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Abstract

Background: The advent of Next Generation Sequencing has allowed transcriptomes to be profiled with
unprecedented accuracy, but the high costs of full-length mRNA sequencing have posed a limit on the accessibility
and scalability of the technology. To address this, we developed 3’Pool-seq: a simple, cost-effective, and scalable
RNA-seq method that focuses sequencing to the 3′-end of mRNA. We drew from aspects of SMART-seq, Drop-seq,
and TruSeq to implement an easy workflow, and optimized parameters such as input RNA concentrations,
tagmentation conditions, and read depth specifically for bulk-RNA.

Results: Thorough optimization resulted in a protocol that takes less than 12 h to perform, does not require custom
sequencing primers or instrumentation, and cuts over 90% of the costs associated with TruSeq, while still achieving
accurate gene expression quantification (Pearson’s correlation coefficient with ERCC theoretical concentration r = 0.96)
and differential gene detection (ROC analysis of 3’Pool-seq compared to TruSeq AUC = 0.921). The 3’Pool-seq dual
indexing scheme was further adapted for a 96-well plate format, and ERCC spike-ins were used to correct for potential
row or column pooling effects. Transcriptional profiling of troglitazone and pioglitazone treatments at multiple doses
and time points in HepG2 cells was then used to show how 3’Pool-seq could distinguish the two molecules based on
their molecular signatures.

Conclusions: 3’Pool-seq can accurately detect gene expression at a level that is on par with TruSeq, at one tenth of
the total cost. Furthermore, its unprecedented TruSeq/Nextera hybrid indexing scheme and streamlined workflow can
be applied in several different formats, including 96-well plates, which allows users to thoroughly evaluate biological
systems under several conditions and timepoints. Care must be taken regarding experimental design and plate layout
such that potential pooling effects can be accounted for and corrected. Lastly, further studies using multiple sets of
ERCC spike-ins may be used to simulate differential gene expression in a system with known ground-state values.

Keywords: Next generation sequencing, RNA-seq, Transcriptomics, 3′-RNA sequencing, 3’Pool-seq, Differential gene
expression

Background
Transcriptional profiling by RNA sequencing (RNA-seq)
has proved to be a powerful tool for examining the effects
of genetic and chemical perturbations on biological sys-
tems [1–5]. Typically, RNA-seq is carried out by purifying
RNA and subjecting it to one of many commercial Next
Generation Sequencing (NGS) preparation kits [6–8].
These kits create libraries that consist of fragmented

cDNA with an average length of 300–500 bases, where
each fragment is flanked with indexed adapters that are
required for flow-cell binding inside the sequencer and
subsequent sample demultiplexing. One of the most
widely used kits for sequencing mRNA is TruSeq [6–8],
which uses salt-catalyzed hydrolysis, random priming, and
end repair/ligation to create sequence-ready libraries from
bulk RNA [9]. Another is SMART-seq [10], which utilizes
the template-switching activity of reverse transcriptase in
conjunction with anchored oligo-dT primers to create and
amplify full-length cDNA from as few as one cell. This
product is subsequently fragmented and tagged with
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adapters in a transposase-mediated process called tagmen-
tation [10, 11] to complete the library preparation process.
While the mechanistic details of these two methods dif-

fer, they both share the attribute of yielding NGS-
compatible libraries that give full-length transcript data.
Given the average mammalian transcript length of ap-
proximately 2700 bases [12], most transcripts will yield
around six fragments that are all sequenced in parallel. As
a result, full-length sequencing is able to give information
about splice variants and sequence diversity [13, 14], al-
though it yields redundant data if one’s main goal is to de-
termine differential expression at the gene level.
Because the costs of full-length library preparation and

sequencing often exceed $160 per sample, financial con-
siderations are often limiting determinants regarding ex-
periment design. As such, several groups have committed
substantial resources towards developing more affordable,
alternative RNA-seq library preparation methods. One al-
ternative method of note is 3′-end sequencing [15], which
preferentially amplifies and sequences only the 3′-end of
RNA transcripts. Because each transcript contributes only
one fragment for sequencing, approximately 5–6 times as
many samples can be combined per sequencing run and
yield the same relative read depth per gene as compared
to full-length sequencing. While commercial 3’RNA-seq
kits exist (for example, QuantSeq from Lexogen, Inc.) and
do reduce sequencing costs, the protocols lack an early
pooling step that decreases sample number and the prep-
aration costs still exceed $25 per sample, making them
unsuitable for large studies.
The utility of 3′ sequencing is clearly demonstrated by

Drop-seq [16], a single-cell RNA-seq method that uti-
lizes SMART-seq technology, bead-conjugated primers,
and microfluidics to allow the user to amplify 3′-end
fragments and maintain single-cell identity from over 30,
000 cells at once. Although Drop-seq and its related
microfluidics-based workflows are at the forefront of
single-cell sequencing technology [17], their protocols
have not been optimized for preparing libraries from
bulk RNA in standard tube or plate format. Further-
more, the requirement of custom primers during se-
quencing makes them unfeasible for researchers who
use NGS services that prohibit the use of non-standard
sequencing primers, or who wish to share a sequencing
run with other types of libraries. Recent studies have
attempted to utilize 3’RNA-seq technology for plate-
based transcriptomics profiling of bulk RNA [18, 19],
but they require custom sequencing reagents and expen-
sive instrumentation, and thorough benchmarking
against standard RNA-seq protocols is either lacking or
is shown to be suboptimal (see discussion).
Herein, benchmark RNA from wild-type and GFAP-

IL6 mice along with ERCC RNA standards were utilized
to design and optimize a process called 3’Pool-seq,

which draws from aspects of SMART-seq, Drop-seq,
and TruSeq, and does not require custom sequencing
primers or instrumentation. 3’Pool-seq allows the user
to create and sequence 3′-mRNA libraries in under a
day for less than $15 per sample ($3 library preparation
and $12 sequencing cost per sample), while still main-
taining a standard of quality with regard to data gener-
ation and gene expression quantification that is on par
with TruSeq. The robustness of 3’Pool-seq was further
demonstrated with as little as 10 ng input RNA. This
method was then applied in a plate-based fashion to profile
the transcriptomic changes that occur when HepG2 cells
are treated with PPARγ agonist drugs, and successfully dis-
tinguished troglitazone from pioglitazone by its unique
transcriptomic signature corresponding to cytotoxicity.

Results
Design of 3’Pool-seq
A schematic representation of the 3’Pool-seq method for
gene expression quantification is depicted in Fig. 1. Total
RNA from each input sample is first reverse-transcribed
into cDNA using an anchored oligo-dT primer with an
indexed TruSeq i7 adapter overhang. These indices serve
as 3′-end barcodes for the individual samples. The same
Template Switching Oligo that is used in SMART-seq is
added to the reaction to provide a handle at the 3′-end
of the cDNA to allow full-length cDNA amplification.
However, in contrast to the standard SMART-seq proto-
col, cDNA samples with unique 3′-end barcodes are
pooled immediately after the first strand cDNA synthe-
sis. Subsequent library preparation steps (cDNA amplifi-
cation, Nextera tagmentation, 3′-end cDNA fragment
amplification) are then carried out on the sample pools,
drastically reducing the time and reagent costs for
downstream library preparation steps while also minim-
izing the technical variability among samples. Further-
more, since the 3’Pool-seq protocol uses oligo-dT
primers linked to standard indexed TruSeq i7 adaptors
(unlike the custom adapter primer sequences used in
Drop-seq), the resulting 3′-end cDNA fragments can be
easily PCR-amplified using standard TruSeq i7 and Nex-
tera i5 primer reagents. The use of indexed Nextera i5
adapter primers for 3′-end cDNA fragment amplifica-
tion also enables further barcoding and multiplexing of
multiple sample pools into a superpool. The final se-
quencing library product is a dual indexed hybrid Nex-
tera/Truseq library that maintains strand orientation,
with 3′-end cDNA fragments flanked by an indexed
Nextera i5 adapter and an indexed TruSeq i7 adapter,
and an average length of 550 basepairs. The indices on
the Nextera i5 adapter therefore serve as the pool bar-
code, and indices on the TruSeq i7 adapter serve as the
sample barcode within a pool. This early pooling and
dual-indexed multiplexing scheme reduces the number
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of individual sample preparations needed and cuts down
the cost and time for library preparation. Furthermore,
since 3’Pool-seq uses the 3′-end fragments to quantify
transcript abundance, fewer sequencing reads are needed
per sample, further reducing the sequencing cost.

Gene expression quantification using 3’Pool-seq
The performance of 3’Pool-seq was first assessed in
terms of its accuracy, sensitivity, and reproducibility in
quantifying gene expression. Sequencing libraries were
generated using 3’Pool-seq and TruSeq from total RNAs
purified from brain cortical samples of three wild-type
(WT) C57BL/6 mice and three GFAP-IL6 mice [20].
The GFAP-IL6 mouse is a model that we and others
have utilized to study the role of neuroinflammation in
neurological and psychiatric disorders [21]. For 3’Pool-
seq, on average, 6.4 million 75 base-pair single-end se-
quencing reads were generated for each sample. Reads
were then trimmed for polyA at the 3′-end in case se-
quencing extended into the polyA tails. After trimming,
reads were aligned to the reference genome. Those reads
uniquely aligned and mapped to gene feature regions
were counted (See Methods for details). A side-by-side
comparison of the alignment and gene feature mapping
metrics between 3’Pool-seq and TruSeq samples are

shown in Table 1. The majority of the 3’Pool-seq reads
(87% of total reads) can be mapped to the reference gen-
ome, comparable to mapping rates for TruSeq samples
(94%). The percentage of uniquely mapped reads for
3’Pool-seq (72%) is slightly lower than Truseq (87%),
likely reflecting the higher sequence similarity at the 3′-
end of mRNAs. Only 2% of reads were assigned to
rRNAs, indicating the oligo-dT primed reverse transcrip-
tion procedure is efficient in avoiding rRNA contamin-
ation. As expected, a higher percentage (42 ± 0.7%) of
the 3’Pool-seq reads were mapped to 3′ Untranslated
Regions (UTR). As an example, the read distribution in
the genomic region around the Apoe gene is shown in
Fig. 2a. 3’Pool-seq gave a single peak at the last exon of
the Apoe gene covering the 3’UTR and the 3′-end of the
protein coding region while Truseq reads were mapped
throughout the gene body. The distribution of reads for
the top 1000 most abundant genes is also highly biased
towards to 3′-end of the gene body as expected for
3’Pool-seq (Fig. 2f). A more detailed list of sequence
counts on a per-sample basis can be found in
Additional file 2: Table S1.
To assess the accuracy of gene expression quantifica-

tion, an ERCC spike-in mix of 92 synthetic mRNAs with
pre-determined concentrations was added to the input

Fig. 1 A schematic representation of the 3’Pool-seq protocol. The use of anchored oligo-dT primers with standard indexed TruSeq i7 adapter
overhangs for first strand synthesis allows immediate pooling of multiple samples after reverse transcription. Within a pool, each sample can be
uniquely identified by the TruSeq i7 index. Once pooled, purification, PCR, and Nextera tagmentation reagents are used to generate cDNA
fragments. A second PCR step using standard TruSeq i7 and indexed Nextera i5 adapters allows selective amplification of only 3′-end cDNA
fragments and barcoding of each sample pool with a standard Nextera i5 index. The final product is a dual-indexed hybrid Nextera/TruSeq 3′-
library where the i5 Nextera index serves as the pool index, and the i7 TruSeq index serves as the sample index within a pool. Multiple indexed
library pools can be further quantified and combined in equal proportions into a superpool for sequencing
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total RNA samples prior to library preparation. 3’Pool-
seq derived expression values were then compared to
theoretical ERCC spike-in concentrations. An average
Pearson correlation coefficient r of 0.968 was observed,
indicating gene expression quantification from 3’Pool-
seq is highly accurate (Table 1). A correlation plot be-
tween observed and theoretical ERCC levels in one rep-
resentative sample is shown in Fig. 2b. An excellent
correlation of ERCC quantification between sample rep-
licates (average Pearson’s correlation coefficient r =
0.984, example shown in Fig. 2c) was also observed. It is
worth noting that for both ERCC metrics, 3’Pool-seq
outperformed TruSeq slightly (Table 1). In addition, a
strong correlation between samples was also observed
for the expression levels of all genes, as shown in the ex-
ample in Fig. 2d (Pearson’s correlation coefficient r =
0.98). To assess the sensitivity of 3’Pool-seq at different
sequencing depths, we down-sampled reads gradually
from 10 million uniquely mapped reads to half a million
uniquely mapped reads and assessed how many genes
can be detected at different abundance thresholds
(Fig. 2e). While the number of genes detected generally
decreases as the number of uniquely mapped reads is re-
duced, the inflection point appears to be at around 1 to 2
million uniquely mapped reads, where the number of
genes detected reduces rapidly with continued down-
sampling. This suggests that ~ 2 million uniquely mapped
reads would be minimally recommended for 3’Pool-seq.
These performance metrics, taken together, indicate that
3’Pool-seq is highly accurate, reproducible, and sensitive
in gene expression quantification.

Performance of 3’Pool-seq in detecting differential gene
expression
Transcriptional profiling experiments are often designed to
study differential expression patterns between conditions

([4, 5] as examples). To assess the ability of 3’Pool-seq to
detect differentially expressed genes (DEGs) it was bench-
marked against the TruSeq protocol. In total, 194 differen-
tially expressed genes (FDR qvalue< 0.05, absolute log2
(Fold-Change) > 1) were identified by TruSeq when com-
paring GFAP-IL6 transgenic animals to wild-type animals.
DEGs are primarily up-regulated genes related to neuroin-
flammation pathways induced by the expression of pro-
inflammatory cytokine IL6. With these DEGs identified
from TruSeq, we constructed a Receiver Operating Charac-
teristics (ROC) analysis to assess the recall rate of TruSeq
DEGs by 3’Pool-seq where genes were ranked by their dif-
ferential expression p-value. We also conducted two separ-
ate 3’Pool-seq library preparations on the same set of
samples to assess the technical reproducibility of 3’Pool-
seq. Overall, the two technical replicate experiments per-
formed similarly in the ROC analysis with high recall rates
for the TruSeq DEGs (average AUC= 0.921, Fig. 3a). In
addition, the effect size of the DEGs (i.e. expression fold
changes between GFAP-IL6 and wild-type animals) quanti-
fied by 3’Pool-seq and TruSeq are correlated with a Pear-
son’s correlation coefficient r = 0.654 (Fig. 3b).

Robustness of 3’Pool-seq in low-input samples
Full-length RNA-seq library preparation protocols such
as TruSeq often have a minimal requirement of 100-200
ng input total RNA, limiting their utility in studies with
scarce sample quantity. Here, the performance of 3’Pool-
seq was tested with different input amounts of total
RNA, ranging from 0.5 ng to 50 ng. As shown in Fig. 4a,
in general more genes can be detected (TPM > 1) as the
amount of RNA input increases but the number of genes
detected starts to saturate at around 10 ng of RNA input,
with a total number of 13,125 genes detected on average.
Similarly, stronger gene expression correlations were ob-
served among replicates when higher amounts of RNA

Table 1 Sequencing and mapping quality metrics comparison between 3’Pool-seq and TrusSeq. Shown in the table are the mean
and standard deviation of the different quality metrics

Quality Metrics 3’Pool-seq mRNA TruSeq

# of samples 6 6

Reads per sample (Millions) 6.4 ± 3.6 33 ± 10.4

Number Uniquely Mapped Reads (Millions) 4.7 ± 2.7 28.7 ± 8.7

% mapped reads 87.2 ± 2 94.4 ± 1.9

% Uniquely mapped reads 72 ± 4 87 ± 1

% coding reads 24 ± 0.8 36 ± 2

% UTR reads 42 ± 0.7 34 ± 0.2

% rRNA reads (× 10^-5) 2 ± 0.4 19.8 ± 8

% non-mRNA reads 31 ± 2 28 ± 3

# of genes detected (TPM >1) 13,571 ± 179 14,135 ± 211

ERCC correlation with theoretical concentrations (r2) 0.93 ± 0.01 0.87 ± 0.03

ERCC pairwise correlation between samples (r2) 0.97 ± 0.01 0.95 ± 0.01
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inputs were used (Fig. 4b). High global gene expression
correlations among replicates (Pearson correlation coef-
ficient r > 0.96) were observed even when as little as 10
ng total RNA inputs were used. In addition, the DEGs
detected are comparable between the 10 ng and 50 ng
total RNA input runs with their log2(Fold-Change)
values correlated with a Pearson correlation coefficient
r = 0.781 (Fig. 4c).

Plate-based 3’Pool-seq
The 3’Pool-seq library preparation protocol was further
adapted to a 96-well plate format to enable high-
throughput RNA-seq profiling experiments. The 96-well
format is ideally suited for the 3’Pool-seq dual indexing

scheme where samples from either each column or row
can be barcoded using the TruSeq i7 indices and pooled
after the reverse transcription step. The Nextera i5 indi-
ces can then be used as the pool indices. For example, a
row pooling scheme would require 12 TruSeq i7 indices
(column indices) and 8 Nextera i5 indices (row indices),
and the combination of row and column indices can
uniquely identify each sample in the 96-well plate format
(Fig. 5a). As a test case, we examined the effect of two
PPARγ agonist drugs, troglitazone and pioglitazone, in
HepG2 cells at multiple doses and time points. Troglita-
zone is known to have liver cytotoxicity while pioglita-
zone has a better safety profile [22]. A total of 80
samples were formatted into 8 rows by 10 columns on a

Fig. 2 3’Pool-seq provides robust and reproducible gene expression quantification. a Read distribution from full-length mRNA-seq (Truseq) and
3’Pool-seq in the ApoE gene region. Reads generated using 3’Pool-seq are mapped preferentially towards the 3′-end of the gene. b Correlation of
the abundance levels of ERCC spike-ins between 3’Pool-seq quantifications and actual pre-mixed concentrations. c Correlation of the abundance
levels of ERCC spike-ins between 3’Pool-seq replicates. d Correlation of gene expression values (log2TPM) between 3’Pool-seq replicates. e
Number of genes detected with different minimal abundance thresholds at increasing read depths (i.e. total number of reads uniquely aligned to
gene features). f Distribution of 3’Pool-seq reads is skewed towards the 3′-end of the gene body as expected. Normalized positions 0 and 100
correspond to 5′-end and 3′-end of genes, respectively
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96 well plate and a row pooling scheme was applied as
shown in Fig. 5a.
While the row- or column-pooling is convenient and

minimizes the within-pool technical variability, it is also
important to recognize the potential confounds intro-
duced by pooling. For example, in a row pooling scheme,
the different TruSeq i7 indexed primers (column indi-
ces) might have slightly different concentrations or effi-
ciencies and render a column-based confounding effect.
Similarly, experimental variabilities introduced after the
row pooling would affect all samples in the same pool
and appear as row-based confounding effects. While cer-
tain confounding effects can be minimized, for example,
by carefully selecting high-quality primers and equalizing

primer concentrations, other confounding effects such
as those introduced after pooling are harder to avoid.
Therefore, additional procedures were incorporated in
our experimental and computational analysis workflow
to quantify and correct for these potential row- and
column-based confounding effects. Equal amounts of
ERCC standards were spiked in to all input RNA sam-
ples. After library preparation and sequencing, we quan-
tified the ERCC concentrations from sequencing reads,
and computationally assessed potential column and row
effects through principal component analysis (PCA).
Once observed, these column or row effects could be in-
corporated into the differential gene expression analysis
as a covariate to improve DEG calls. Figure 5b shows the

Fig. 3 Performance of 3’Pool-seq in detecting differential expressed genes. a Differentially expressed genes identified by TruSeq (FDR q-value<
0.05, absolute log2(Fold-Change) > 1) were used as the “true DE genes”. b Correlation of the log2(Fold-Change) quantified by 3’Pool-seq and
TruSeq for DE genes identified by the TruSeq protocol

Fig. 4 Performance of 3’Pool-seq with low RNA input samples. a Number of genes detected (TPM > 1) when different RNA input amounts were
used. b Correlations of ERCC spike-ins among replicates when different amounts of RNA input were used and ERCC spike-ins were diluted
proportionately. c Comparisons of log2(Fold-Changes) for DE genes (defined as FDR q-value< 0.05, log2(Fold-Change) > 1 in the 3’Pool-seq run
with 50 ng RNA input) between 10 ng input RNA 3’Pool-seq run and 50 ng input RNA 3’Pool-seq run
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PCA analysis of the ERCC spike-ins quantified in our
PPARγ test case. The samples from different pools sep-
arate clearly along the first principal component (coeffi-
cient of determination of rows with PC1 R2 = 0.53),
indicating a strong row effect. In contrast, no obvious
column effect was observed (coefficient of determination
of columns with PC1, R2 = 0.11, Fig. 5c). After incorpor-
ating the row effect into the differential expression ana-
lysis as a covariate, a total of 2172 DEGs (absolute
log2(Fold-Change) > 1 and FDR q-value< 0.05) were ob-
served at the highest dose (25 μM) 16-h treatment of
troglitazone, while only <70 DEGs were found in similar
pioglitazone treatments. GO enrichment analysis further
confirmed that genes annotated with “regulation of cell
death” (GO:0010941) were highly enriched among the
DEGs triggered by troglitazone (enrichment p-value<
8.7E-15), consistent with the previously reported cyto-
toxicity [22]. Interestingly, many of these DEGs show lit-
tle gene expression changes at lower doses and earlier
time points (Fig. 5d), illustrating the importance of test-
ing compounds at multiple doses and time points. It is
also worth noting that, without correcting the row pool-
ing effect in the differential expression analysis, fewer
significantly differentially expressed genes (1707 DEGs)

could be identified, further emphasizing the need to
utilize ERCCs to assess column and row effects and in-
corporate them into differential gene expression analysis.

Conclusions
Gene expression is a highly dynamic process. The effect
of genetic regulation or external perturbations on gene
expression is highly time- and dose-dependent. While
whole transcriptome profiling is a powerful technique
that enables genome-wide interrogation of gene expres-
sion, current practices are often limited to taking snap-
shots of the transcriptome at a single condition due to
the cost and time required for traditional RNA-seq ex-
periments. Thus, the 3’Pool-seq method presented here
provides a cost- and time-effective solution for large-
scale RNA-seq studies, enabling thorough interrogation
of transcriptome changes at multiple time points and
conditions.
The 3’Pool-seq method integrates several technology

advancements, leveraging the 3′-barcoding and early
pooling strategies commonly used in single-cell RNA-
seq studies and template switching and tagmentation
techniques for efficient cDNA amplification and frag-
mentation. The reduced and optimized reaction volumes

Fig. 5 Plate-based format of 3’Pool-seq applied to differentiate gene expression responses between troglitazone and pioglitazone treatments. a
Layout of plate-based 3’Pool-seq using row pooling scheme. Principal component analysis using ERCC spike-ins is used to assess row effect b and
column effect c. 95% confidence eclipses are shown for each row or column groups. Row effect is observable as indicated by the strong
correlation of row groups with PC1 (R2 = 0.53), while column effect is not observed (correlation of column groups with PC1 R2 = 0.11). d
Differentially expressed genes identified at different doses and time points for the two PPARγ agonists. Row I.D.s were used in the differential
expression analysis to correct for row pooling effect. e DE genes identified upon 16 h 25 μM troglitazone treatment showed little differential
changes in 16 h 25 μM pioglitazone treatment
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further save on library preparation reagents. By using
standard TruSeq i7 and Nextera i5 indexed primers, the
final 3’Pool-seq libraries are fully compatible with stand-
ard Illumina sequencing protocols without the need for
any custom sequencing reagents. Overall, the 3’Pool-seq
library preparation method costs ~$3 per sample and re-
quires only 2–3 h hands-on time (Table 2), significantly
reducing the cost and time for library preparation. Fur-
thermore, it was demonstrated that 3’Pool-seq generated
high quality libraries with > 80% of reads mappable to
the reference genome and a majority (> 66 ± 1.5%) of the
uniquely mapped reads located in usable gene feature re-
gions, as well as a very low percentage of reads (< 1.9 ±
0.8%) from rRNA and genomic DNA contamination
(Table 1). By using ERCC spike-in standards, it was
shown that the 3’Pool-seq method was able to accurately
and reproducibly quantify gene expression levels. More
importantly, 3’Pool-seq was able to reproduce the differ-
entially expressed genes from the standard TruSeq
protocol at a small fraction (5%) of the library prepar-
ation cost and one third of the hands-on time. Our
down-sampling procedure showed minimally 2 million
gene feature aligned reads (~ 4 million raw reads) would
capture the majority of the expressed genes, allowing ef-
ficient multiplexing of a large number of samples in a
single sequencing run.
In accordance with research that compared commer-

cial 3′-end sequencing with full-length RNA-seq [23],
we found that full-length sequencing with TruSeq did in
fact detect more differentially expressed genes than
3’Pool-seq (Additional file 1: Figure S1.A). A deeper ana-
lysis reveals that the differentially expressed gene set
which is unique to TruSeq has a longer average length
than the other sets and is on average expressed at a rela-
tively lower level (Additional file 1: Figure S1.B). This is
likely explained by the observation that full-length RNA-

seq has a bias towards detecting longer transcripts due
to the fact that they contribute more fragments per se-
quencing run [24]. Not surprisingly, the lengths of the
differentially expressed genes detected by 3’Pool-seq do
not show a size bias (Additional file 1: Figure S1.B).
While previous research has shown a higher correlation
of DEG magnitude between 3′-end sequencing and full-
length sequencing [23], different methods were used
(Lexogen QuantSeq and Kapa Stranded mRNA-Seq, re-
spectively). Further studies would therefore be required
to determine how 3’Pool-seq and/or TrueSeq compare
to these methods. Additional studies using, for example,
different sets of ERCC standards at different concentra-
tions will also be required to simulate differential gene
expression in a system with a known ground-state to
truly evaluate the false positive and negative hit rate of
each method. Regardless, a gene ontology (GO) analysis
of the DEGs uncovered by 3’Pool-seq and TruSeq
reveals almost identical pathways (Additional file 3:
Tables S2 and Additional file 4: Table S3, respectively),
further supporting the validity of using 3′-end sequencing
to study transcriptomic responses to system perturbations.
Another innovation of the 3’Pool-seq method is the

support for 96-well plate format for library preparation
through row or column-based pooling, and the use of
ERCC spike-ins and computational procedures to assess
and correct for pooling confounding effects. As shown
in the PPARγ test experiment, proper design of the
pooling strategy and the correction of row or column-
based pooling confounds are critical for differential gene
expression analysis. Furthermore, the 96-well plate based
3’Pool-seq library preparation format can easily be
adapted for automation.
Several low-cost RNA-seq library preparation techniques

have been reported recently, each with their strengths and
weaknesses (18,19). To evaluate the performance of any

Table 2 Cost, Time, and Qualitative Metrics comparison of 3’Pool-seq and TrusSeq, as well as two additional 3′-end sequencing
techniques: Plate-Seq and DRUG-seq. (N/A) indicates that values were not readily accessible in the corresponding article. (*)
Represents sequencing costs on a HighSeq platform, while others represent costs on a NextSeq platform

3’Pool-seq TruSeq Plate-Seq DRUG-seq

Library prep cost per sample $3 $60 $3 $0.2–1

Sequencing cost per sample $12 $100 $12* $2–4*

Overall time for library prep 8–12 h 2–3 days > 2 days N/A

Hands-on time 2–3 h 6–8 h N/A N/A

Samples per Run 96 12–24 96 384–1536

Major
Advantage

No custom equipment
or sequencing primers,
stringently benchmarked
against ERCC and TruSeq.

Best option for
detecting low-
abundance genes
or splice variants.

Oligo-dT Plate-based RNA
purification.

Most affordable option,
highest throughput, manual
alternative is described.

Major Disadvantage Involves RNA purification
step, lowest throughput
of three 3′-end techniques
described herein.

Most expensive option,
low-throughput, tech
nically tedious.

Requires custom liquid
dispensing equipment, no
detailed benchmarking with
ERCC or TruSeq.

Requires custom liquid
dispensing equipment, manual
protocol not benchmarked.
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given methodology, it is important to consider its robust-
ness in several different areas. These include ERCC meas-
urement accuracy, DEG detection as compared to TruSeq,
throughput, general accessibility, and sequencing metrics
such as mapping rate. Without a true head-to-head com-
parison of different techniques using identical samples,
their relative strengths and weaknesses can only be deter-
mined by evaluating their performances with the above cri-
teria. Both PLATE-Seq and DRUG-seq were shown to have
throughput capabilities that are on par with L1000 [18, 19],
while still being able to directly detect the full transcrip-
tome. However, this comes at the cost of using custom se-
quencing primers, sophisticated equipment, and, in the
case of PLATE-Seq, specialized oligo-dT purification plates.
Furthermore, these papers do not report performance met-
rics such as ERCC measurements. An ROC analysis com-
paring DRUG-seq to TruSeq was performed and it gave an
average AUC of 0.73 (19), as compared to the 0.921 value
generated in the 3’Pool-seq experiments. The DRUG-seq
paper also describes a manual alternative of their protocol
that does not require liquid-handling equipment, but it
does not discuss its performance in detail [19]. These differ-
ences are summarized in Table 2. In this paper we have de-
scribed the strengths of 3’Pool-seq with regard to accurate
ERCC measurements, quality metrics such as mapping rate,
and DEG detection that is on par with TruSeq.
With much reduced cost, streamlined experimental

procedures, high data quality for gene expression quanti-
fication and differential analysis, robust performance
with low RNA inputs, and flexible support for plate-
based library format, 3’Pool-seq not only provides sig-
nificant cost and time saving for existing RNA-seq appli-
cations but also opens up new opportunities for future
large-scale transcriptomics studies.

Methods
Animal care and dissection
All procedures were performed in compliance with the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals under the approval of the Pfizer
Cambridge Institutional Animal Care and Use Commit-
tee. 3-month-old GFAP-IL6 homozygous or wild-type
mice were euthanized by cervical dislocation followed by
decapitation. Frontal cortex was dissected and snap-
frozen in RNAse-free tubes on dry ice. Total RNA was
isolated by Trizol-chloroform extraction.

HepG2 culture, treatment, and crude RNA preparation
HepG2 cells (ATCC) were cultured in growth media
(DMEM supplemented with 1% Penn/Strep, 1% MEM,
1% Glutamax, and 10% Serum) at 37 °C, 5% CO2 and
85% relative humidity. For treatments, 105 cells in 1 ml
growth media were seeded into 24-well culture dishes
and allowed to settle for 6 h. Growth media was then

replaced with serum-free media containing the indicated
concentrations of troglitazone or pioglitazone (Sigma-
Aldrich) and vehicle (DMSO, 0.1% final concentration),
and the treated cells were allowed to grow for 2 or 16 h.
Cells were then stripped of media, washed once with
PBS, and were lysed by the addition of 1 ml Trizol. Total
RNA was then isolated by Trizol-chloroform extraction.

RNA refinement and quantification
RNA from Mouse Brains or HepG2 cells was further re-
fined with an RNeasy Micro kit (Qiagen) using the
standard RNA Cleanup protocol, starting with 100 μl of
crude RNA obtained above. Refined RNA was then ex-
amined with an Agilent TapeStation 4200 (Agilent Tech-
nologies, Inc) to ensure that all samples had a RIN value
greater than 8.0 and was quantified with a Qubit 3.0
Fluorometer (Life Technologies).

Reverse transcription, pooling, and exonuclease
treatment
All oligo-nucleotides used in this study were sourced
from Integrated DNA Technologies, Inc. as PAGE-pure
oligos, and the sequences can be found in the
Additional file 5 Primer Sequences section.
The indicated amount of RNA was diluted in 5 μl

RNAse-free water and plated in 96-well plates. 1 μl
Indexed RT Primer (10 μM), 1 μl 10 mM dNTP Mix
(New England Biolabs), and 1 μl diluted ERCC Spike-In
Mix 1 (0.004 μL stock ERCC per μg RNA, Thermo-
Fisher) was added to RNA. Annealing was initiated by
placing the plate in a thermocycler at 72 °C for 3 min,
followed by immediate placement on ice.
Next, 10 μl of a Master Mix containing 3.6 μl Super-

Script 5x Buffer, 0.25 μl H2O, 0.25 μl DTT (100 mM),
2 μl Betaine (5M), 0.9 μl MgCl2 (100 mM), 2.5 μl Tem-
plate Switching Oligo (10 μM) and 0.5 μl SuperScript II
Reverse Transcriptase (ThermoFisher) was added to
each sample, and Reverse Transcription was carried out
in a thermocycler using the following program: 42 °C for
90 min, 10 cycles of (50 °C for 2 min, 42 °C for 2 min),
70 °C for 15 min, and 4 °C hold.
Samples were pooled by mixing an equal volume of

each Reverse Transcription reaction into a new well at a
total volume of 20 μl. Residual primers were then de-
graded with the addition of 1 μl Exonuclease I (New
England Biolabs) and incubated at 37 °C for 45 min
followed by denaturation at 92 °C for 15 min.
Reverse transcription reactions were then cleaned by

adding 12 μl of Agencourt XP Beads (Beckman Coulter)
to each pool of samples. Manufacturer’s suggestions
were followed, and cDNA was eluted with 10 μl Elution
Buffer and transferred to a new well.
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cDNA amplification and Tagmentation
To each cDNA pool we added 1.25 μl Enrichment Pri-
mer A (20 μM), 1.25 μl Enrichment Primer B (20 μM),
and 12.5 μl Kapa HiFi HotStart Ready Mix (Kapa Biosys-
tems). Amplification was then carried out in a thermocy-
cler for the following Touch-Up PCR program: 95 °C for
3 min, 4 cycles of (98 °C for 20 s, 65 °C for 45 s, 72 °C for
3 min), 9 cycles of (98 °C for 20 s, 67 °C for 20 s, 72 °C for
3 min), 72 °C for 5 min, and a 4 °C hold.
PCR reactions were then cleaned by adding 15 μl of

Agencourt XP Beads (Beckman Coulter) to each well and
mixing. Manufacturer’s suggestions were followed, and
cDNA was eluted with 10 μl Elution Buffer and trans-
ferred to a new well. Amplified cDNA was then quantified
with a Qubit 3.0 Fluorometer (Life Technologies).
Pools of amplified cDNA were then subjected to Tag-

mentation via Nextera XT DNA Library Preparation
(Illumina, Inc.) according to the manufacturer’s protocol
with the following modifications: cDNA is diluted to 0.4
ng/μl. Next, we used a Tagmentation time of 3 min as
opposed to the recommended 5min. We also used our
own Indexed Nextera i5 Primers (2 μM) and Enrichment
Primer A (2 μM) in the PCR step. Lastly, all the volumes
were cut down by 5-fold universally in order to
maximize the number of reactions per kit.

NGS library evaluation and loading
NGS library pools that were generated from the Nextera
XT procedure were examined qualitatively in an Agilent
TapeStation 4200 (Agilent Technologies) to determine
average library lengths, and quantitatively in a Qubit 3.0
Fluorometer (Life Technologies). NGS library molarity
was then calculated using 660 g/mol per base-pair as a
molecular weight.
NGS libraries were then diluted to 4 nM, mixed in

equal volumes to create a superpool, and prepared for
sequencing in the NextSeq 500 (Illumina) according to
manufacturer’s suggestions. Single-end sequencing reac-
tions were performed with a 75-cycle High V2 kit (Illu-
mina) and the following settings: Read 1: 70 bases, Index
1: 6 bases, Index 2: 8 bases.

Bioinformatic analysis
3’Pool-seq data can be processed with standard RNA-
seq pipelines with simple modifications. After standard
sample de-multiplexing (bcl2fastq), an extra step was
added to trim off polyA sequences (minimal length of 12
nucleotides) located towards the 3′-end of the reads
(after 25th position), as sequencing reads from shorter
fragments could extend into the polyA tails of mRNA
transcripts. We found this trimming step often improves
the alignment rate of reads. Trimmed reads were aligned
to a reference genome (mm10 for mouse and hg19 for
human) using STAR aligner (version 2.4, [25]) with the

following parameters (−-alignSJDBoverhangMin 1 --out-
FilterMismatchNoverLmax 0.1 --alignIntronMax 1,000,
000). The same STAR aligner parameters were also used
for aligning reads from TruSeq samples. Reads aligned
to annotated gene features (GENCODE vM6 for mouse
and GENCODE v19 for human) were counted using fea-
tureCounts (version 1.6.3, [26]).
Mapping quality metrics were collected using PICARD

(https://broadinstitute.github.io/picard/). Since 3’Pool-
seq sequences only the 3′-end of mRNA transcripts, no
gene length normalization was applied to read counts
when calculating Transcripts Per Million (TPM) values.
Differential gene expression analysis was carried out
using the DESeq2 package in R [27]. For the plate-based
3’Pool-seq study of troglitazone and pioglitazone treated
samples, row number (i.e. pool id) was included in the
DESeq2 differential analysis as a categorical covariate to
adjust for the observed row effect.
Principal component analysis, ROC analysis, and other

custom statistical analyses were carried out using R soft-
ware (version 3.1). Gene Ontology functional enrich-
ment analysis of troglitazone induced gene expression
changes were performed using Panther [28].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6478-3.

Additional file 1: Figure S1. A Comparison of DEGs detected by
TruSeq and 3’Pool-Seq. A) Venn Diagram depicting the DEGs that are
detected by TruSeq, and/or 3’Pool-Seq at the indicated cutoffs. B) A
histogram showing Mean TPM, transcript length, and absolute log2(Fold-
Change) distributions of DEGs detected by TruSeq and/or 3’Pool-seq.

Additional file 2: Table S1. A per-sample overview of sequencing
metric details that were used to construct Table 1 of the main manuscript.

Additional file 3: Table S2. A Gene Ontology analysis of the pathways
ranked by p-value represented by the DEGs detected by 3’Pool-seq in the
Wild-Type vs. GFAP-IL6 mouse model.

Additional file 4: Table S3. A Gene Ontology analysis of the pathways
ranked by p-value represented by the DEGs detected by TruSeq in the
Wild-Type vs. GFAP-IL6 mouse model.

Additional file 5. Supplemental Material Primer Sequences. A list of all
oligo-nucleotides employed in this study, using sequence conventions as
outlined by IDT, Inc.

Abbreviations
WT: Wild-Type; DEGs: Differentially Expressed Genes; GO: Gene Ontology;
NGS: Next Generation Sequencing; RNA-seq: RNA sequencing; ROC: Receiver
Operating Characteristics; TPM: Transcripts Per Million; UTR: Untranslated
Regions

Acknowledgements
We would like to thank Dmitri Bichko for his contribution to this research.

Authors’ contributions
All authors have read and approved this manuscript. GS conceptualized
3’Pool-seq and carried out 3′-end sequencing. TL performed RNA extractions
and full-length RNA sequencing. RM and JQ devised computational pipelines
for quantitative NGS data analysis. EAP contributed scientific input into
experimental design and data interpretation. RS and HSX oversaw the

Sholder et al. BMC Genomics           (2020) 21:64 Page 10 of 11

https://broadinstitute.github.io/picard/
https://doi.org/10.1186/s12864-020-6478-3
https://doi.org/10.1186/s12864-020-6478-3


scientific team and provided crucial guidance for experimental design, data
analysis, data interpretation, and general scientific method.

Funding
The entire study, including the design of the study and collection, analysis,
and interpretation of data was funded by Pfizer, Inc. The funding bodies
played no role in the design of the study and collection, analysis, and
interpretation of the data and in writing the manuscript.

Availability of data and materials
Transcriptional fastq files have been deposited in the GEO repository under
accession number GSE125571.
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125571

Ethics approval and consent to participate
All animal procedures were performed in compliance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals under
the approval of the Pfizer Cambridge Institutional Animal Care and Use
Committee.

Consent for publication
There were no human subjects in this paper, and Consent is therefore not
applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 March 2019 Accepted: 10 January 2020

References
1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):
621–8.

2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

3. Agarwal A, Koppstein D, Rozowsky J, Sboner A, Habegger L, Hillier LW,
Sasidharan R, Reinke V, Waterston RH, Gerstein M. Comparison and
calibration of transcriptome data from RNA-Seq and tiling arrays. BMC
Genomics. 2010;11:383.

4. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras
JB, Stephens M, Gilad Y, Pritchard JK. Understanding mechanisms
underlying human gene expression variation with RNA sequencing. Nature.
2010;464(7289):768–72.

5. Bragelmann J, Dammert MA, Dietlein F, Heuckmann JM, Choidas A, Bohm S,
Richters A, Basu D, Tischler V, Lorenz C, et al. Systematic kinase inhibitor
profiling identifies CDK9 as a synthetic lethal target in NUT midline
carcinoma. Cell Rep. 2017;20(12):2833–45.

6. Podnar J, Deiderick H, Huerta G, Hunicke-Smith S. Next-Generation
Sequencing RNA-Seq Library Construction. Curr Protoc Mol Biol. 2014;
106(4):21.

7. Song Y, Milon B, Ott S, Zhao X, Sadzewicz L, Shetty A, Boger ET, Tallon LJ,
Morell RJ, Mahurkar A, et al. A comparative analysis of library prep
approaches for sequencing low input translatome samples. BMC Genomics.
2018;19(1):696.

8. Masters TL, Hilker CA, Jeraldo PR, Bhagwate AV, Greenwood-Quaintance KE,
Eckloff BW, Chia N, Hanssen AD, Abdel MP, Yao JZ, et al. Comparative
evaluation of cDNA library construction approaches for RNA-Seq analysis
from low RNA-content human specimens. J Microbiol Methods. 2018;154:
55–62.

9. Kozarewa I, Turner DJ. 96-plex molecular barcoding for the Illumina
genome analyzer. Methods Mol Biol. 2011;733:279–98.

10. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R. Full-
length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):
171–81.

11. Picelli S, Bjorklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5
transposase and tagmentation procedures for massively scaled sequencing
projects. Genome Res. 2014;24(12):2033–40.

12. Piovesan A, Caracausi M, Antonaros F, Pelleri MC, Vitale L. GeneBase 1.1: a
tool to summarize data from NCBI gene datasets and its application to an
update of human gene statistics. Database (Oxford). 2016;2016:baw153.

13. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,
Schroth GP, Burge CB. Alternative isoform regulation in human tissue
transcriptomes. Nature. 2008;456(7221):470–6.

14. Park JW, Tokheim C, Shen S, Xing Y. Identifying differential alternative
splicing events from RNA sequencing data using RNASeq-MATS. Methods
Mol Biol. 2013;1038:171–9.

15. Wilkening S, Pelechano V, Jarvelin AI, Tekkedil MM, Anders S, Benes V,
Steinmetz LM. An efficient method for genome-wide polyadenylation site
mapping and RNA quantification. Nucleic Acids Res. 2013;41(5):e65.

16. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I,
Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide
expression profiling of individual cells using Nanoliter droplets. Cell. 2015;
161(5):1202–14.

17. Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation
and biochemical analysis on microfluidics. Analyst. 2018;144(3):766.

18. Bush EC, Ray F, Alvarez MJ, Realubit R, Li H, Karan C, Califano A, Sims PA.
PLATE-Seq for genome-wide regulatory network analysis of high-
throughput screens. Nat Commun. 2017;8(1):105.

19. Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, Henault M, Mostacci
N, Farmer P, Renner S, et al. DRUG-seq for miniaturized high-throughput
transcriptome profiling in drug discovery. Nat Commun. 2018;9(1):4307.

20. Campbell IL, Abraham CR, Masliah E, Kemper P, Inglis JD, Oldstone MB,
Mucke L. Neurologic disease induced in transgenic mice by cerebral
overexpression of interleukin 6. Proc Natl Acad Sci U S A. 1993;90(21):
10061–5.

21. Millington C, Sonego S, Karunaweera N, Rangel A, Aldrich-Wright JR,
Campbell IL, Gyengesi E, Munch G. Chronic neuroinflammation in
Alzheimer’s disease: new perspectives on animal models and promising
candidate drugs. Biomed Res Int. 2014;2014:309129.

22. Yamamoto Y, Nakajima M, Yamazaki H, Yokoi T. Cytotoxicity and apoptosis
produced by troglitazone in human hepatoma cells. Life Sci. 2001;70(4):471–82.

23. Ma F, Fuqua BK, Hasin Y, Yukhtman C, Vulpe CD, Lusis AJ, Pellegrini M. A
comparison between whole transcript and 3′ RNA sequencing methods
using Kapa and Lexogen library preparation methods. BMC Genomics. 2019;
20(1):9.

24. Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds
systems biology. Biol Direct. 2009;4:14.

25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15–21.

26. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30(7):923–30.

27. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

28. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the
evolution of gene function, and other gene attributes, in the context of
phylogenetic trees. Nucleic Acids Res. 2013;41(Database issue):D377–86.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Sholder et al. BMC Genomics           (2020) 21:64 Page 11 of 11

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125571

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Design of 3’Pool-seq
	Gene expression quantification using 3’Pool-seq
	Performance of 3’Pool-seq in detecting differential gene expression
	Robustness of 3’Pool-seq in low-input samples
	Plate-based 3’Pool-seq

	Conclusions
	Methods
	Animal care and dissection
	HepG2 culture, treatment, and crude RNA preparation
	RNA refinement and quantification
	Reverse transcription, pooling, and exonuclease treatment
	cDNA amplification and Tagmentation
	NGS library evaluation and loading
	Bioinformatic analysis

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

