fq
yali_2.fq yaliread_1.fq yali.trim.read_1.fq yali.read_2.fq yali.-
trim.read_2.fq ILLUMINACLIP: /Trimmomatic/adapters/
TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15 MINLEN:36. The output of Trimmomatic
was in the form of uncompressed filtered FASTQ files.

Read mapping

Most SV detection software packages using NGS data
detect SVs from alignments generated using the BWA
aligner. However, the software packages using long-read
sequencing data have higher requirements for aligners.
Many new aligners have been developed for long-read
alignment. NGMLR is recommended because of its bet-
ter performance compared with other aligners [16]. For
NGS data, once the sequences were quality checked and
trimmed, the next step was to align the sequences to the
‘Dangshansuli’ pear genome (http://peargenome.njau.
edu.cn/). Firstly, the reference genome fasta file was
indexed using BWA (bwa index dangshansuli.fasta). The
pair-end sequencing reads of ‘Yali’ were aligned to the

http://peargenome.njau.edu.cn/
http://peargenome.njau.edu.cn/

Liu et al. BMC Genomics (2020) 21:61

‘Dangshansuli’ reference genome using the ‘align’ step
(bwa aln -t 20 dangshansuli.fasta yali.read_1.fq > yali.read_
l.sai; bwa aln -t 20 reference yaliread 2.fq > yaliread_
2.sai; bwa sampe dangshansulifasta yaliread_l.sai
yali.read_2.sai yaliread_l.fq yaliread 2.fq > yali.sam). For
PacBio sequencing data, Smrtlink v8.0 was used to filter
low quality raw data and processed long reads with
accuracies higher than 0.8 (https://www.pacb.com/
support/software-downloads/). NGMLR was used to
map long reads to the ‘Dangshansuli’ reference genome
(ngmlr —t 50 —r dangshansulifasta -q yali_pacbio.fastq —o
yali.sam). Both the BWA and NGMLR results were in SAM
format. SAMtools was used to convert SAM files into BAM
files and to sort the BAM files and remove duplicates [47].

Randomly extracting data at different sequencing depths
Seqtk can help users to process sequences in FASTA or
FASTQ format (https://github.com/lh3/seqtk). The com-
mand ‘seqtk sample’ was used to randomly extract a
subsample of reads from the clean reads. The short
reads were sampled at depths of 10x, 20x, 30x, 40x, 50x
and 60x. The long reads were sampled at depths of 5x,
10x, 15x%, 20x, 25x and 30 x .

Description of the four types of SV software

The next step after mapping reads to the reference gen-
ome was to identify the SVs from the processed BAM
format files. Seven types of SV-calling software using
NGS data and two types of SV-calling software using
long-read sequencing data, each based on different algo-
rithms, were used to detect the SVs between ‘Yali’ and
‘Dangshansuli’ pear.

Pindel [25]

Pindel v0.2.5b9 is a C++ application based on the SR al-
gorithm. Running Pindel requires two steps. The first
step is ‘bam2pindel.pl’, the purpose of which is to extract
read pairs for use by Pindel (bam2pindel_bwa.pl -i yali-
sortrmdup.bam -o output_prefix -s yali —om). The sec-
ond step is ‘pindel; the input files were the
‘bam2pindel.pl’ file and the reference fasta file (Pindel —f
dangshansuli.fasta —p bam2pindel.txt —o output —T 50).
By default, Pindel detects all chromosomes if the
chromosome region is not specified. Pindel can identify
the break points of large deletions (1bp-10kb) and
medium-sized insertions (1-20bp) from paired-end
short reads. The output file contains the type and size of
SV, the chromosome ID, the break point coordinates
and the number of reads supporting each event.

BreakDancer [33]

BreakDancer-max v1.4.5 is a Perl application and is based on
read pairs. The software includes two complementary pro-
grams, ‘bam2cfgpl’ (bam2cfg.pl -g —h yalisortrmdup.bam >

Page 12 of 15

config file) and ‘breakdancer-max’ (breakdancer-max -lh
config_file > output). The ‘bam2cfg.pl’ program is aimed at
converting the BAM file into the specific file needed for
‘breakdancer-max’. The option ‘- was chosen to analyze the
[Mlumina long insert (mate-pair) library. The output
contained important information such as the type and size
of SV, the chromosome ID, and the SV length.
BreakDancer-max had the ability to predict five types of SVs
from ‘Yali’ sequencing data: insertions, deletions, inversions,
and inter- and intra-chromosomal translocations.

IMR-DENOM [34]

IMR/DENOM v0.4.0 comprises three independent pro-
grams, namely IMR’, ‘DENOM’, and ‘MCMERGE’, and
is based on assembly. IMR’ is designed to iterate realign-
ment to the reference genome. In brief, in each iteration,
reads are aligned to the reference genome and high-
confidence SNPs and InDels are called and incorporated
into a new consensus.

Before running the program, the config file was pre-
pared, which contained the path of the output folder,
reference, loaddata and settings for the iterations and
threads. ‘imr easyrun’ (imr easyrun —e imr.bam —imrno-
call configfile) produces the sample BAM file, and the
input file was configfile. The option ‘-€’ was set to spe-
cify the bam file and ‘--imrnocall’ was chosen to only
map reads and merge bam files without calling variants.
Moreover, ‘-p’ was set to 50 to increase the running
speed. Then, ‘imr imrcall’ (imr imrcall —o imr.sdi —p 50
dangshansuli.fasta imr.bam) was run to detect variants
from short reads. The input files were the indexed refer-
ence genome fasta file and the specific BAM file. The
-p’ for this step was also set to 50.

The command ‘denom soapinterface’ was used to run
DENOM by switching on SOAPdenovo, which creates
soap4denom.contig, soap4denom.bam and soap4de-
nom.sdi files (denom soapinterface —o denom.sdi —p 50
configfile). Before running, SOAPdenovo was installed
on the server. The input file was configfile. The option
-p’ was set to 50 to increase the running speed.

The final step was ‘mcmerge dscmp’ to merge the imr.sdi
and denom.sdi files (mcmerge dscmp —o merge.sdi dang-
shansuli.fasta imr.sdi denom.sdi). The input files included
the indexed reference genome fasta file, the imr.sdi file and
the denom.sdi file. The output file was the merge.sdi file,
which contained the chromosome ID, position, length,
reference base, consensus base and the quality value.

Platypus [35]

Platypus v0.8.1 is a Python, Cython and C package,
which has the option ‘assemble’ for detecting SVs based
on assembly. It can detect SNPs, insertions, deletions
and MNPs. However, it can only detect variants that are
less than 10 kb in length. The option ‘assembleBadReads’

https://www.pacb.com/support/software-downloads/
https://www.pacb.com/support/software-downloads/
https://github.com/lh3/seqtk

Liu et al. BMC Genomics (2020) 21:61

was set to 1 for using filtered low quality reads for local
assembly. The option ‘assembleBrokenPairs’ was set to 1
for using broken read pairs for local assembly (python
Platypus.py --refFile dangshansuli.fasta —bamFile vyali.-
bam -nCPU 50 —assemble 1 —assemblerKmerSize 85).
The output file was a VCF file containing the chromo-
some ID, position, length, reference base, consensus base
and the quality value.

DELLY [27]

DELLY v0.7.7 is a C++ application and an integrative pro-
gram for SV discovery that combines short-range and
long-range paired-end mapping and split-read analysis.
The command ‘delly call’ was used to discover and geno-
type SVs. The input files consisted of the indexed refer-
ence fasta file and the ‘Yali’ sorted BAM file. The generic
option ‘-t can be changed to detect other types of SVs.
Here, ‘DEL’ (deletion), ‘DUP’ (duplication), ‘INV’ (inver-
sion) and ‘INS’ (insertion) were selected to detect different
types of SVs (delly call —t DEL -g dangshansuli.fasta yali-
sortrmdup.bam). The output was in BCF format. Then,
Bcftools was used to convert BCF format into VCF format.
The output file contained the SV type, the chromosome
ID, the SV position, the reference sequence, the alteration,
the quality, the filter and other SV information.

Lumpy [28]

Lumpy v0.2.13 is a C++ software package that integrates
multiple SV signals, such as split reads, read pairs and
read depth. lumpyexpress’ in this package was used to
detect SVs for standard analyses. Before detecting SVs,
the BAM files *.bam, *splitters.bam and *.discordants.-
bam were obtained using the BWA-MEM alignment in
speedseq [48] (speedseq align -R “@RG\tID:id\tSM:sam-
ple\tLB:lib” dangshansuli.fasta yali.read_1.fq yali.read_
2.fq). The output contained important information such
as the type and size of SV, the chromosome ID, and the
SV length (lumpyexpress —B yalibam -S yali_splitters.-
bam -D yali.discordants.bam —o yali.output). Lumpy can
predict four types of SVs: deletions, inversions, duplica-
tions and translocations.

MetaSV [30]

MetaSV v0.5.2 is a Python package that uses multiple al-
gorithms: Pindel [25], BreakDancer [33], and Lumpy
[28]. The reference, the BAM file, and the outputs of
Pindel, BreakDancer and Lumpy were regarded as the
input files for MetaSV (run_metasv.py --reference dang-
shansuli.fasta --breakdancer_native breakdancer.out
--pindel_native pindel_D pindel_SI pindel_TD pindel_
INV -- lumpy_vcf yali.vef --bam yali.bam --outdir. /out
--disable_assembly). We only merged the outputs of
three SV detectors without performing further soft-clip
based analysis or local assembly.

Page 13 of 15

Sniffles [16]

Sniffles v1.0.11 is a C++ software package that detects SVs
based on the split-read algorithm. Sniffles can detect SVs
using PacBio or Oxford Nanopore sequencing data. The
input file was the BAM file generated from the BWA
(‘bwa mem -x’) or NGMLR aligner. Default parameters
were used (sniffles —m yalisortrmdup.bam —v vyali.vcf).
The output file was in ‘vcf format and included chromo-
some, position, SV type, quality and other information.

SVIM [32]

SVIM v1.2.0 is a Python package that can detect five types
of SVs (deletions, insertions, inversions, break ends, and
duplications) using long reads from PacBio or Oxford
Nanopore sequencing technology. The input file can be a
fastq file or BAM file. To obtain the output file faster, we
used the BAM file generated from the NGMLR aligner
and ran the command (svim alignment yalisortrmdup.bam
dangshansuli.fasta). The output directory ‘candidates’
contained BED format files of each SV type, and each
BED file included the chromosome, start coordinate, end
coordinate, SV type, score and other information.

GO and KEGG analysis

Based on the GO annotation information for all genes in
the pear genome, WEGO (http://wego.genomics.org.cn/)
was used to perform GO analysis. KEGG analysis of genes
was done using the website http://www.genome.jp/kegg/.

Computing resources

Trimming, mapping and SV detection were performed
on a server machine equipped with four 2.4GHz Intel®
Xeon® 6 CPUs, with 18 cores within each CPU, and 2 TB
of RAM. The operating system was CentOS release 6.8.

Validation of SVs detected using NGS data and long-read
sequencing data

The SV calling tools are designed to maximize sensitiv-
ity. For example, to identify as many variants as possible
in our data, we allowed many false positive calls due to
artifacts from the sequencing process. Therefore, before
validating the SVs, the SVs called by different software
needed to be filtered. For Pindel, we selected the SVs
with ‘Support > 5. For DELLY, Lumpy and MetaSV, SVs
with no ‘LowQual’ were selected, and for BreakDancer,
SVs with scores over 60 were selected. For SVIM, SVs
with a quality of PASS" were selected, and for IMR/
DENOM, we removed the SNPs. Next, the IGV was
used to visualize the SVs [49-51]. Specifically, the refer-
ence ‘Dangshansuli’ pear genome was loaded as the ref-
erence genome sequence, and the BAM file of ‘Yali’ was
loaded to visually confirm the presence of the identified
deletions and insertions.

http://wego.genomics.org.cn/
http://www.genome.jp/kegg/

Liu et al. BMC Genomics (2020) 21:61

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6455-x.

Additional file 1. GO analysis of 264 genes within SVs commonly
identified by five SV callers.

Additional file 2. KEGG analysis of 264 genes within SVs commonly
identified by five SV callers.

Additional file 3: Figure S1. The number of genes within SVs detected
by software packages using NGS data (a) and long-read sequencing data
(b).

Additional file 4. GO analysis of 403 genes within SVs commonly
identified by three SV callers using NGS data.

Additional file 5. KEGG analysis of 403 genes within SVs commonly
identified by three SV callers using NGS data.

Additional file 6. GO analysis of 4495 genes within SVs commonly
identified by two SV callers using long-read sequencing data.

Additional file 7. KEGG analysis of 4495 genes within SVs commonly
identified by two SV callers using long-read sequencing data.
Additional file 8. Verification of SVs in "Yali’ through comparisons with
the ‘Dangshansuli’ reference genome.

Abbreviations

BAM file: Binary version of SAM file; BCF: Binary Counterpart Data; GO: Gene
Ontology; InDel: Insertion and deletion; KEGG: Kyoto Encyclopedia of Genes
and Genomes; MNP: Multiple nucleotide polymorphism; NGS: Next-
generation sequencing; SAM: Sequence alignment/map format; SNP: Single
nucleotide polymorphism; SV: Structural variant; VCF: Variant Call Format

Acknowledgements

We gratefully thank the Changli Fruit Research Institute, Hebei Academy of
Agricultural Sciences, China for providing the ‘Yali’ pear as experimental
material.

Authors’ contributions

JW designed this project. YYL and MYZ wrote the manuscript. YYL, MYZ,
WIJC, and MYS performed data analysis. JYS provided the experimental
materials. All authors read and approved the final manuscript.

Funding

Funding from the National Science Foundation of China (31725024 and
31672111) supported the next-generation sequencing of ‘Yali' pear, and
funding from the Earmarked Fund for the China Agriculture Research System
(CARS-28) supported the long-read sequencing of Yali pear. DNA extraction
and library preparation for ‘Yali" were performed using funding from the “333
High Level Talents Project” of Jiangsu Province (BRA2016367).

Availability of data and materials

All raw sequence data generated in this study are deposited in NCBI under
BioProject accession number: PRINA574796. All other supporting data are
included as additional files.

Ethics approval and consent to participate

The "Yali' pear plant samples were obtained from the Changli Fruit Research
Institute, Hebei Academy of Agricultural Sciences, China. Since these studies
did not involve endangered or protected species, no specific permissions
were required for this material. The authors declare that the experimental
research on plants described in this paper complied with institutional and
national guidelines.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Page 14 of 15

Received: 17 March 2019 Accepted: 7 January 2020
Published online: 20 January 2020

References

1. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and
genotyping. Nat Rev Genet. 2011;12(5):363-76.

2. Guan P, Sung WK Structural variation detection using next-generation
sequencing data a comparative technical review. Methods. 2016;102:36-49.

3. Stephens PJ, McBride DJ, Lin ML, Varela |, Pleasance ED, Simpson JT,
Stebbings LA, Leroy C, Edkins S, Mudie LJ, et al. Complex landscapes of
somatic rearrangement in human breast cancer genomes. Nature. 2009;
462(7276):1005-U1060.

4. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
Zhang Y, Ye K, Jun G, Fritz MHY, et al. An integrated map of structural
variation in 2,504 human genomes. Nature. 2015;526(7571):75.

5. Ogawa S. Novel mechanism of immune evasion in cancer via structural
variations of the PD-L1 gene. Rinsho Ketsueki. 2017;58(8):957-65.

6. Fujiwara K Matsuura K, Matsunami K, lio E, Nojiri S, Joh T. Novel non-
canonical genetic rearrangements termed “complex structural variations” in
HBV genome. Hepatology. 2017;66:805a.

7. Haas J, Mester S, Lai A, Frese KS, Sedaghat-Hamedani F, Kayvanpour E,
Rausch T, Nietsch R, Boeckel JN, Carstensen A, et al. Genomic structural
variations lead to dysregulation of important coding and non-coding RNA
species in dilated cardiomyopathy. Embo Mol Med. 2018;10(1):107-20.

8. Zmienko A, Samelak A, Kozlowski P, Figlerowicz M. Copy number
polymorphism in plant genomes. Theor Appl Genet. 2014;127(1):1-18.

9. Marroni F, Pinosio S, Morgante M. Structural variation and genome
complexity: is dispensable really dispensable? Curr Opin Plant Biol. 2014;
18:31-6.

10. Zhang ZH, Mao LY, Chen HM, Bu FJ, Li GC, Sun JJ, Li S, Sun HH, Jiao C,
Blakely R, et al. Genome-wide mapping of structural variations reveals a
copy number variant that determines reproductive morphology in
cucumber. Plant Cell. 2015;27(6):1595-604.

11, Causse M, Desplat N, Pascual L, Le Paslier MC, Sauvage C, Bauchet G, Berard
A, Bounon R, Tchoumakov M, Brunel D, et al. Whole genome resequencing
in tomato reveals variation associated with introgression and breeding
events. BMC Genomics. 2013;14:791.

12. Zhang SJ, Chen WP, Xin L, Gao ZH, Hou YJ, Yu XY, Zhang Z, Qu SC.
Genomic variants of genes associated with three horticultural traits in apple
revealed by genome re-sequencing. Hortic Res. 2014;1:14045.

13. Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, Zhu SL, Khan MA, Tao ST, Korban
SS, Wang H, et al. The genome of the pear (Pyrus bretschneideri Rehd.).
Genome Res. 2013;23(2):396-408.

14. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next
generation sequencing data: a review of informatic approaches. Cancer
Genet. 2013;206(12):432-40.

15. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, Ley
TJ, Mardis ER, Wilson RK, Ding L. SomaticSniper: identification of
somatic point mutations in whole genome sequencing data.
Bioinformatics. 2012;28(3):311-7.

16. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler
A, Schatz MC. Accurate detection of complex structural variations using
single-molecule sequencing. Nat Methods. 2018;15(6):461.

17. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):
333-51.

18. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown
CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. Accurate whole human
genome sequencing using reversible terminator chemistry. Nature. 2008;
456(7218):53-9.

19. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering
structural variation with next-generation sequencing. Nat Methods. 2009;
6(11 Suppl):S13-20.

20. Simpson JT, McIntyre RE, Adams DJ, Durbin R. Copy number variant
detection in inbred strains from short read sequence data. Bioinformatics.
2010;26(4):565-7.

21, Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang ZD, Snyder M,
Gerstein MB. PEMer: a computational framework with simulation-based
error models for inferring genomic structural variants from massive paired-
end sequencing data. Genome Biol. 2009;10(2):R23.

https://doi.org/10.1186/s12864-020-6455-x
https://doi.org/10.1186/s12864-020-6455-x

Liu et al. BMC Genomics

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

(2020) 21:61

Zeitouni B, Boeva V, Janoueix-Lerosey |, Loeillet S, Legoix-ne P, Nicolas A,
Delattre O, Barillot E. SVDetect: a tool to identify genomic structural
variations from paired-end and mate-pair sequencing data. Bioinformatics.
2010;26(15):1895-6.

Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, Schonhuth A.
CLEVER: clique-enumerating variant finder. Bioinformatics. 2012;28(22):2875-82.
Emde AK, Schulz MH, Weese D, Sun RP, Vingron M, Kalscheuer VM, Haas SA,
Reinert K. Detecting genomic indel variants with exact breakpoints in
single- and paired-end sequencing data using SplazerS. Bioinformatics.
2012;28(5):619-27.

Ye K Schulz MH, Long Q, Apweiler R, Ning ZM. Pindel: a pattern growth
approach to detect break points of large deletions and medium sized
insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865-71.
Lin K, Smit S, Bonnema G, Sanchez-Perez G, de Ridder D. Making the
difference: integrating structural variation detection tools. Brief Bioinform.
2015;16(5):852-64.

Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics. 2012;28(18):1333-9.

Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework
for structural variant discovery. Genome Biol. 2014;15(6):R84.

Becker T, Lee WP, Leone J, Zhu QH, Zhang CS, Liu S, Sargent J, Shanker K,
Mil-Homens A, Cerveira E, et al. FusorSV: an algorithm for optimally
combining data from multiple structural variation detection methods.
Genome Biol. 2018;19:38.

Mohiyuddin M, Mu JC, Li J, Asadi NB, Gerstein MB, Abyzov A, Wong WH,
Lam HYK. MetaSV: an accurate and integrative structural-variant caller for
next generation sequencing. Bioinformatics. 2015;31(16):2741-4.

Kosugi S, Momozawa Y, Liu XX, Terao C, Kubo M, Kamatani Y.
Comprehensive evaluation of structural variation detection algorithms for
whole genome sequencing. Genome Biol. 2019;20:117.

Heller D, Vingron M. SVIM: structural variant identification using mapped
Long reads. Bioinformatics. 2019;35:22907-15.

Fan X, Abbott TE, Larson D, Chen K. BreakDancer: Identification of Genomic
Structural Variation from Paired-End Read Mapping. Curr Protoc
Bioinformatics. 2014;45:15.16.11.

Gan XC, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R,
Schultheiss SJ, Osborne EJ, Sreedharan VT, et al. Multiple reference genomes
and transcriptomes for Arabidopsis thaliana. Nature. 2011,477(7365):419-23.
Rimmer A, Phan H, Mathieson |, Igbal Z, Twigg SRF, Wilkie AOM, McVean G,
Lunter G, Consortium W. Integrating mapping-, assembly- and haplotype-
based approaches for calling variants in clinical sequencing applications.
Nat Genet. 2014;46(8):912-8.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30(15):2114-20.

Li H, Durbin R. Fast and accurate long-read alignment with burrows-
wheeler transform. Bioinformatics. 2010;26(5):589-95.

Gordon SP, Priest H, Marais DLD, Schackwitz W, Figueroa M, Martin J, Bragg JN,
Tyler L, Lee CR, Bryant D, et al. Genome diversity in Brachypodium distachyon:
deep sequencing of highly diverse inbred lines. Plant J. 2014;79(3):361-74.
Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A,
Yoon SC, Ye K, Cheetham RK, et al. Mapping copy number variation by
population-scale genome sequencing. Nature. 2011,470(7332):59-65.

Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC, Li M, Zheng TQ,
Fuentes RR, Zhang F, et al. Genomic variation in 3,010 diverse accessions of
Asian cultivated rice. Nature. 2018;557(7703):43.

Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang TY, Li Y, Li YX,
Semagn K, Zhang XC, et al. High-resolution genetic mapping of maize pan-
genome sequence anchors. Nat Commun. 2015,6:6914.

Sims D, Sudbery |, llott NE, Heger A, Ponting CP. Sequencing depth and
coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;
15(2):121-32.

Ahn SM, Kim TH, Lee S, Kim D, Ghang H, Kim DS, Kim BC, Kim SY, Kim WY,
Kim C, et al. The first Korean genome sequence and analysis: full genome
sequencing for a socio-ethnic group. Genome Res. 2009;19(9):1622-9.
Wang J, Wang W, Li RQ, Li YR, Tian G, Goodman L, Fan W, Zhang JQ, Li J,
Zhang JB, et al. The diploid genome sequence of an Asian individual.
Nature. 2008;456(7218):60-U61.

Ye CX, Hill CM, Wu SG, Ruan J, Ma ZS. DBG20LC: efficient assembly of large
genomes using Long erroneous reads of the third generation sequencing
technologies. Sci Rep. 2016;6:31900.

46.

47.

48.

49.

50.

Page 15 of 15

Kim T, Seo HD, Hennighausen L, Lee D, Kang K. Octopus-toolkit: a workflow
to automate mining of public epigenomic and transcriptomic next-
generation sequencing data. Nucleic Acids Res. 2018;46:e53.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R, Proc GPD. The sequence alignment/map format and SAMtools.
Bioinformatics. 2009;25(16):2078-9.

Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, Garrison EP, Marth GT,
Quinlan AR, Hall IM. SpeedSeq: ultra-fast personal genome analysis and
interpretation. Nat Methods. 2015;12(10):966-8.

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G,
Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-6.
Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C,
Bahler J, Sedlazeck FJ. Transient structural variations have strong effects on
quantitative traits and reproductive isolation in fission yeast. Nat Commun.
2017;8:14061.

Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer
(IGV): high-performance genomics data visualization and exploration. Brief
Bioinform. 2013;14(2):178-92.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Sequencing and mapping of the ‘Yali’ genome
	SVs between ‘Yali’ and the reference genome detected using different algorithms and sequencing data
	The SVs identified by multiple software are more accurate
	Effect of sequencing depth on SV detection
	Workflow for detecting accurate SVs

	Discussion
	Conclusions
	Methods
	Pear accession sequencing
	Quality control of NGS sequencing data
	Read mapping
	Randomly extracting data at different sequencing depths
	Description of the four types of SV software
	Pindel [25]
	BreakDancer [33]
	IMR-DENOM [34]
	Platypus [35]
	DELLY [27]
	Lumpy [28]
	MetaSV [30]
	Sniffles [16]
	SVIM [32]

	GO and KEGG analysis
	Computing resources
	Validation of SVs detected using NGS data and long-read sequencing data

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

