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Abstract

Background: Intron retention (IR) has been traditionally overlooked as ‘noise’ and received negligible attention in
the field of gene expression analysis. In recent years, IR has become an emerging field for interrogating
transcriptomes because it has been recognized to carry out important biological functions such as gene expression
regulation and it has been found to be associated with complex diseases such as cancers. However, methods for
detecting IR today are limited. Thus, there is a need to develop novel methods to improve IR detection.

Results: Here we present iREAD (intron REtention Analysis and Detector), a tool to detect IR events genome-wide
from high-throughput RNA-seq data. The command line interface for iREAD is implemented in Python. iREAD takes
as input a BAM file, representing the transcriptome, and a text file containing the intron coordinates of a genome.
It then 1) counts all reads that overlap intron regions, 2) detects IR events by analyzing the features of reads such as
depth and distribution patterns, and 3) outputs a list of retained introns into a tab-delimited text file. iREAD
provides significant added value in detecting IR compared with output from IRFinder with a higher AUC on all
datasets tested. Both methods showed low false positive rates and high false negative rates in different regimes,
indicating that use together is generally beneficial. The output from iREAD can be directly used for further
exploratory analysis such as differential intron expression and functional enrichment. The software is freely available
at https://github.com/genemine/iread.

Conclusion: Being complementary to existing tools, iREAD provides a new and generic tool to interrogate poly-A
enriched transcriptomic data of intron regions. Intron retention analysis provides a complementary approach for
understanding transcriptome.
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Background
Historically being considered as transcriptional noise or
‘junk’, intron retention (IR) has recently been shown to
carry out important biological functions such as regulating
gene expression that is coupled with nonsense mediated
decay [1], producing novel isoforms [2] and targeting spe-
cific cell compartments [3]. It has thus been gaining recent
interest, especially as it relates to a putative role in health
and disease. Tumor-specific IRs were overexpressed in
lung adenocarcinoma tumors [4], and IRs were mostly in-
creased in an analysis across 16 cancers [5]. IR appears to
be a widespread mechanism of tumor-suppressor inactiva-
tion based on integrative analysis of exome and RNA se-
quencing data [6]. IR was also found to regulate gene
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expression in biological processes such as normal gran-
ulocyte differentiation [7], CD4+ T cell activation [8], and
terminal erythropoiesis [9, 10]. Functions of IR were sys-
tematically discussed in two recent reviews [11].
Next generation sequencing has resulted in a vast amount

of RNA-seq data, which provides a rich resource for the
detection of IR in combination with bioinformatics tools.
However, to the best of our knowledge, only a few compu-
tational tools have been developed thus far—and these tools
are either not freely available or have limitations. The
methods described in [12] and [5] are not publicly available.
IRcall and IR classifier are also not currently available, pos-
sibly due to website changes [13]. The recently developed
KMA (Keep Me Around) is an efficient method for IR
detection [14]. It involves transcript quantification from the
command line followed by intron retention analysis in R,
which brings some inconveniences due to switching
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software environments. Also, the flat distribution of
retained reads, a common feature of IR, is not well identi-
fied in KMA. By analyzing the number of exon-exon junc-
tion reads and exon-intron junction reads, IRFinder detects
retained introns by calculating a retention ratio that reflects
the relative expression of transcripts with the retained in-
tron to those that span the intron but does not have the in-
tron retained [15]. As a promising approach, IRFinder also
has one limitation that the distribution pattern of intronic
reads is not well addressed [15]. Also, IRFinder considers
introns that completely overlap of exons of other tran-
scripts, resulting in the fact that the identified IR events
may be ambiguous. For methods like rMATS [16, 17] and
MISO [18], they can only analyze annotated introns in gene
models and therefore can not be applied to profile all intron
retention events that exist in samples. Another limitation of
rMATS is that it focuses on determining the changes of
PSI (percent spliced in) values between two groups of sam-
ples; those introns which are retained but not differentially
expressed are not considered, therefore one cannot obtain
holistic profiles of all retained introns by these methods.
Therefore, developing new algorithms for detecting intron
retention remains to be in great need.
In this work, we present iREAD (intron REtention Ana-

lysis and Detector), for the identification of IR from poly-A
enriched RNA-seq data (single-end and paired-end). iREAD
takes as input an existing BAM file and an annotation file
that contains a list of introns that do not overlap any exons
of any other splice isoforms or genes. For convenience,
such introns are called ‘independent introns’. The features
of iREAD are several folds. Firstly, the use of independent
introns can help avoid the confounding of exons that over-
lap with introns, thus enabling unambiguous identification
Fig. 1 Schematic of the iREAD algorithm. iREAD takes two input files: a BA
file containing a list of independent introns that do not overlap with any e
(partially) falling into the intron regions. After recording intronic reads, four
FPKM and entropy score) are calculated for filtering for high confidence int
of intron retention. Methods like IRFinder include introns
completely overlapping with exons of other transcripts and
the resulting IR events may be ambiguous. Secondly,
iREAD detects retained introns through analyzing both
splice junction reads and intron expression level that con-
siders all the intronic reads to increase confidence. How-
ever, methods like IRFinder only look at the percentage of
expression of intron-retained RNA calculated from junction
reads and do not consider expression level of introns.
Thirdly, based on information theory, we proposed a
novel entropy score to assess ‘how flat’ intronic reads
are distributed across the whole intron region, a feature
unique to iREAD. Using both simulated RNA-seq data
and a deep-sequencing poly-A enriched mouse RNA-
seq data, we tested the performance of iREAD and
compared it with existing tools.

Algorithm and Implementation
Algorithm
iREAD takes two input files (Fig. 1): (1), a BAM file that is
generated by aligning reads to a reference genome using
tools such as STAR. The BAM file needs to be sorted by
coordinates (the default of STAR) and to be indexed (can
be done using the ‘samtools index’ command). (2), a text
file containing the coordinates of independent introns that
do not overlap with any exons of any other isoforms or
genes. Independent introns are calculated by merging
exons of all isoforms and genes of a given genome
followed by subtracting them from spanning regions of
genes using Bedtools [19]. Using ENSEMBL gene models
(GTF format based on GRCh38), we identified independ-
ent introns together with their coordinates and parent-
gene information for humans and mice, and provided
M file resulting from polyA-enriched RNA-seq read alignment and text
xons of any transcripts. iREAD then counts the number of reads
filters (number of total reads, number of exon-intron junction reads,
ron retention events



Li et al. BMC Genomics          (2020) 21:128 Page 3 of 11
them in the iREAD package. Pre-computed independent
introns of humans and mice based on other versions of
GTF annotation are made available at our website
(https://github.com/genemine/iread). Independent introns
of any other species can be identified in the same way.
Since iREAD does not rely on known IR annotations, any
retained introns (known or novel) are expected to be de-
tected by iREAD.
Firstly, reads overlapping the independent intronic re-

gions are extracted from BAM files using Samtools, and
reads are counted with Bedops [20]. Since the resulting
reads include spliced reads that can span but do not
physically overlap introns, we developed a Perl script to
count reads that fully reside in or partially overlap with
the pre-calculated independent introns by considering
both the read-spanning length (from the reference gen-
ome) and the coordinates of the independent introns.
Specifically, iREAD counts and records the number of
exon-intron junction reads, which provides direct evi-
dence supporting retention of introns.
Because reads in retained introns are often flatly dis-

tributed across the whole intron region, we developed a
score to characterize the ‘flatness’ of intronic reads based
on information theory. We divide each intron into eight
bins, count the number of reads in each bin, and record
the number of reads in a vector, denoted as r = (n1, n2,
…, n8). This vector is then converted to a probability
mass distribution by normalization using the following
formula:

pi ¼
niP
ni
; i ¼ 1;…; 8: ð1Þ

The entropy of this distribution is calculated as:

entropy ¼ −
X8

i¼1
pilog2 pið Þ ð2Þ

Because the maximal entropy for eight bins is 3, we
divide the entropy by 3 and normalize it to be in the
range [0,1], called the normalized entropy score (NE-
score) for convenience.

NE−score ¼ entropy
3

ð3Þ

Summing up, we recorded the number of total reads
(denoted by T) and junction reads (denoted by J), and
the NE-score of each intron. FPKM is also calculated for
each intron to account for intron length. Based on these
features, we can set threshold values to filter for IR
events of high confidence. In the iREAD package, strict
threshold values (T ≥ 20, J ≥ 1, FPKM≥3 and NE-score ≥
0.9) are used as default to identify intron retention
events conservatively and reliably. However, users can
tune the default parameters in their own study.
iREAD is suitable for both single-end and paired-end
sequencing data. For paired-end data, following the con-
ventional practice in RNA-seq data analysis, the number
of fragments is counted, i.e. a pair of reads is counted as
one fragment.

Implementation
We implemented the iREAD pipeline on the command
line using a mixture of Perl and Python scripts. The
command interface is implemented in Python using the
‘argparse’ module. iREAD requires a BAM file and a text
file of independent introns as input. To determine IR
events, we have implemented four filters: total reads,
junction reads, FPKM and NE-score, which can be tuned
easily by specifying the values of the optional parameters
‘-n’, ‘-j’, ‘-f’, and ‘-e’, respectively. To obtain high-
confidence IR events, the number of total reads, junction
reads, FPKM and NE-score is set to 20, 1, 3 and 0.9 re-
spectively by default. Samtools and Bedops [20], which
are two commonly used tools in NGS data analysis, need
to be installed for running iREAD.
Using the Perl module Parallel::ForkManager, we re-

cently parallelized iREAD so that it can use multi-cores,
which makes the current version of iREAD (version
0.8.0) much faster than the previous one (version 0.6.0).
We implemented detailed and self-evident help docu-

ment for iREAD. One can use the command ‘iread.py -h’
to obtain help information.

Results
User interface and usage
iREAD is implemented in Python with a command line
interface, which can be run on Linux and Mac operating
systems. For the convenience of testing, we have in-
cluded an RNA-seq data (data/mouse_test.bam) and the
annotation of independent introns of mice (meta/in-
tron_mouse_3875.bed) in the iREAD folder. Using this
data, users can run iREAD for IR detection using the
command ‘iread.py data/mouse_test.bam meta/intron_
mouse_3875.bed -o tmp_output -t 62000000’ (Fig. 2a),
where ‘-o’ and ‘-t’ specify the output folder and the num-
ber of total fragments in the data.
After the iREAD run is finished, a file called mouse_

test.ir is generated in the ‘tmp_output’ folder, where a
list of introns together with their features such as the
number of all reads (both junction and intronic), junc-
tion reads, FPKM and NE-score is stored (Fig. 2b). The
last column of this file indicates whether the intron is
retained (‘yes’) or not (‘no’) under default settings.

Comparison of iREAD with IRFinder using simulated RNA-
seq data
We compared the performance of iREAD to the state-
of-the-art method IRFinder [15]. To the best of our

https://github.com/genemine/iread


Fig. 2 Illustration of the usage and output of iREAD. a an example run of iREAD on a mouse RNA-seq data that is included in the package. In addition
to the RNA-seq BAM file and the intron file, ‘-o’ and ‘-t’ specify the output directory and the library size, respectively. b example rows of the output file
resulting from (a). As shown, this file contains 7 columns. The first column is the intron ID. By default, iREADs uses strict criteria (fragments≥20,
junction_reads≥1, FPKM≥3 and entropy_score > =0.9) to filter for intron retention events. The last column indicates whether an intron is retained
(‘yes’) or not (‘no’). Note that the threshold for determining intron retention are optional parameters and can be tuned by the users
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knowledge, a gold standard dataset of experimentally
validated intron retention events is not available for
benchmarking. Therefore, we simulated an RNA-seq
dataset using the BEER software [21]. As suggested by
the current author of BEER, the option for generating
novel splice isoforms is turned off, which is suitable for
intron retention analysis. Based on the mouse ENSEMBL
gene build GTF file (version 77) and using default set-
ting, we generated a dataset of 30 million (30M) paired
reads. From this dataset, we randomly sampled half of
the read pairs to generate a lower-depth dataset of 15
million (15M) reads. For both datasets, based on the co-
ordinates of each read, we first mapped the reads to all
introns and then constructed three gold standard (GS)
sets of IRs of different confidence level: GS1, GS2 and
GS2, for which the minimum allowed FPKM of retained
introns is set to 0.1, 0.3 and 0.5, respectively. GS3 collects
IRs of the highest confidence, while the IRs in GS1 is rela-
tively the least strictly-defined. GS2 includes IRs of the
medium-level confidence. In addition, all IRs in these
three sets have at least 10 paired end reads and at least
one junction read that spans the exon-intron junction.
We ran iREAD and IRFinder on both the 15M and 30

M datasets. The same gene annotation model (ENSEMBL
GTF file, version 77) was used for iREAD and IRFinder.
For iREAD, default settings of the four filters (Fig. 1) were
used to determine IR events. For IRFinder, it mainly uses
one metric, called IRratio ranging from 0 to 1, to describe
to which extent an IR is retained, without providing an
indicator of whether introns are retained or not.
First, we compared the performance of iREAD and

IRFinder using their default settings to identify IR events.
For IRFinder, the threshold of IRratio was set to 0.1 fol-
lowing the original paper [15]. Also, introns flagged with
warning messages such as ‘low coverage’ by IRFinder were
removed because of their low confidence. Default settings
for iREAD are described in Section 2.2. For a given RNA-
seq dataset, assuming that iREAD detects N1 retention
events and IRFinder detects N2 introns with IRratio≥0.1,
we sorted the retained introns by FPKM for iREAD and
by IRratio for IRFinder, and chose the top N =min(N1,N2)
to compare.
The comparison of iREAD and IRFinder on the two

simulated datasets are shown in Fig. 3. On the 15M simu-
lated data, the top ranked N = 2498 IR events by iREAD
and IRFinder were compared. Out of the top ranked 2498
IR events, we found that 287 (11.5%) were shared by both
methods (Fig. 3a), which indicates that the intron annota-
tion and/or criteria used by iREAD and IRFinder capture
different features of intron retention events. We further
evaluated the precision (the number of true positives di-
vided by the sum of true positives and false positives) and
recall (the number of detected positives divided by the
total number of positives in the dataset), for each method
using the gold standard. We found that the precision of
IRFinder on the GS1 (FPKM≥0.1), GS2 (FPKM≥0.3) and
GS3 (FPKM≥0.5) gold standard were 0.73 (recall = 0.06),
0.73 (recall = 0.07) and 0.71 (recall = 0.08), respectively
(Fig. 3b, c and d). The precision of iREAD was 0.99 in all
the three gold standard sets, with recall equal to 0.08, 0.09
and 0.11 on GS1, GS2 and GS3, respectively (Fig. 3a). The
reason why iREAD achieves higher precision may be that
it directly counts the reads fully within introns and across
exon-intron boundaries and therefore retained introns are



Fig. 3 Comparison of the precision of iREAD with IRFinder on their identified intron retention events at default settings using simulated RNA-seq
data with known ground-truth intron retention events. Two datasets were used, which are, for convenience, called15M dataset (containing 15 M
reads) and 30 M dataset (containing 30 M reads). Firstly, retained introns were detected using both IRFinder and iREAD with default thresholds.
Suppose N1 and N2 IR events were detected by each method, and the top ranked N =min(N1, N2) IR events of each method were compared in
terms of the number of shared IR events and precision. N was found to be 2498 and 2683 for the 15 M (upper panel) and 30 M (lower panel)
dataset, respectively. The sharing of identified IRs on the 15 M and 30 M dataset is shown in (a) and (e), respectively. On the 15 M dataset, the
precision of IRFinder and iREAD based on the GS1 (FPKM≥0.1), GS2 (FPKM≥0.3) and GS3 (FPKM≥0.5) gold standard is presented in (b), (c) and (d),
respectively. On the 30 M dataset, the precision of IRFinder and iREAD based on the GS1, GS2 and GS3 gold standard is presented in (f), (g) and
(h), respectively. The results showed that iREAD achieved consistently higher precision than IRFinder on the IRs identified at default setting
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expected to be found, as long as they are covered by a suf-
ficient number of reads. In contrast, IRFinder uses IRratio,
a more sophisticated criterion that measures the percent-
age of intron-retained transcripts; therefore, introns with
high absolute expression but low relative expression may
not be detected. Moreover, we looked into the top ranked
IR events by IRFinder, and found that 36 out of the top
100 IR events completely overlap with exons of splice iso-
forms of the same gene. This result reflects that a propor-
tion of IR events by IRFinder might be false positives
because they overlap with exons; in contrast, the results of
iREAD are confident because it only analyzes independent
introns which by definition do not overlap with any exons
of any genes. This is another reason why the sharing
between IRFinder and iREAD is low and why IRfinder
is less accurate. Nonetheless, the above result shows
that most of IR events identified by both IRFinder and
iREAD are accurate. On the 30M simulated data, we
detected slightly more intron retention events (Fig. 3e),
likely due to the increased depth of the data. The preci-
sion comparison of IREAD and IRFinder is shown in
Fig. 3f, g and h, respectively. The results on the 30M
dataset is similar to that on the 15M dataset (Fig. 3).
Second, we compared iREAD with IRFinder in a com-
prehensive manner. Without using the default thresholds
for detecting IRs, we pulled out all the introns analyzed
by iREAD and IRFinder, and sorted them by FPKM and
IRratio, respectively. We then calculated the ROC curves
using the GS1 (FPKM≥0.1), GS2 (FPKM≥0.3) and GS3
(FPKM≥0.5) gold standard, respectively. The results on
the 15M and 30M dataset based on GS1, GS2 and GS3
are shown in Fig. 4. For the 15M dataset, we found that
the AUC of iREAD on GS1, GS2 and GS3 are 0.77, 0.81
and 0.84, which is consistently higher than that of IRFin-
der whose AUC are 0.73, 0.74 and 0.75. Another observa-
tion is that, with increased confidence of gold standard
from GS1 to GS3, the AUCs of both iREAD and IRFinder
increase, being consistent with our expectation. The above
observations hold on the 30M dataset.
As iREAD complements IRFinder to some extent, we

tested whether an ensemble of these two approaches
could improve the results for IR identification. The
scores used for evaluating intron retention propensity
are intron expression level for iREAD and IRratio for
IRFinder. One difficulty that faces us is that these two
types of scores are not comparable. We therefore



Fig. 4 Performance comparison among iREAD, IRFinder and their combined score on the simulated 15 M and 30 M RNA-seq datasets with known
ground-truth intron retention events in terms of AUC. The ROC curves of both methods based on the GS1(FPKM≥0.1), GS2 (FPKM≥0.3) and
GS3(FPKM≥0.5) gold standard for the 15 M dataset is shown in (a), (b) and (c), respectively. Similarly, the ROC curves of both methods based on
the GS1, GS2 and GS3 gold standard for the 30 M dataset are shown in (d), (e) and (f), respectively

Li et al. BMC Genomics          (2020) 21:128 Page 6 of 11
considered normalizing the scores. First, as the distribu-
tion of both scores of these two methods are heavily
tailed, log2-transformation was applied to make the
scores approximately normally distributed. To make the
scores of iREAD and IRFinder in the same scale and
comparable, the log2-transformed scores are further
standardized to have zero mean and unit variance (with
mean subtracted and divided by standard deviation using
the scale function in R base package version 3.5.2). Let
S1 and S2 be the log2-transformed and standardized
score of iREAD and IRFinder. We then calculated their
integrated score as S ¼ 1

2 ðS1 þ S2Þ . The performance
of this integrated score in terms of AUC was shown
in Fig. 4. We observed that, for both the 15M and
30M datasets, the integrated score achieved better re-
sults than both iREAD and IRFinder, suggesting that
these two approaches are complementary.
We further showed that the more confident the

retained introns are, the more improvement of AUC the
integrated score would achieve. For each of the six data
settings in Fig. 4, we ranked the positive retained introns
by their expression level (FPKM). Then, we constructed
a series of gold standard by including only a subset of
the top ranked positives and all the negatives. Denote
the proportion of selected top positives by R. We tested
five values of R, which are 20, 40, 60, 80 and 100%. Note
that R = 100% is equal to using all positive introns as in
Fig. 4. For each R value, we calculated AUC for IRFin-
der, iREAD and the integrated score, respectively. Then
we calculated the Performance Improvement Ratio (PIR)

as PIR ¼ AUCintegrated−AUCmean

AUCmean
, where AUCintegrated repre-

sents the AUC of the integrated score and AUCmean

stands for the mean AUC of IRFinder and iREAD. The re-
sults of PIR for both the 15M and 30M datasets are pre-
sented in Fig. 5. It was observed that PIR decreases as a
function of increased numbers of positive retained introns,
suggesting that iREAD and IRFinder complement most
each other for the top ranked introns and that their com-
plementarity decreases for the lower ranked introns. Fur-
ther, at a given value of R (e.g. 60%), we found that the
lowest, medium and highest PIR values are achieved on
the least confident (GS1), intermediate confident (GS2)



Fig. 5 Performance improvement ratio (PIR) by the integrated score over the average performance of iREAD and IRFinder in terms of AUC. PIR
was calculated for both the 15 M (a) and 30 M (b) datasets using the three different gold standard set of retained introns: GS1(FPKM≥0.1), GS2
(FPKM≥0.3) and GS3(FPKM≥0.5). PIR decreases as a function of increased numbers of positive retained introns, suggesting that iREAD and
IRFinder complement most each other for the top ranked introns

Fig. 6 Systematic analysis of IRs detected by only IRFinder (IRFinder-
specific) or iREAD (iREAD-specific) in the mouse data. We matched
IRFinder-specific IRs to the introns used in iREAD and obtained their
expression values in terms of FPKM; specifically, the IRFinder-specific
introns overlapping with exons are not considered because iREAD does
not consider them. We also matched iREAD-specific IRs to the introns
used in IRFinder and obtained their IRratio values. IRFinder-specific IRs
(with relatively higher IRratio) show generally lower expression than the
retained introns detected by iREAD at default settings. iREAD-specific IRs
(with relatively higher expression) show generally lower IRratio values
than the retained introns detected by IRFinder at default settings. The
shared IRs of the two methods have high IRratio and high expression
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and most confident (GS3) gold standard, respectively,
again supporting that the highest gain in performance
could be achieved for the most confidently retained
introns.
Using simulated data with different sequencing depth

and gold standard of retained introns of different quality,
we found that both iREAD and IRFinder are accurate, and
that many of their detected retention events are not
shared due presumably to their differences in intron anno-
tation and in the criteria for retention evaluation. We also
showed that these two methods complement each other
and using the integrated score of these methods could
help improve the power for intron retention detection.

Comparison of iREAD with IRFinder on mouse RNA-seq data
We further compared iREAD and IRFinder using a mouse
brain RNA-seq data (available at https://www.synapse.org/
#!Synapse: syn4486837, sample ID:256520).
This data was generated by polyA-enrichment and se-

quenced with 133 million paired end reads. Using the same
approach for extracting the top ranked retained introns as
used for the simulation experiments, we obtained 3238 IR
events from each method, out of them 532 are shared.
As the number of IRs shared by the two methods is

small, we investigated why the two methods are dispar-
ate in their annotation by performing a systematic com-
parison of the 3238 IRs detected by each method. First,
we excluded the 532 shared IRs detected by both
methods and focused the analysis on the IRs specific to
each method. For the 2706 IR events that are specific to
IRFinder, only 1434 (53.0%) are annotated with ‘clean’
by the IRFinder software, which are IRs of high confi-
dence; in contrast, a much higher percentage (69.2%) are
annotated with ‘clean’ among the IRs shared by both
methods. 741 (27.4%) are annotated with ‘known-exon’,
indicating that a significant proportion of retained
introns overlap with exons of other isoforms/genes; none
of the IRs shared by both methods are annotated with
‘known-exon. Such introns cannot be detected by iREAD
because it is designed to detect only independent in-
trons. 386 (14.3%) are annotated with ‘anti-near’ (having
a nearby gene on the antisense strand), which are an-
other type of high quality annotation; this percentage is
30.0% for the IRs agreed by both methods. 145 (5.3%)

https://www.synapse.org/#!Synapse:
https://www.synapse.org/#!Synapse:
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are annotated with ‘anti-over’ (overlapping with another
gene on the antisense strand), meaning that the reads in
such introns may be from the anti-sense gene; the shared
IRs have a lower percentage (0.8%) for this type of annota-
tion. Further, we examined systematically why IRFinder-
specific IRs are not detected by iREAD at default setting.
We matched them to the independent introns used by
iREAD and extracted their expression values in terms of
FPKM. By comparison, it is found that IRFinder-specific
IRs (not detected by iREAD) show generally lower expres-
sion than those retained introns detected by iREAD at de-
fault settings (Fig. 6). This observation suggests that iREAD
may fail when the intron have low absolute expression
(FPKM) though the relative expression of intron-retained
transcripts (i.e. IRratio) can be high. For iREAD-specific
IRs, we examined why they are not detected by IRFinder at
default setting. We matched them to the introns used by
IRFinder and extracted their IRratio values. It is found
that iREAD-specific IRs (not detected by IRFinder) show
generally lower IRratio values than those retained introns
detected by IRFinder at default settings (Fig. 6). This ob-
servation suggests that IRFinder may fail when the relative
expression of intron-retained transcripts is low though the
intron may have high expression. This comparison again
Fig. 7 Examples of retained introns in the mouse RNA-seq data visualized
identified by both IREAD and IRFinder. b, a retained intron (5:142,905,278-1
seen from the gene model in (c), this intron completely overlap with exon
indicating that this ‘retained intron’ is ambiguous because it could result fr
be retained because it only analyzes independent introns, i.e. unambiguou
retained intron (chr22:109,546,542-109,549,290 of Meg3) identified by iREAD
supports the complementarity between the two methods,
and combining both methods may provide a more com-
prehensive set of IR events.
As illustrations, we showed one example for each of the

three categories: shared IRs, IRFinder-specific IRs and
iREAD-specific IRs, respectively. For the shared introns, an
example is a confidently retained intron (chr19:5496402–5,
496,985) of Snx32 (ENSMUSG00000056185) with an NE-
score of 0.995 and coverage by 420 reads of which 157 are
junction reads (Fig. 7a). The IRratio of this intron by IRFin-
der is 0.29, which is significantly higher than the threshold
0.1. In Fig. 7b, we showed an intron (5:142,905,278-142,905,
428 of the gene Actb) identified to be retained by IRFinder
but not by iREAD. With a closer look at the gene model in
Fig. 7b, it can be found that this intron of the transcript
ENSMUST00000163829 completely overlap with exons of
another transcript (ENSMUST00000106216) of the same
gene, indicating that this ‘retained intron’ is ambiguous
because it could result from the transcription of exons. This
observation explains why iREAD does not consider this
intron to be retained because it only detects the unambigu-
ous independent introns that do not overlap with any exons
of any transcripts. However, in IRFinder, ambiguous intron
retention events are also included. In Fig. 7c, we showed
in IGV (v2.3.90). a a retained intron (chr19:5496402–5,496,985) of Snx32
42,905,428 of Actb) identified by IRFinder but not by iREAD. As can be
s of another transcript (ENSMUST00000106216) of the same gene,
om the transcription of exons. iREAD does not consider this intron to
s introns that do not overlap with any exons of any transcripts. c, a
but not by IRFinder



Fig. 8 Heatmap of expression of differentially expressed retained
introns between Day 1 and Day 4 in the human induced
pluripotent stem cells (hiPSCs) dataset. Three samples are
measured at each time point and the mean expression of the
three samples are shown. Retained introns mark the
developmental stages of hiPSCs during differentiation
into neurons
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one example intron (chr22:109,546,542-109,549,290 of the
gene Meg3) which was detected to be retained by iREAD
but not by IRFinder. Clearly, this intron does not overlap
with exons of any other transcripts, and all intronic reads
must come from retained introns. We are not clear why this
intron is missed by IRFinder.

iREAD detects biologically relevant IRs
To illustrate that iREAD is capable of detecting biologically
meaningful IRs, we analyzed a dataset of human induced
pluripotent stem cells (hiPSCs) that can be differentiated to
neurons. This dataset contains samples at four time points
(Day 1, Day 2, Day 3, Day 4), with 3 samples at each time
point. Thus, there are a total of 12 samples. We down-
loaded the raw RNA-sequencing data in FASTQ format of
the 12 samples, and apply iREAD to each sample to detect
IR events. Using edgeR, we detected differentially expressed
retained introns between Day 1 and Day 4. A total of 75 dif-
ferential introns (FDR < 0.05) were detected. As shown in
Fig. 8, these retained introns mark the developmental stages
of hiPSCs during differentiation into neurons.
To understand the functions of the differential IRs, we

performed Gene Ontology (GO) enrichment analysis for
the parent genes of these IRs using the clusterProfiler
software (v3.12). We found that the genes are enriched
in a total of 22 GO biological process terms, suggesting
that the detected IRs are not random but are related to
biological pathways. Moreover, we found that some of
these enriched terms are related to the differentiation of
hiPSC into neurons. For example, regulation of choles-
terol biosynthetic process (GO:0045540) was shown to be
relevant to the neural stem cell differentiation [22].
Modulation of chemical synaptic transmission (GO:
0050804) have been reported to be associated with hu-
man iPSC-derived neurons [23]. RNA splicing (GO:
0008380) was implicated in human iPSCs that undergo
neuron differentiation [24]. These results imply that bio-
logically meaningful IRs can be uncovered with iREAD.

Speed
We compared the speed of IRFinder and iREAD for intron
retention detection using the above-mentioned high se-
quencing depth mouse sample with 133 million reads
(9.9G BAM file). From the raw BAM file, we also randomly
sampled 30 and 60 million of the paired end reads to gen-
erate RNA-seq data of different sequencing depth for in-
vestigating how the speed of iREAD changes with the
number of reads. On a commonly used server with 20
cores and 64G memory, iREAD takes only 5, 12 and 22
min for intron retention detection for the three sub-
datasets at different depth (Fig. 9). Since most RNA-seq
data have less than 60 million reads. iREAD is expected to
finish IR event detection of one RNA-seq sample with ~
10min, which is efficient. We also tested IRFinder on the
same computer, and found that the speed of both methods
are comparable (Fig. 9).

Conclusion
By quantifying intronic reads and mining their charac-
teristics, we designed the iREAD algorithm for genome-
wide detection of novel intron retention events from
RNA-seq data. We implemented it as a command line
software using Python. It works with both single-end
and paired-end sequencing data that has been prepared
using poly-A enrichment protocols. We compared
iREAD with the recently published method IRFinder
using simulated RNA-seq data with known ground truth
intron retention events, and found that it achieves



Fig. 9 We compared the speed of iREAD to IRFinder using three
data at different depth (30 M, 60 M and 120 M). The 30 M and 60 M
data are sub-sampled from the original mouse RNA-seq data with
120 M reads. It shows that the speed of both methods
are comparable
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consistently higher accuracies than IRFinder and that
iREAD complements IRFinder in terms of their criteria
in detecting IR events. We showed that using the inte-
grated score of both methods is a good way in practice
because it can improve the performance of retained
intron detection. Based on the simulation study, directly
analyzing intronic reads as used in iREAD achieved
higher sensitivity than using the IRratio metric in IRFin-
der. We found that iREAD is also efficient when tested
on real data with very high sequencing depth (over 130
million reads). The resulting intron retention data can
be further explored in various ways such as differential
expression and functional enrichment, allowing for its use
in many fields including the search for disease-associated
gene expression signatures. We also illustrated that IRs
identified by iREAD are biologically meaningful. Being
complementary to existing tools, iREAD provides a new
and generic tool to interrogate the previously largely
neglected intronic regions from the angle of view of intron
retention.
Availability and requirements

� Project name: iREAD
� Project home: https://github.com/genemine/iread.
� Operating system(s): Linux, Mac
� Programming language: Python, Perl
� Other requirements: No
� License: No.
� Any restrictions to use by non-academics: No
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BAM: Binary version of sequence alignment map; FPKM: Fragments per
kilobase of exon model per million mapped reads; IR: Intron retention; NE-
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