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Abstract

Background: Node is the central organ of transferring nutrients and ions in plants. Cadmium (Cd) induced crop
pollution threatens the food safety. Breeding of low Cd accumulation cultivar is a chance to resolve this universal
problem. This study was performed to identify tissue specific genes involved in Cd accumulation in different rice

stem nodes. Panicle node and the first node under panicle (node 1) were sampled in two rice cultivars:
Xiangwanxian No. 12 (low Cd accumulation cultivar) and Yuzhenxiang (high Cd accumulation cultivar). RNA-seq
analysis was performed to identify differentially expressed genes (DEGs) and microRNAs.

Results: Xiangwanxian No. 12 had lower Cd concentration in panicle node, node | and grain compared with
Yuzhenxiang, and node | had the highest Cd concentration in the two cultivars. RNA seq analysis identified 4535
DEGs and 70 miRNAs between the two cultivars. Most genesrelated to the “transporter activity”, such as Os/RT],
OsNramp5, OsVIT2, OsNRT1.5A, and OsABCC1, play roles in blocking the upward transport of Cd. Among the genes
related to “response to stimulus’, we identified OsHSP70 and OsHSFA2d/B2c in Xiangwanxian No. 12, but not in
Yuzhenxiang, were all down-regulated by Cd stimulus. The up-regulation of miRNAs (osa-miR528 and osa-miR408) in
Xiangwanxian No. 12 played a potent role in lowering Cd accumulation via down regulating the expression of
candidate genes, such as bZIP, ERF, MYB, SnRK1 and HSPs.

Conclusions: Both panicle node and node | of Xiangwanxian No. 12 played a key role in blocking the upward
transportation of Cd, while node | played a critical role in Yuzhenxiang. Distinct expression patterns of various
transporter genes such as OsNRT1.5A, OsNramp5, OsIRT1, OsVIT2 and OsABCCT resulted in differential Cd
accumulation in different nodes. Likewise, distinct expression patterns of these transporter genes are likely
responsible for the low Cd accumulation in Xiangwanxian No. 12 cultivar. MiRNAs drove multiple transcription
factors, such as OsbZIPs, OsERFs, OsMYBs, to play a role in Cd stress response.
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Background

Rice (Oryza sativa) is one of the largest food crops in
China, accounting for 60% of the basic food supply. In
recent years, an increasing area of rice fields in China
has been contaminated by heavy metal cadmium (Cd).
In the 2010s, the reduction of annual grain production
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by heavy metal pollution is about 100 billion tons [1].
Cd pollution has caused an irreversible and difficult
problem in rice production in China, especially in the
southern regions. Physical, chemical, and phytoremedia-
tion strategies have been widely used to treat Cd-
contaminated soils, but little was recovered due to the
high technical difficulties or costs. Therefore, it remains
an urgent issue in solving the problem of Cd pollution.
Plants have evolved a plethora of genetic and meta-
bolic mechanisms against Cd stresses. The Cd accumu-
lation capacity in different rice varieties varies greatly [2,
3]. One of the possible solutions for alleviating Cd con-
tamination in rice is to cultivate varieties with less Cd
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accumulation in grains. The use of molecular and trans-
genic technologies coupled with next-generation sequen-
cing (NGS) could facilitate the identification of genes
and mechanisms potentially involved in the transloca-
tion, detoxification, immobilization, and allocation of Cd
in different species and cultivars [4—7]. Recently, some
genes involved in Cd uptake, transport and accumula-
tion had been identified and used as targets of genetic
manipulation [8—10]. Zhang et al. (2010) found that the
BanCn.ABCC3 played a pivotal role in Cd resistance in
rapeseed by blocking Cd transport to seeds and retaining
Cd in the root pectin and shoot vacuoles [5]. Luo et al.
(year) found that the loss-of-function mutation of Arabi-
dopsis PLANT DEFENSIN 2 (AtPDF2.5) reduced Cd ac-
cumulation and enhanced Cd resistance in Arabidopsis
root by chelating Cd [4]. Besides, CALI also plays a role
in Cd transport by chelating Cd ion in the cytoplasm
and facilitating Cd secretion to extracellular space [11].
However, the limited number of genes is insufficient to
fully understand the biological processes of Cd transport
and accumulation in plants.

Studies have shown that node is a pivotal location for
nutrient distribution in graminaceous plants [12]. Both
root and node are key barriers to Cd transport into rice
grains [13]. Node is a central organ for xylem-to-
phloem transfer of nutrients, ions, and metabolites [12].
Stem nodes play a vital role in Cd transfer from soil to
grains [14]. Genetic manipulation of the transporters in
stem-portion might prevent the distribution of toxic
heavy metals, like Cd, into grains [15]. Feng et al.
(2017) reported that the Cd concentration profiles were
distinct in different part of rice, including stem nodes
[13]. They showed that node I had higher capacity in
Cd sequestration and detoxification, and node I had
higher expression of genes associated with glycolysis
and detoxification. Fujimaki et al. (2010) found that Cd
accumulated most intensively in rice nodes [14]. These
results indicate the multifaceted roles of plant nodes in
Cd accumulation and detoxification. However, little is
known about how differentially expressed genes (DEGs)
related to Cd transport and enrichment of Cd in rice
nodes.

Rice variety “Xiangwanxian No. 12”7 with low Cd-
accumulation and “Yuzhenxiang” with high Cd accumu-
lation in the grains were identified in previous study
[16]. In this study, we performed deep sequencing ana-
lysis to identify DEGs and miRNAs (DEmiRNAs) be-
tween node I and panicle node from the two cultivars
with and without-Cd stress. Through bioinformatics
analysis, the key candidate genes, miRNAs, and bio-
logical processes in response to Cd stress were deci-
phered. These results are useful in the future elucidation
of the molecular mechanisms of Cd-accumulation and
transport to rice grains.
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Results

Cd accumulation during cd-stress

Under the control condition, node I (marked as “N”) in
the two cultivars [21.05mg/kg DW (Dry Weight) in
“Yuzhenxiang” as “y” and 10.25 mg/kg DW in “Xiang-
wanxian No. 12”7 as “X”] had higher Cd accumulation
compared with panicle node (marked as “P”, 2.17 mg/kg
DW in “y” and 1.40 mg/kg DW in “X”; p < 0.01, Fig. 1a).
The Cd stress increased the Cd accumulation in all tis-
sues, especially in the node I (56.43 mg/kg DW in “y”
and 44.25 mg/kg DW in “X”). Grains of “X” cultivar had
lower Cd content (both in control and Cd treatment)
than that in “y” cultivar. These data confirmed that “y”
was a high Cd accumulation cultivar, and node I had
higher capacity in Cd sequestration. In addition, the ex-
pression of OsMAPK, OsHMA3, OsZIP4 and OsPCS
showed different profiles in different groups (Fig. 1b to
e). OsMAPK showed a higher expression (mean value)
after Cd treatment in panicle node and node I of “X”
and “y”. Additionally, the expression of OsMAPK in “X”
was higher than that in “y” (Fig. 1b). We found that the
expression of OsHMA3 was increased by Cd stress in
panicle node, not in node I (Fig. 1c). While OsZIP4 and
OsPCS showed no differences among different groups
(Fig. 1d and e).

Summary of the mRNA-seq and miRNA-seq

Twenty-four ¢DNA libraries were constructed and a
total of 1111.34 M clean reads obtained with 89.80%
average mapping rate (76.45-92.37%) to the rice refer-
ence genome (Additional file 2: Table S1). Principle
component analysis (PCA) (Fig. 2a) and sample-to-
sample clustering analysis (Fig. 2b) showed that the sam-
ples of the same tissue (“P” or “N”) from the same culti-
var of control (“C”) and Cd treatment (“T”) were
clustered together, respectively. Twenty-four miRNA li-
braries generated total 350.83 M clean reads (112.57 M
unique reads) with an averaged mapping rate of 82.01%
to the O. sativa reference miRNA in miRbase (http://
www.mirbase.org/cgi-bin/mirna_summary.pl?org=osa).
The alignment rate of each sample ranged from 0.62 to
2.37% in miRBase (average 1.49%, Additional file 2:
Table S1). PCA and sample-to-sample clustering analysis
showed that samples of the same tissue (“P” or “N”)
were grouped together (Fig. 2c and d).

DEGs between high and low cd accumulation cultivars

A total of 4535 DEGs were identified by pairwise com-
parison of Cd-treated (T) vs. untreated control (C) of
node I (N) and panicle node (P) in “X” and “y” cultivar,
respectively (Fig. 3a-b and Table 1). The results showed
that there were more down-regulated genes in “X” culti-
var than that in “y” cultivar. GO and KEGG enrichment
based on these down regulated genes were performed to
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Fig. 1 Cd contents and regulator expression profiles in these two rice varieties. a shows the Cd contents in different stem nodes and grain. DW,
dry weight (kg); XP, panicle node of Xiangwanxian No.12; XN, node | of Xiangwanxian No.12; yP, panicle node of Yuzhenxiang; yN, node | of
Yuzhenxiang; XG, grain of Xiangwanxian No.12; yG, grain of Yuzhenxiang. # p < 0.05, ## p < 0.01 Cd treatment vs. control; * p < 0.01, ** p<0.05 y
(Yuzhenxiang) vs. X (Xiangwanxian No.12). b to e show the interleaved violin plot of the expression of OsMAPK, OsHMA3, OsZIP4 and
OsPCS, respectively

identify the main biological processes. The results
showed that GO terms of “transporter activity” and “re-
sponse to stimulus” were significantly enriched in “X”,
not in “y” (Fig. 4a). Results of hierarchical clustering ana-
lysis of the 84 common DEGs (including 69 genes down
regulated by Cd stress in “X”) showed an enrichment in
“transporter activity” (Fig. 4b and Additional file 3: Table
S2), whereas another 74 common DEGs (including 62
genes down regulated by Cd treatment in “X”) were
enriched in “response to stimulus” (Fig. 4c and Add-
itional file 4: Table S3). Notably, most of the DEGs in
“X” were down-regulated by Cd treatment, and most
down-regulated genes in “X” by Cd treatment were un-
changed in “y”, especially for the DEGs associated with
“response to stimulus” (Fig. 4c). Most of the DEGs men-
tioned above were differently expressed in different stem
nodes (Fig. 4c and d).

The iron-regulated transporter 1 (IRT'Z, OS03G0667500)
[17] and metal transporter Nramp5 (Mn and Cd uptake

protein, OS07G0257200) [18—20] were noteworthy as they
had higher expression in the panicle node compared with
node I (Additional file 3: Table S2). For node I, OsIRT1
and OsNramp5 increased in “X”, while decreased in “y”
cultivar (Additional file 1: Figure S1 A). Although the ex-
pression of OsIRT1 and OsNramp5 increased after Cd
treatment, overall it remained at a low level in “X” cultivar.

The expression patterns of OsNRT'1.5A (0S02G0689900,
nitrate transporter 1.5A) and OsVIT2 (OS09G0396900,
Vacuolar Iron Transporter 2) implied its key role in the
upward transport of Cd [21, 22]. OsNRT1.5A had a higher
expression level in node I than that in panicle node in both
two cultivars. In the panicle node, OsNRT1.5A was down-
regulated in “X” but up-regulated in “y” under Cd stress.
OsVIT2 was up-regulated following Cd treatment in node
I in both cultivars, but down-regulated in panicle node in
the “X” cultivar. Cd stress had little effects on the expres-
sion level of OsVIT2 in panicle node in “y” cultivar (Add-
itional file 1: Figure S1 A and Additional file 3: Table S2).
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Aquaporin protein is closely related to heavy metal stress,
with distinct expression patterns in different plant species
[23-27]. In our results, 6 aquaporin genes (PIPs)
(0S02G0629200, OsPIP2-6; 0S04G0233400, OsPIP2-6;
0S02G0666200, OsPIPI-1; 0S04G0559700, OsPIPI1-2,
0S07G0448100, OsPIP2-4; OS07G0448800, OsPIP2-1)
showed similar expression profiles under Cd stress (Add-
itional file 1: Figure S1 B). The expression of 6 PIPs mem-
bers was higher in “X” than in “y” cultivar under control
condition, and down regulated after Cd treatment in “X”,

but with little changes in “y”. The expression of OsPIPs

show no significant differences between node I and panicle
node in “X” and “y”.

Among the DEGs related to “response to stimulus”,
heat shock transcription factor (HSF) A2d/B2c genes (in-
cluding 08503G0161900/0S09G0526600), light-
harvesting chlorophyll a-b binding protein (LHC-II)
genes (e.g. 0S02G0197600), and genes encoding heat
shock protein (HSP71.1/70/20; including
0S03G0276500, OS01G0840100 and OS06G0253100)
showed similar changes in the panicle node and node I
of the two rice cultivars (Additional file 4: Table S3).
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Higher expression levels of aforementioned genes were
found in “X” than in “y” cultivar (Additional file 1: Fig-
ure S1C). Cd treatment decreased the expression of all
these genes in the “X” cultivar, but increased OsHSE-
A2d/B2c, OsLHC-II and OsHSP71.1 in the panicle node
of “y” cultivar. The distinct expression profiles of these
DEGs mentioned above are likely account for, or in part,
the differential Cd accumulation between the two rice
cultivars.

Expression of known cd-responsive genes

In order to decipher the DEGs expression pattern in dif-
ferent stem nodes under Cd stress, we analyzed the ex-
pression profiles of 52 Cd-responsive genes reported
previously in the literature. Among these genes, metallo-
thionein 1 (OsMT1I) [28], cadmium tolerant 1 (OsCDT1),
OsCDT2 [29, 30], OsMTPI [7], cation diffusion facilita-
tor (OsCDFI), ATP-binding cassette transporter multi-
drug resistance protein 1 (OsMRPI/ABCCI) [31, 32]
showed higher expression levels in the two rice cultivars.
Furthermore, they expressed higher in the panicle node
of the two cultivars compared with node I (Fig. 5). Cd

Table 1 Statistics of the differentially expressed genes (DEGs)
and miRNAs (DEmiRNAs) by different pairwise comparison

Comparison DEG DEmMIRNAs

Case  Control Up Down  Total Up  Down  Total
XNT XNC 759 1006 1765 20 10 30
XPT XPC 1258 888 2146 " 14 25
yNT yNC 621 385 1006 15 10 25
yPT yPC 1033 268 1301 18 8 26

“X" notes low Cd accumulation cultivar “Xiangwanxian No. 12", “y” notes high
Cd accumulation cultivar “Yuzhenxiang”, “P” indicates panicle node, “N”
indicates the first node, “C" represents control and “T” represents Cd treatment

stress enhanced the expression of OsCDTI and
OsABCCI in the node I of “X” cultivar. Another gene
serine hydroxymethyltransferase 1 (OsSHAM1I), which
showed relatively higher expression level, was down reg-
ulated only in the panicle node of “X” cultivar by Cd
stimulus (Fig. 5). In addition, the OsNAS3 (nicotinamine
synthase 3) and OsDEPI (dense and erect panicle 1)
showed relatively high expression in node I of the two
cultivars. Cd treatment increased the expression of
OsNAS3 and OsMTId in node I and both nodes, re-
spectively (Fig. 5). Other Cd-responsive genes including
OsMTIf, OsYSL15, OsIRT2, and OsGST4 had low ex-
pression levels in the two cultivars, which were unre-
sponsive to Cd stress in our study.

Identification of differentially expressed DEmiRNAs

A total of 70 non-overlapping DEmiRNAs were identified
from panicle node and node I in the two rice cultivars
(Fig. 6a and Additional file 5: Table S4). Most DEmiRNAs
were up-regulated by Cd treatment. There were 12 com-
mon DEmiRNAs among all the pairwise comparisons (Fig.
6b), of which six miRNAs (osa-miR398b, osa-miR408-3p,
osa-miR408-5p, osa-miR528-5p, osa-miR528-3p and
novel50_mature) were up-regulated by Cd treatment (Fig.
6¢). In addition, only one common DEmiRNA (osa-
miR528-3p) was identified as Cd up-regulated in the pan-
icle node of both cultivars. There were six common
DEmiRNAs (osa-miR408-3p, osa-miR408-5p, osa-miR528-
5p, osa-miR398b, osa-miR166-5p and novel50_mature) in
node I of both cultivars, among which, only osa-miR166-
5p showed a different expression pattern in node I of “X”
cultivar and panicle node of “y” cultivar. In order to reveal
the differential expression profiles of microRNAs more
comprehensively, we screened the other miRNA family
members (Fig. 6d). Osa-miR398b, osa-miR408-3p, osa-
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miR528-3p and osa-miR528-5p had a higher expression
level in panicle node than that of node I under Cd stress.
We then constructed the DE miRNA-mRNA regulatory
network (Fig. 7) based on the 15 miRNA (12 common and
3 family members) and the targets among the down-
regulated DEGs. In the regulatory network, an HSP mem-
ber (OS06G0253100) was regulated by two miRNAs in-
cluding o0sa-miR528-5p and osa-miR5493. OsMYBS5P
(0S02G0624300), OsbZIPI8  (0s02g0203000), and
OsERFI141 (0s02g0638650) were regulated by osa-
miR528-5p and novell3_mature, indirectly. Another bZIP
member OsbZIP23 (0s02g0766700) was the target gene of
osa-miR1846a/b/c-5p; SNF1-related protein kinase 1 sub-
family protein (SnRK) gene (0S02G0178000, OsSnRKI)
was regulated by osa-miR528-3p. In addition, OsAAE3
(0OS04G0683700) was regulated by both osa-miR408-3p
and novel50_mature (Fig. 7 and Additional file 1: Figure
S1D).

gRT-PCR verification of RNA-seq data
A total of 14 mRNA and 3 miRNAs were selected ran-
domly for qRT-PCR analysis (Fig. 8a and c). The fold-

changes of all the selected 14 mRNA and 3 miRNAs
found in qRT-PCR and RNA-seq were highly consistent,
and the correlation coefficient was 0.6 (Fig. 8c).

Discussion

Cd has serious influences on photosynthesis [33, 34],
respiration [35], nutrient metabolism, distribution and
ion transport in plants [8, 36—38]. Identification of rice
cultivars with low Cd accumulation in the grains is of
highly theoretical and practical significant in rice breed-
ing. Our present study confirmed that the node I of rice
plant had a high capacity in Cd sequestration and accu-
mulation. Results of our RNA-seq analyses indicated that
different capacities in Cd accumulation between node I
and panicle node were mediated by different gene ex-
pression pattern in different rice cultivars.

Barring cd transport into rice grains

The high Cd accumulation in the nodes and roots of
rice has been reported by Feng et al. [13]. Node is
the central organ of xylem to phloem transport of
nutrients, ions, and metabolites [12]. It plays a vital
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role in Cd transport from soil to grains [14]. Previous
reports showed that the accumulation of heavy metals
gradually decreased in successive nodes [13, 39-41].
Cd is transported upward and accumulated in nodes,
distributed in the xylem elliptical vascular bundles
and the surrounding parenchyma cell bridges [14, 39].
In the present study, the accumulation of Cd in
nodes is obvious, consistent with a previous report
[14]. But the content of Cd in different nodes is

different, so the roles of different nodes in blocking
the upward transport of Cd are distinct. The high Cd
content in node I indicated that most Cd was blocked
here during upward transport. The Cd transport was
subsequently blocked in panicle node, although to a
lesser extent. Therefore, it appears that the upward
transport of Cd decreases step by step from node I to
panicle node, so the concerted effect of the two nodes
is important for the interception of Cd in rice stem.
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Key genes mediating the cd transport and accumulation
in rice node | and panicle node

Using the transcriptome data, we identified several key
genes might be responsible for the Cd accumulation in
node I and panicle node. For panicle node, compared
with the high Cd-accumulation cultivar “y”, low Cd-
accumulation cultivar “X” had lower expression of
OsIRT1 and OsNrampS5, but higher expression of
OsVIT2 and OsNRTI.5A. Nramp5 is an Mg and Cd
transporter as well as Mn and Cd uptake protein. The
uptake of Cd into the root cells is primarily mediated by
OsNramp5, which showed higher transport activity than
its counterpart in wheat or maize [18—20]. The knockout
or loss-of-function mutation of OsNramp5 dramatically
reduced the accumulation of Cd and Mn without com-
promising yield [18, 42]. Compared with OsNramps,
OsIRT1I has a relatively small contribution to Cd uptake
[17]. Cd stress reduced the expression of OsNramp5 and
OsIRT1I in node I of “y”, which indicated that the Cd in-
take capacity faded. As for “X”, OsNramp5 and OsIRT1
were up-regulated in both node I and panicle node after
Cd treatment, of which the expression still at a low level,
although they were increased. This indicated that the

response patterns of OsNramp5 and OsIRT1 to Cd stress
were distinct between “X” and “y”, especially in node I.
It is likely that “X” cultivar reduces Cd intake by main-
taining a low expression level of OsNramp5 and OsIRT1
in both node I and panicle node, while “y” cultivar
blocked Cd uptake mainly by reducing OsNramp5 ex-
pression in node 1.

VIT2 regulates metal sequestration into vacuoles. VIT2
is up-regulated when excessive metals are available in
the environment. The enhanced VIT2 expression conse-
quently leads to higher vacuolar sequestration capacity
and metal accumulation in vacuoles [43—45]. Similar to
OsVIT2, OsABCCI can concentrate heavy metal ions in
vacuoles and prevent it from upward transport to the
grains [5, 32, 46]. Our transcriptome data showed that
OsVIT2 was up- and down-regulated in node I and pan-
icle node in “X” cultivar, respectively. As for “y”, there
were little changes in the expression of OsVIT2. In par-
ticular, the expression of OsVIT2 in node I of “y” main-
tained a higher level than “X”, which might explain the
high content of Cd in “yN”. In addition, the expression
of OsABCCI was induced by Cd treatment in “X”, but

not in “y” cultivar (Fig. 5). The enhanced expression of
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OsABCCI might contribute to the relatively low Cd
accumulation in grains of “X” cultivar.

NRTI1.5A mediated nitrate distribution plays a role in
plant tolerance to Cd stress [47]. The NO3 negatively af-
fects Cd uptake in plant roots [48, 49]. In our results,
the expression pattern of OsNRTI1.5A was completely
different in different nodes. OSNRT1.5A in node I was
several times higher than that in panicle node, which im-
plicated that OsNRT1.5A mainly played a role in node L.
Cd treatment enhanced OsNRT1.5A expression in node
I in “X” cultivar, but not in “y” cultivar, which revealed a
differential response in the two rice cultivars. Because
NRT1 negatively regulates the uptake of Cd and other
cations by simultaneously uptake of NO3;™ in Arabidop-
sis [48], our results could be explained by the same in-
ference, as high expression of OsNRT1.5A would
suppress Cd uptake in node I in “X” cultivar.

The concerted expression of aforementioned genes is
likely to have a large impact on Cd accumulation in rice
nodes and grains. The proposed mechanism is shown in
Fig. 9.

Key genes responded to the cd stimulus in node | and
panicle node

Among the DEGs related to “response to stimulus”,
OsHSFA2d/B2c, OsLHC-II, and OsHSPs (including
OsHSP70 and OsHSP20.0) showed higher expression in
the low Cd-accumulation “X” compared with high Cd-
accumulation “y” cultivar (Additional file 4: Table S3,
Additional file 1: Figure S1). The expression of all these
genes was significantly reduced by Cd treatment in “X”,
but showed small or undetectable changes in “y” culti-
var, indicating a relative insensitivity of “y” cultlvar to
Cd stress (Additional file 4: Table S3, Additional file 1:
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Figure S1). HSF and HSPs (large or small) play critical
roles in plant immunity, growth, defense, and stress re-
sponses [50-53]. In rice, Cd-stress induces HSPs expres-
sion, in turns it inhibits Cd-induced damage in plant
cells [54]. It has been reported that overexpression of
HSP enhanced abiotic stress tolerance to heat, drought,
abscisic acid, salinity and cold in rice [55]. Cai et al.
(2017) reported that silencing of HSFAla in tomato
plants could block Cd uptake and reduce HSP expres-
sion, while HSFAla overexpressing promoted HSP ex-
pression [53]. The unchanged expression of HSFs and
HSPs indicated that “y” cultivar was insensitive to Cd
stimulus. Likewise, the unchanged expression of OsLHC-
II might indicate more stable photosynthesis, growth,
and development of “y” cultivar under Cd stimulus. In
addition, 6 aquaporin genes (PIPs) were expressed at
higher levels in “X” than that in “y” cultivar, and down
regulated by Cd treatment only in “X”, but not in “y”
(Additional file 1: Figure S1 B). Heavy metal can cause
water deficit in plants, which greatly affects plant growth
and productivity. The expression of PIPs is closely re-
lated to heavy metal stress, with distinct expression pat-

terns in different plant species [23—27]. Different reports

have shown that heavy metals can trigger the closure of
aquaporins due to their abilities to react with the S-H
group of the protein [56, 57]. In “X” cultivar, the expres-
sion of aquaporin genes was repressed by Cd stress, but
no significant changes in “y” cultivar. The decreased ex-
pression of aquaporin genes triggered by heavy metals
was similar to what Kholodova et al. (2011) reported
[25]. The decreased activities of aquaporins lead to low
transpiration rate, under which the essential mass apo-
plastic water flow, determined mainly by the rate of
transpiration, was replaced by predominantly cell-to-cell
symplastic transport [58], which is regulated at the level
of membrane water channels. Our results also indicated
that there were significant differences between the two
rice cultivars in response to Cd stress.

Interaction relationship of miRNAs and mRNA in response
to cd stress

Among all the DEmiRNAs related to Cd accumulation,
we found osa-miR408-3p, osa-miR528-3p osa-miR528-5p
were commonly up-regulated by Cd stress in both nodes
of the two cultivars. The effect of osa-miR528-3p has not
been studied till now. Both osa-miR528 and osa-miR408
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family members were differentially expressed in response
to abiotic stresses, such as drought [59], low temperature
[60], heavy metal [61] and plant defense responses (the
reference is about drought) [62]. Cheah et al. (2015)
showed that several miRNAs including osa-miR398, osa-
miR397, osa-miR408-5p and osa-miR528-5p were up-
regulated in the drought-susceptible rice variety [59].
This was also true for in cool-tolerant rice (Hitomebore)
under cool-temperature [60]. The interaction network
showed that 4 transcription factors (TFs), OsbZIPI8,
OsbZIP23, OsMYBS5P and OsERFI141, were potential tar-
get genes of aforementioned miRNAs. Interestingly, osa-
miR5493 also showed a negative relationship with
0S06G0253100 (OsHsp20), 0S02G0203000 (OsbZIP18)
and OS02G0638650 (OsERFI41) only in Xiangwanxian
No.12. This implied that osa-miR5493 might also be a
key regulator in response to Cd stress via regulating the
expression of TFs. As we know, WRKY, bZIP, ERP and
MYB proteins play an important role in controlling the
expression of their downstream genes in response to Cd

stress [63]. The down regulation of OsERFs and OsbZIPs
was also found in another rice variety after Cd stress
[64]. Expression of osa-miR5493 were up-regulated after
Cd treatment in “X”. Correspondingly, the unchanged
expression of osa-miR5493 and these four TFs further
demonstrated that “y” cultivar was insensitive to Cd
stress. Consequently, we speculate that osa-miR5493 was
an important miRNA in regulating the expression of
OsERFs and OsbZIPs. SnRKs play an important role in
plant biotic interaction in Arabidopsis thaliana. SnRK1
overexpression plants displayed enhanced resistance to
geminivirus, while SnRK1 silenced plants were more sus-
ceptible than the wild-type plants [65, 66]. The higher
expression of OsSnRK1 in the panicle node suggests that
panicle node is the key part of “X” cultivar in response
to Cd stress. In addition, SuRKs are the upstream regula-
tory genes of HSPs in ABA signal transduction pathway
[67, 68]. Therefore, the expression changes of HSPs in
panicle node of “X” cultivar may be due to the action of
OsSnRK1 and osa-miR5493.
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Conclusions

In this study, we have demonstrated that distinct Cd accu-
mulation in the panicle node and node I in two different
rice cultivars was mediated by different gene expression
pattern. Both panicle node and node I of “X” cultivar
played a key role in blocking the upward transportation of
Cd, while only node I played a critical role in “y” cultivar.
We have identified a cluster of candidate genes which
might be responsible for Cd accumulation in panicle node
and node I. Most of these genes (OsIRT1, OsNrampsS,
OsVIT2, OsNRT1.5A, and OsABCCI) are related to the
“transporter activity”. The concerted action of these trans-
porters could block the transport of Cd up to panicle and
accumulation in the grains of low Cd-accumulation culti-
var. Among the DEGs related to “response to stimulus”,
we identified OsHSP70 and OsHSFA2d/B2c down regu-
lated by Cd in “X”, but not in “y” cultivar. MiRNAs includ-
ing osa-miR528, osa-miR408 and osa-miR5493 family
members which were up-regulated by Cd, showed poten-
tial roles in lowering Cd accumulation via regulating genes
like bZIP, ERF, MYB, SnRK1 and HSPs. The differential
gene expression is likely responsible for the low Cd accu-
mulation in “X” cultivar. These findings have provided
novel insights into breeding new rice varieties with low Cd
accumulation.

Methods

Plant materials and treatment

The seeds of two Chinese rice (O. sativa) cultivars
“Xiangwanxian No. 12”7 (low Cd accumulation, “X” for
short) and “Yuzhenxiang” (high Cd accumulation, “y” for
short) were obtained from the germplasm recourses
bank of Hunan rice research institute. All seeds were
sterilized with prochloraz, soaked in deionized water at
room temperature (RT) for 48h, and germinated at
30°C for 24'h, then sowed into the fields with normal
standard conditions (15-22°C for nighttime and 20—
25°C for daytime, without Cd stress) on 30th June in
2017. Seedlings with three true leaves were transplanted
into pots (54 cm x 41 cm x 23 cm) with the density of 8
plants/4 holes/pot. Rice cultivars were sowed into the
experimental pots full of muddy water without (control,
“C” for short) or with CdCl,-2.5H,O (15 mg/Kg; treat-
ment, “T” for short, last for about 4 months) [69]. Each
cultivar was planted in 20 replications. Plants were man-
aged with standard fertilization (compound fertilizer N:
P,05:K,0 15:8:12, 3 g/pot) was applied on July 5, 2017;
urea was applied on August 16, 2017, 0.6 g/pot) The
panicle node (“P” for short) and node I (“N” for short)
were collected at grain-filling stage on November 9,
2017. Stem nodes (about 0.3 cm length) were sampled
from fresh, leafless stems and snap-frozen in liquid ni-
trogen. According to the treatment strategies and sam-
pling positions, the group samples were named as XPC,
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XPT, yPC, yPT, XNC, XNT, yNC and yNT, where “X”
notes “Xiangwanxian No. 12”7, “y” notes “Yuzhenxiang”,
“P” indicates panicle node, “N” indicates node I, “C” rep-
resents control and “T” represents Cd treatment. Liquid
nitrogen flash frozen samples were stored at — 80 °C be-
fore the extraction of RNA. Each sample was pooled by
tissues from 3 to 5 individuals, and three repetitive sam-

ples were prepared for RNA isolation.

Determination of cd concentration

The accumulation of Cd in rice “P” and “N” tissues and
grain were determined by atomic absorption spectropho-
tometer (PerkinElmer PinAAcle 900 T, USA). Tissues
were drying in a drying box (105°C for 30 min and at
80°Cto constant weight). 50 mg powder samples were
immersed into 1 mL HNOj; and digested to transparent
solutions. Cooled samples were then diluted into water
to a final volume of 13.5 mL. Standard Cd solution was
used as quality control samples. Besides, the expression
of OsMAPK, OsHMA3, OsZIP4 and OsPCS were de-
tected by qRT-PCR method.

RNA extraction and libraries construction

Total RNA was extracted from collected samples from
two cultivars using TRIzol (Invitrogen, USA). The purifi-
cation, qualification and quantification were conducted
(DNase I, Invitrogen) by Agilent 2100 Bioanalyzer (Agi-
lent Technologies, USA). For the preparation of the
miRNA-seq, total RNA fragmentation (16-30nt) was
performed using fragmentation buffer (Ambion, USA),
followed with purification, enrichment, ligation (with 3’
and 5" RNA adapters) and PCR amplification. The fi-
nally purified amplification products were regarded
small RNA libraries (n =24) used for miRNA-seq. For
the preparation of the mRNA-seq, total RNA was re-
verse transcribed to the first strand cDNA using Super-
Script III reverse transcriptase (Invitrogen) with 6-base
random primers. The DNA samples were used for the
mRNA-seq library (n = 24) construction following the in-
struction from the mRNA-Seq Sample Preparation Kit
(Illumina, USA). Illumina HiSeq 4000 sequencing plat-
forms (pair-end 2 x 150bp for mRNA-seq, and single-
end 50 bp for miRNA-seq) were used for the sequencing
analysis.

Data processing

The raw sequencing data in the format of FastQ were
quality-controlled using the FastQC (version 0.11.5,
http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) by removing the low quality reads and adaptor
reads.


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Liu et al. BMC Genomics (2020) 21:127

mRNA profiling

The clean reads assembled and aligned to the reference
genome sequence (http://rice.plantbiology.msu.edu/pub/
data/Eukaryotic_Projects/o_sativa/; IRGSP-1.0.28) was
conducted using hisat2 [70]. The reads numbers were
counted by htseq-count [71]. Cufflinks (version 2.2.1)
[72] was used for the quantitative analysis of the reads
by calculating the FPKM values (expected number of
Fragments Per kb per Millions reads) of reads in each
sample. Principal component analysis (PCA) and
sample-to-sample clustering analysis were performed
based on the FPKM of reads. The DEGs were identified
using DESeq (http://bioconductor.org/packages/release/
bioc/html/DESeq.html) [73] by pairwise comparison.
DEGs were identified using the Negative binomial distri-
bution test with the criteria of p value < 0.05 and |log,(-
Fold Change, FC) | =21. Up- and down-regulated DEGs
were identified as log,FC>1 and log,FC < - 1, respect-
ively. The expression profiles of DEGs were presented
using hierarchical clustering by pheatmap (version
1.0.10;  https://cran.r-project.org/web/packages/pheat-
map/index.html).

miRNA profile analysis

The clean reads generated by miRNA-seq were aligned
with the reference genome sequence (O. sativa; http://
www.mirbase.org/cgi-bin/mirna_summary.pl?org=osa).
Small RNA annotation and assignment (rRNA, snRNA,
snoRNA and tRNA) were conducted in Rfam ([74],
cDNA sequencing, species repeat library [75] and miR-
Base [76, 77]. Small RNA sequences (>26nt) were re-
moved using Bowtie [78]. Sequences in the length of
15-26 nt and those unable to match the mRNA tran-
scripts were used for the identification of known and
novel miRNAs after removing the repetitive sequences.
Novel miRNAs were identified using Mirdeep2 software
[79] and RNAfold [80]. The expression of miRNAs were
calculated using transcript per million (TPM). PCA and
sample-to-sample clustering analyses were performed
based on the expression levels. Differentially expressed
miRNAs (DEmiRNAs) in response to Cd stimulus were
identified using DESeq [73] by pairwise comparison
methods, with the threshold of p value < 0.05 and |log2(-
Fold change, FC)|>0.5. Subsequently, the predictive
mRNAs of DEmiRNAs were identified using targetfinder
[81]. The overlapping DEGs between DEmiRNAs’ targets
were used for further enrichment analysis.

Enrichment analysis

The DEGs and overlapping DEGs between DEmiRNAS’
targets were separately subjected to the enrichment ana-
lysis of Gene Ontoloy (GO; http://www.Geneontology.org/
) and KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways [82]. GO categories (biological processes, BP;
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molecular functions, MFs; and cellular components, CCs)
and KEGG pathways related to the DEGs were identified
with the criterion of p < 0.05. The miRNA-gene regulatory
network was constructed using Cytoscape (version 2.8)
[83].

RT-PCR verification of RNA-seq data

qRT-PCR analysis was performed on a Light Cycler sys-
tem (Roche) using a SYBR Green PCR Kit (Qiagen).
PCR amplification was performed under the following
conditions: 94°C for 5min, followed by 40cycles of
94.°C for 15s, 58°C for 15s, and 72°C for 20s and a
final extension at 72 °C for 5 min. Quantification of gene
expression was performed by the comparative 24T
method. The validation analysis was performed with
three independent biological replicates. The gene-
specific primers for qRT-PCR were designed using Pri-
mer Premier 5.0 (http://www.PremierBiosoft.com) and
were synthesized by Invitrogen (Carlsbad, USA). The
correlation analysis of qRT-PCR and RNA-seq were
based on Pearson’s correlation coefficient. The primer
sequence information were listed in Additional file 6:
Table S5.

Statistical analysis

All experimental data were expressed as mean * SD.
Statistical analysis of all data was performed using the
GraphPad Prism 6. Differences were analyzed using the
unpaired t-test or one-way ANOVA. P<0.05 and p<
0.01 was considered as significant and very significant
difference, respectively.
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