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Abstract

Background: Repetitive DNA is a major component of plant genomes and is thought to be a driver of evolutionary
novelty. Describing variation in repeat content among individuals and between populations is key to elucidating the
evolutionary significance of repetitive DNA. However, the cost of producing references genomes has limited
large-scale intraspecific comparisons to a handful of model organismswheremultiple reference genomes are available.

Results: We examine repeat content variation in the genomes of 94 elite inbred maize lines using graph-based
repeat clustering, a reference-free and rapid assay of repeat content. We examine population structure using
genome-wide repeat profiles, and demonstrate the stiff-stalk and non-stiff-stalk heterotic populations are
homogenous with regard to global repeat content. In contrast, and similar to previously reported results, the same
individuals show clear differentiation, and aggregate into two populations when examining population structure
using genome-wide SNPs. Additionally, we develop a novel kmer based technique to examine the chromosomal
distribution of repeat clusters in silico and show a cluster dependent association with gene density.

Conclusion: Our results indicate global repeat content variation in the heterotic populations of maize has not
diverged, and is uncoupled from population stratification at SNP loci. We show that repeat families exhibit divergent
patterns with regard to chromosomal distribution, some repeat clusters accumulate in regions of high gene density,
whereas others aggregate in regions of low gene density.
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Background
Maize is a commercially important hybrid crop grown
globally for livestock consumption, food, and fuel. Early
maize breeding programs observed that crosses between
maize populations resulted in increased heterosis where
F1 progeny or hybrids demonstrate significantly higher
performance than parental lines [1, 2]. Public and pri-
vate industry breeding programs have exploited hetero-
sis in maize to maximize genetic gain for grain yield
[3]. These programs employ reciprocal recurrent selec-
tion to develop specific germplasm pools, called heterotic
groups, that maximize heterosis. Improvement occurs
with the development of inbred lines that maximize het-
erosis in crosses between heterotic groups. Inbred lines
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are then recycled to create new crosses within each het-
erotic pool.
Several studies have demonstrated that reciprocal

recurrent selection drives differences in allele frequen-
cies between heterotic groups. These studies have coupled
genotyping and population genetics to demonstrate there
are three distinct heterotic pools within current North
American elite maize germplasm. These pools, referred
to as Stiff-Stalk (SS), Non-Stiff-Stalk (NSS), and Iodent
(IOD), show increasing allele frequency divergence over
time with recently developed lines having the greatest
divergence [4].
Previous studies examining the genetic divergence,

allelic frequency, and linkage disequilibria between maize
heterotic pools have focused solely on SNPs found in genic
regions of the maize genome. However, the maize genome
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consists primarily of various repetitive DNA families, sim-
ilar to other species with similar genome size. Studies have
demonstrated that repetitive DNA dynamics can influ-
ence gene content changes [5], changes in genome size
[6], and gene expression activation within plants [7, 8]. A
study comparing the divergence and abundance of repeat
variation between maize heterotic pools could provide
insight to whether repeats follow the same divergence as
SNP-based diversity studies.
Unfortunately, the cost and complexity of producing

high-quality reference genomes limits reference-based
comparisons of repeat content to a few species and indi-
viduals with fully sequenced genomes (although the cost
is rapidly declining). These cost and analysis restrictions
limit the ability to compare repeat content and its asso-
ciation to population and phenotypic variation. However,
reference-free approaches using low coverage short-read
sequencing and graph-based repeat clustering have been
used to efficiently assay repeat content in eukaryotic
genomes [9]. Reference-free, skim-sequencing methods
exploit repeat sequence abundance to estimate genome
composition across hundreds of genomes without the
use of a genomic reference [10–14]. The highly repeti-
tive nature of the maize genome ensures the majority of
genomic short-read sequences will be repetitive in nature.
Reference-free approaches, using skim sequencing and

repeat clustering, were successfully used to assay repeat
content in allopolyploid tobacco and demonstrated the
biased removal of repetitive DNA from one of the two
sub-genomes [13]. Furthermore, similar clustering, along
with empirical wet-lab validation, was used to demon-
strate the rapid elimination of tandem repeat sequences in
synthetic allopolyploids [10]. Other studies in Nicotiana
have shown reductions in genome size occur via the loss of
low copy-number repeats while genome expansion results
from the increase of already highly abundant repeats [6].
Additionally, repeat clustering revealed repeat content of
rye B-chromosomes [15] and the giant genomes of Friti-
laria [11]. More importantly, repeat profiles generated
by repeat-clustering exhibit phylogenetic signal consistent
with that observed for plastid and nuclear markers in a
variety of taxa [16], suggesting signals from skim sequenc-
ing assays can track long-term evolutionary trajectories.
In this study, we take advantage of skim sequencing and

graph-based repeat clustering to screen the genomes of
94 elite ex-PVP maize inbreds. Ex-PVP lines are inbreds
developed and patented by private or public institutions
but have had their patents expire allowing public breed-
ing and genotyping use. Many of the lines included in
this study represent the base germplasm used to estab-
lish current industry and public North American maize
breeding programs [17]. We identify and annotate repeat
families de novo and examine their differential abundance
within and between heterotic groups. The chromosomal

distribution of repeat families was also compared between
several high-quality reference maize genomes using a
novel k-mer based method.
Our analysis revealed no significant differentiation in

abundance of the two major classes of repeats present in
the maize genome, Gypsy and Copia LTR-retroelements,
when comparing two maize heterotic populations. We
observed that chromosomal distribution varies between
repeat families and statistically significant association
exists between the chromosome distribution of repeat
clusters and gene density. Using SNP data we demonstrate
significant population structure between the two maize
heterotic pools, in contrast, similar population structure
was not found using repeat clustering data. This suggests
divergence of the heterotic groups has occurred at the
SNP level, but this process is not mirrored at the level of
repeat abundance or genomic distribution.

Methods
Plant material, data preparation and read sampling
Ninety four Zea mays ssp. mays ex-PVP lines were used
in this study (see Additional file 1). The provenance, col-
lection date, collector, voucher certification, and seed for
all samples are publicly available at the U.S. National Plant
Germplasm System (https://www.ars-grin.gov/pvp).
The material used was categorized into stiff-stalk (SS)

and non-stiff-stalk (NSS + IOD) heterotic groups. DNA
was extracted with V5 stage leaf tissue from green-
house grown accession using the CTAB method. Illu-
mina HiSeq 2000 libraries where prepared from puri-
fied DNA according to the manufacturers instructions
and samples were sequenced at 20–60x coverage using
the Illumina HiSeq 2000 instrumentation resulting in
150 bp paired-end reads. For each sample, the result-
ing sequencing data were randomly down-sampled,
resulting in a skim sequence dataset of 50,000 whole
genome shotgun (WGS) reads per individual, taking
only one read from a pair. Sequence reads are avail-
able at the NCBI SRA under the BioProject number
PRJNA530574.

Graph-based repeat clustering
We implemented graph-based clustering, based on pre-
viously published methods [9], using data from all
sequenced ex-PVP inbreds as input. The method from [9]
was re-written in Python 2.7 using the Python version of
igraph [18] to increase analysis speed. Graph-based repeat
clusters was performed by pooling sequencing reads from
all ex-PVP inbreds into a single dataset. Sequence reads
from each individual were tracked in the combined pool
to allow each read to be linked to the individual inbred
it came from. Repeat families were then identified using
a graph-based clustering approach similar to previously
described methods [9].

https://www.ars-grin.gov/pvp
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Briefly, a complete pair-wise comparison is performed
between all reads using megablast [19]. Using this data a
simple, undirected graph of the form

G = (v, e) (1)

was constructed from the resulting pair-wise relation-
ships such that vertices (v) of the graph (G) represent
reads from our dataset and edges (e) between the vertices
correspond to megablast hits between the reads. Edges
were weighted according to the bit-score of the corre-
sponding blast hit and edges with bit-score less than 100
were excluded from further analysis. The graph object
was reduced to its largest connected component and a
community detection process was performed using the
fast_greedy algorithm [20] to detect repeat families. This
process of community detection established clusters of
reads closely connected in the graph representing highly-
related repetitive DNA families. The number of reads
contributed from the sequence of each ex-PVP inbred was
quantified for each cluster. For the 25 largest clusters we
extracted the cluster sub-graph Gs from the graph G and
derived the sub-graph layout using the Fruchterman and
Reingold algorithm [21], positioning vertices (reads) such
that reads containing similar sequence are placed close
together in 2D space.
We generated a cluster graph (Gc) from the graph G of

the form:

Gc = (v, e) (2)

where vertex vi represents the ith cluster, and the edge
e(vi, vj) represent the sum edge weight of all edges
between vi and vj in the graph G. This graph describes
the relationships and connections between clusters, where
each cluster has been reduced to a single vertex.

Repeat cluster annotation
Each cluster was annotated by extracting all sequence
reads and using RepeatMasker [22], with the cross_match
option, to search against the plant collections of the Rep-
Base database [23]. Each cluster was then defined by the
most common repeat match. We counted all the reads
attributed to each cluster, and each annotation, on a per
individual basis. We examined for statistical differences in
mean cluster and mean annotation abundance in the SS
and NSS population using a two-sided t-test, correcting
for multiple comparisons using the method of Benjamini
and Hockberg [24].

K-mer analysis and chromosome painting
For each of the 25 largest clusters we identified the 100
most abundant k-mers (of length 12) using JellyFish
[25]. From each of the largest 25 clusters the 100 most
abundant k-mers were mapped to several representative
reference genomes using the fuzznuc function of the

EMBOSS package [26]. These genomes were B73 Ref-
Gen_v4 (SS founder, downloaded https://www.maizegdb.
org/ accessed 19/9/2017), B73 RefGen_v3.23 (SS founder,
downloaded https://www.maizegdb.org/ accessed
19/9/2017), PH207 (Iodent, downloaded https://www.
maizegdb.org/ accessed 19/9/2017), Mo17 (NSS founder,
downloaded https://www.maizegdb.org/ accessed
1/1/2020), and CML247 (tropical line, downloaded
https://www.maizegdb.org/ accessed 1/1/2020) reference
genomes. We then counted the number of k-mers map-
ping to 200 kb windows of each genome (step-size 100
kb) using bedtools, scaled the data and loess smoothed
over profiles using the scipy package in python 2.7. For
each reference sequence we generated gene density traces
(where annotations were available) using the coverage tool
of the bedtools package over the same 200 kb windows of
the genome. Using scaled data for each of the 25 largest
clusters, we calculated the Pearson’s and Spearman’s
correlation coefficient between gene density and kmer
mapping density using the scipy package in python 2.7.

PCA analysis
Using cluster abundance estimates from each of the 94
inbreds, we performed PCA analysis. Abundance mea-
sures were normalized on a cluster by cluster basis
using minimum/maximum scaling of the statistics pack-
age sklearn in python 2.7, such that values for each cluster
ranged from zero to one. Using the normalized data we
fit a PCA with 2 components using functionality of the
sklearn package in Python 2.7. We performed the same
analysis, but in place of cluster abundances used 1585
genome-wide SNP markers, encoding the major allele
as 1, the minor allele as 0, and masking heterozygous
sites.

Results
Graph-based repeat clustering
Graph-based repeat clustering methods were used to
analyze low coverage sequence data from 94 elite,
ex-PVP maize inbreds. The resulting graph (G) con-
tained 2,956,096 vertices (reads) and 244,031,339 edges
(sequence similarity hits between reads), with a mean
degree of 165.10. Community detection using the
fast_greedy algorithm grouped vertices into 728 repeat
clusters with the largest cluster containing 207,094 ver-
tices and the smallest containing two.
Annotation of the clusters using the Repbase repeat

library revealed a diverse collection of repeat families
with the majority of repeats families categorized as either
Gypsy or Copia LTR retroelements (Fig. 1a and Addi-
tional files 2 and 3). A higher abundance of Gypsy-like
elements was observed, when compared with Copia-like
elements. This was true for both the overall dataset (NSS
and SS populations combined; t-statistic = 21.23, p-value

https://www.maizegdb.org/
https://www.maizegdb.org/
https://www.maizegdb.org/
https://www.maizegdb.org/
https://www.maizegdb.org/
https://www.maizegdb.org/
https://www.maizegdb.org/
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Fig. 1 Repeat family abundance estimates and cluster relationships. a Using the annotation associated with each cluster we summed the total
number of reads from each inbred attributed to a given annotation type, and display the mean (bars) and standard deviation (whiskers) for the SS
and NSS populations for select repeat annotations. In b is displayed the cluster graph Gc , where nodes are clusters and the edges indicate
cross-cluster megablast hits, nodes are coloured according to annotation type

<0.0001), and when considering SS (t-statistic = 14.14,
p-value <0.0001) and NSS (t-statistic = 15.83, p-value
<0.0001) populations separately. No significant difference
was seen when comparing the abundance of Gypsy-like
repeat families between SS and NSS inbreds (t-statistic =
15.83, p-value= 0.38). However, marginally significant dif-
ferences were observed in the total abundance of Copia-
like repeats between SS and NSS inbreds (t-statistic =
-2.12, p-value = 0.045).
We tested for significant differences in the abundance

of individual repeat clusters between the NSS and SS
populations. After correcting for multiple comparisons,
we found that only three of the 728 clusters exhibited
evidence of differential abundance between SS and NSS
inbreds (p-value <0.05).
Generating a meta-graph, where each individual cluster

is collapsed to a single vertex and connections between
clusters is indicated by edges, we see that there are
dense and numerous connections between repeats of the
same type (i.e. within and between Gypsy-like clusters, or

within and between Copia-like clusters), and rather fewer
between clusters belonging to alternate families (Fig. 1b).

Chromosomal distribution and correlation with gene
density
For each of the 25 most abundant clusters we calculated
the cluster layout and placed vertices (reads) in 2D space.
This analysis revealed incredible diversity in cluster layout
(Fig. 2a-d) within the maize genome. Tightly compressed
clusters represent collections of highly similar reads since
each vertex is positioned based on the edge weight of
connections to other vertices.
We deploy a novel in silico chromosome painting tech-

nique to investigate the chromosomal distribution of indi-
vidual clusters. We identified the 100 most common k-
mer sequences within each cluster and mapped these to
the genome to establish the chromosomal distribution of
each cluster (Fig. 2 and Additional files 4, 5, 6, 7, and
8). Repeats from several clusters preferentially mapped
to gene poor pericentromeric regions (Fig. 2a) whereas
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Fig. 2 Repeat Cluster layouts and Chromosomal Distributions. Graph layouts and chromosomal distributions are displayed for clusters 0, 2, 4 and 17
(a–d respectively). Cluster layouts, in 2D space, are calculated using the Fruchterman-Reingold algorithm and are shown in the top of each panel.
Reads deriving from Stiff-stalk (SS) and Non-stiff-stalk (NSS) inbreds are indicated by blue and red vertices respectively. Edges, indicated in gray,
represent sequence similarity hits between reads (vertices). The cluster name, most common hit to RepBase and the repeat family to which each
cluster belongs is indicated. The most abundant k-mers from each repeat cluster were mapped to the maize B73 RefGen_v3 genome sequence, and
the resulting loess smoothed profiles for each chromosome are displayed in the lower portion of each panel. Gene density profiles are also shown in
blue, overlaying the repeat profiles

k-mers from other clusters map to gene rich regions of
the genome, and have lower abundance in gene poor
centromeric regions (Fig. 2b). We quantified this trend
by determining the correlation between kmer mapping
density and the proportion of genic sequence in the chro-
mosomal region of interest (Fig. 3). Forty four of the
50 largest repeat clusters showed statistically significant
(p-value <0.05) association with gene density.
In addition, we mapped k-mers to various maize refer-

ence assemblies to determine if we could identify differ-
ential cluster distribution between individual lines (Addi-
tional files 4, 5, 6, 7, and 8). The analysis revealed striking
similarities between the representative genomes; although
clusters did display some micro-variation across chro-
mosomes most clusters shared very similar chromosomal
distributions across lines and heterotic groups.

Population structure: a tale of two datasets
We examined population structure among 94 ex-PVP
inbred maize lines using global repeat abundance profiles
and separately using standard SNP genotypes (Fig. 4). A
PCA analysis using repeat abundance estimates revealed
that ex-PVP inbreds do not appear to cluster into known
heterotic groups (Fig. 4a). The SS and NSS individuals
form a single homogeneous group with SS and NSS indi-
viduals intermixed. In contrast population structure, as
estimated by a traditional approach using genotype data
and PCA analysis, reveals that the SS and NSS heterotic
pools are distinct, with almost no overlap between the
NSS and SS groups (Fig. 4b).

Discussion
Global repeat abundance profiles
Graph-based repeat clustering is a computational
approach that identifies and quantifies repeat families
within a genome without the need for a reference genome.
The approach utilizes low-coverage sequence data to
construct a graph of relationships between reads based
on sequence similarity. This graph was analyzed using
community detection approaches to group similar reads
into clusters, each cluster representing a different repeat
family. These methods were used to analyze low coverage
sequence from 94 elite, ex-PVP maize inbreds.
Annotation of the clusters revealed that the majority of

the repeat content of NSS and SS genomes is comporised
of Gypsy and Copia LTR retroelements (See Additional
files 2 and 3). These results are similar to, and expected,
given previous studies using reference quality genome
assemblies in maize [27, 28]. A higher abundance of
Gypsy-like elements was observed, when compared with
Copia-like elements, across the population as a whole, as
well as within each heterotic sub-population.
We tested for significant differences in the abundance

of individual repeat clusters between the NSS and SS
populations. After correcting for multiple comparisons,
we found that only three of the 728 clusters exhibited
evidence of differential abundance between SS and NSS
inbreds. This observation suggests that the NSS and SS
populations are very similar in terms of global repeat
abundance profiles, although differences between indi-
viduals exist. It should be stressed that the similarities
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Fig. 3 Scatter plots showing the relationship between gene density and kmer mapping density in 200 kb windows of the genome for examplar
repeat clusters. For each example the Pearson’s correlation coefficient and associated p-value are given. For cluster 0, 1, 3, 10 and 42 there is a
significant negative correlation, whereas a positive correlation is observed for clusters 2, 5, 19 and 27. Each data point is colored by a two
dimensional kernel density estimation, where the purple to yellow color indicates ever greater density of data points

in repeat abundance estimated by graph-based cluster-
ing are only representative of global repeat content in the
genome. In contrast, local repeat and TE variation in and
around genes is incredibly diverse between maize inbreds
[29]. Such micro-scale variation is not reflected in our
global repeat profiles.
The observation of little to no differentiation between

maize heterotic groups is in contrast to other compar-
isons using the same methodology. For example, graph-
based repeat clustering is able to detect changes in repeat
abundance between closely related species in a number
of plant families [6, 12, 14]. Other studies have iden-
tified and confirmed differential repeat content in rye
accessions segregating for B-chromosomes [15]. Similarly,

clustering analysis and empirical validation tracked the
fate of individual repeat families in early generation syn-
thetic allopolyploid tobacco and demonstrated alteration
in the chromosomal distribution and abundance of those
clusters [10]. As such, we know graph-based clustering is a
suitable method to quickly assay repeat content data, and
detect differences between individuals of the same species
or closely related taxa.

Chromosomal distribution and correlation with gene
density
For the largest clusters we calculated a cluster layout, plac-
ing vertices (reads) and edges in 2D space (Fig. 2a-d).
The layout of each cluster can reveal interesting biological
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Fig. 4 Population structure in the two heterotic groups of maize. In (a) the first two dimensions of a PCA analysis are used to describe the
population structure as inferred by repeat content of the genome (i.e. abundance estimates of the clusters). In (b) PCA is used to infer population
structure, but using genome wide SNP markers

properties. For example sequence uniformity in reads
from a repeat cluster may indicate a recent copy-number
expansion, and this is indicated in the tight-knit layout of
vertices (Fig. 2c). In contrast, clusters with a more dis-
persed layout (Fig. 2a,b) contain more divergent reads
and likely represent older populations of repeats, where
extensive sequence divergence has accumulated between
members of the family. Several clusters, including clus-
ter_17 (Fig. 2d), exhibit a ring like structure, a layout
resulting in repeating units arranged in tandem, a hall-
mark of tandem repeat sequences [10]. Importantly, such
clusters typically exhibit highly localized chromosomal
distributions, as might be expected of a tandem repeat
sequence (Fig. 2d, bottom panel).

Using k-mer mapping we established the chromosomal
distribution of several of the largest repeat clusters reveal-
ing substantial variation in chromosomal distribution,
depending on the cluster (Fig. 2). We also demonstrate
that 44 of the 50 largest clusters have statistically signifi-
cant association with gene density (p-value <0.05). Using
cluster_0 as an example the density of mapped kmers is
significantly negatively correlated with gene density, sug-
gesting this repeat family preferentially insert into gene
poor regions of the genome, or alternatively that copies
are removed more easily from genic regions (Figs. 2 and
3). Interestingly we see the opposite pattern for kmers
derived from cluster 2, where a positive association is
observed between kmermapping density and gene density
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suggesting this repeat family aggregates in relatively gene
rich regions. It also worth noting that, while there is a pos-
itive relationship between gene density and kmermapping
density for some clusters, we tend not to see the accu-
mulation of kmer mapping events in the most gene dense
regions of the genome (Fig. 3).
The observation that chromosomal distribution varies

between clusters and is associated with gene density is
similar to previous studies on repeat sequences in maize
[30, 31] and other plant species [32–34]. For exam-
ple Ds elements have accumulated in the sub-telomeric
regions of maize chromosomes, but are relativity rare
in pericentromeric regions [30]. Gypsy, CACTA, and
Copia elements have varying chromosomal distribution
in the Setaria genome [35]. More broadly, these observa-
tion likely reflect differences in the insertion preferences
between repeat families and bias in the removal of repeat
copies related to gene density.
Using kmer painting we investigated the chromosomal

distribution of clusters in different maize inbred lines
(Additional files 4, 5, 6, 7, and 8). The data demonstrate
that individual clusters share remarkably similar distri-
butions across individuals, and indeed, across heterotic
groups; broadly speaking, the distribution of a given clus-
ters is very similar, regardless of the individual line in
question. This may indicate the global patterns of repeat
distribution were laid down before the divergence of
maize founder lines. Furthermore, it is possible that, as
repeat families have waxed and waned since the founding
of elite maize heterotic groups, the global distribution of
repeats has remained relatively unchanged.

Population structure: a tale of two datasets
Examining population structure using SNP genotypes
reveals the two heterotic groups, SS and NSS are diver-
gent and easily distinguished (Fig. 4). However, when
we examine population structure as measured by repeat
abundance profiles we see that the two heterotic pools are
intermixed. This suggests that the SS andNSS populations
are not distinct with in regard to patterns of global repeat
abundance, even though repeat differences exist between
individuals. In contrast, a similar PCA analysis performed
using SNP information from the same inbreds separated
known SS and NSS inbreds into distinguishable groups,
especially on the first principle component (Fig. 4b). The
results of the analysis using SNPs are highly similar to that
observed in previous studies using the elite breeding lines
and historical material [4, 36].
The population structure observed in maize ex-PVP

germplasm is expected and is reflective of the recipro-
cal recurrent selection breeding methods used to drive
heterosis between heterotic pools [36]. This trend is
not observed when using global repeat abundance pro-
files, nor when considering chromosomal distributions of

repeat families (Additional files 4, 5, 6, 7, and 8). This
suggests that allele frequency alterations, caused by selec-
tion or drift, do not result in a corresponding divergence
in global repeat abundance. One possible explanation is
that segregating haplotypes often contain similar repeat
content but vary in SNP content. In this case selection
for beneficial SNP alleles could change SNP frequencies
within the population but have limited effect on global
repeat profiles. This observation could be compounded
because current elite maize germplasm pools were devel-
oped from a collection of similar landrace founders [36].
Potentially, global repeat content was rather uniform
among founders and has not yet diverged in modern
breeding populations.
Our result contradicts the observation that inbred

maize genomes show high variability in repeat co-linearity
in and around genes [29] and across the genome [37]. One
might imagine that this variation should track with linked
SNPs and over time become evident in global repeat pro-
files. However, the difference in signal from SNP and
repeat abundance profiles could be driven by the ability
of repeats, particularly transposable elements, to readily
break linkage associations (via transposition), limiting the
effect of breeding history on their distribution and abun-
dance. Lastly, the possibility remains that graph-based
clustering and quantification is not adequate to detect the
variation we know exists. As mentioned previously, this
seems unlikely given the wealth of previous studies where
variation in repeat content has been readily detected [6,
10, 12, 15], and indeed, can follow close relationships
between taxa [16].

Conclusion
We demonstrate the utility of graph-based clustering
for repeat identification and quantification in maize,
and develop a kmer-based approach to analyzing
repeat content distribution across chromosomes in sil-
ico. Kmer painting of repeats reveals various chro-
mosomal distribution patterns and we provide evi-
dence that repeat clusters accumulate along chromo-
somes in a cluster dependent manner that can be neg-
atively, or positively associated with local gene density.
This novel analysis provides an additional avenue of
investigation for researchers using graph-based repeat
identification.
Additionally, we reveal that genetic population struc-

ture, as indicated by genotype data, distinguishes two
well-known heterotic groups on elite maize, whereas
global repeat populations are homogeneous between
the two populations. These observations suggest that
the highly dynamic repeat fraction of the inbred maize
genome has not diverged in concert with SNP profiles in
the two populations, SNP and repeat abundance profiles
are uncoupled.
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Additional file 6: Genome-wide kmer distribution in pH207. The
genome-wide K-mer distribution for each of the 25 largest repeat clusters.
A Kernel density estimation is indicated by color, and associated gene
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Additional file 7: Genome-wide kmer distribution in mo17. The
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