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Abstract

Background: The small hive beetle, Aethina tumida, is a rapidly emerging global pest of honey bee colonies. Small
hive beetle infestation can be extremely destructive, which may cause honey bees to abscond and render colony
infrastructure unusable. Due to the impacts small hive beetles have on honey bees, a wide variety of physical,
cultural, and chemical control measures have been implemented to manage small hive beetle infestations. The use
of insecticides to control small hive beetle populations is an emerging management tactic. Currently, very little
genomic information exists on insecticide target sites in the small hive beetle. Therefore, the objective of this study
is to utilize focused in silico comparative genomics approaches to identify and assess the potential insecticide
sensitivity of the major insecticide target sites in the small hive beetle genome.

Results: No previously described resistance mutations were identified in any orthologs of insecticide target sites.
Alternative exon use and A-to-I RNA editing were absent in AtumSC1. The ryanodine receptor in small hive beetle
(Atum_Ryr) was highly conserved and no previously described resistance mutations were identified. A total of 12
nAChR subunits were identified with similar alternative exon use in other insects. Alternative exon use and critical
structural features of the GABA-gated chloride channel subunits (Atum_RDL, Atum_GRD, and Atum_LCCH3) were
conserved. Five splice variants were found for the glutamate-gated chloride channel subunit. Exon 3c of Atum_
GluCl may be a beetle-specific alternative exon. The co-occurrence of exons 9a and 9b in the pH-sensitive chloride
channel (Atum_pHCl) is a unique combination that introduces sites of post-translational modification. The
repertoire and alternative exon use for histamine-gated chloride channels (Atum-HisCl), octopamine (Atum_OctR)
and tyramine receptors (Atum_TAR) were conserved.

Conclusions: The recently published small hive beetle genome likely serves as a reference for insecticide-
susceptible versions of insecticide target sites. These comparative in silico studies are the first step in discovering
targets that can be exploited for small hive beetle-specific control as well as tracking changes in the frequency of
resistance alleles as part of a resistance monitoring program. Comparative toxicity alongside honey bees is required
to verify these in silico predictions.
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Background
The small hive beetle (SHB), Aethina tumida, is a global
pest of honey bee colonies that is rapidly expanding its
presence outside of its native range in Sub-Saharan
Africa to recently reported infestations in Brazil [1] and
South Korea [2]. This dynamic worldwide distribution is
a consequence of the global trade in beeswax products
that are infested with SHB [3]. The SHB can feed on
stored food resources (i.e. nectar, honey and pollen), all
stages of honey bee brood, and even Tylosin treated
patties used to control American foulbrood [4]. The im-
pacts of SHB infestation are amplified by the symbiotic
relationship with the yeast, Kodamaea ohmeri. This
yeast ferments honey and pollen and produces volatiles
which function as aggregation attractants and yields the
characteristic slimy appearance and distinct odor of
comb infested with SHB [5].
Honey bees are capable of preventing SHB colonization

and infestation via hygienic or defensive behaviors [6].
Honey bee behaviors include running off adult beetles, re-
moving eggs and larvae, or encasing adults in propolis jails
in by the process of social encapsulation [7, 8]. Smaller
nucleus honey bee colonies are more susceptible to failure
due to SHB infestation compared to full sized colonies [9].
Honey bee genetics play a role in SHB infestation. Cape
honey bees exhibit higher rates of aggressive behavior
towards SHB than European honey bees [10]. Colonies of
Russian honey bees tend to have fewer SHB than Italian
honey bees [11].
Beekeepers implement cultural, physical, and chemical

practices to reduce SHB infestation, with varying degrees
of success. Maintaining colonies in sunny areas with low
ambient humidity and low soil moisture limits the devel-
opment and population of SHB [12]. The use of physical
barriers, such as entrance reducers, may lower SHB in-
festation level [11]. Additionally, a wide variety of traps
exist to control SHB populations, but very few have been
demonstrated to enhance honey bee colony performance
in terms of brood area, adult population, colony weight
gain, or colony survival [13, 14]. Thus, insecticide treat-
ments are sought after as an alternative and effective
SHB control measure. Currently in the USA, there are
only two insecticides labelled for SHB control: couma-
phos and permethrin. Coumaphos is an organophos-
phate that is sold as CheckMite+™ and applied as strips
within the colony. Permethrin is a pyrethroid that is sold
as GardStar® and labelled for use as a soil drench to con-
trol SHB that leave the colony as larvae to pupate in the
soil. Should these or other insecticides be more intensely
and more frequently used to control SHB, resistance to
these materials will surely evolve as it has for coumaphos
and tau-fluvalinate that are used to combat the
important honey bee parasite, the Varroa mite
(Varroa destructor) [15, 16].

Understanding the genetic basis of insecticide resistance is
the foundation for designing an accurate, effective, and en-
during resistance management strategy. A description of the
SHB acetylcholinesterases (Ace1 and Ace2) and voltage-
gated sodium channel (Nav1) have appeared in recent publi-
cations of the SHB genome [17] and transcriptome [18].
Ace and Nav1 are the target sites of organophosphate and
pyrethroid insecticides, respectively, which are the only two
classes of insecticide registered for SHB control in the USA.
However, a wide variety of insecticides act at many other
target sites in SHB.
Drosophila Sodium Channel 1 (DSC1 or NaCP60E)

was thought to be a canonical voltage-gated sodium
channel based upon structural comparison [19]. While
true voltage-gated sodium channels possess a DEKA
ion-selectivity motif that is highly selective for sodium
ions, the DEEA ion-selectivity motif of DSC1 is much
less selective and allows the conductance of a variety of
cations [20, 21]. Recent data on the neurophysiological
properties of the honey bee DSC1 ortholog showed it
was more closely related to calcium channels [22]. DSC1
is involved in odor detection [23], nervous system stabil-
ity under stress [24], and insecticide sensitivity [24, 25]
among other processes [26]. Orthologs of this channel
are restricted to invertebrates [27].
The ryanodine receptor mediates the release of intra-

cellular calcium from the endoplasmic reticulum of
muscles and neurons resulting in Ca2+-dependent intra-
cellular signaling cascades [28]. Diamide insecticides
such as chlorantraniliprole (i.e. Rynaxapyr™) specifically
activate the ryanodine receptor [29, 30]. These insecti-
cides have extremely low toxicity to honey bees [31, 32].
The cys-loop ligand-gated ion channels (CLGIC) are a

superfamily of receptors for the neurotransmitters acetyl-
choline, serotonin, gamma-amino butyric acid (GABA),
glutamate, and glycine. CLGICs can form homo- or
heteropentameric complexes with various combinations
of subunits. All CLGIC subunits possess a cys-loop motif
(i.e. C(X13)C) in the extracellular ligand binding domains
and four transmembrane domains (TM1–4) with the sec-
ond domain (TM2) forming the pore of the channel [33].
Insect nicotinic acetylcholine receptors (nAChRs) are im-
portant for learning and memory [34], as well as escape
response [35]. They are also the target of neonicotinoid
[36], sulfoximine [37], and spinosyn insecticides [38].
Mutations in nAChRs confer resistance to these
insecticides [39, 40].
GABA-gated chloride channels are responsible for in-

hibitory currents in the insect central nervous system
[41]. These receptors are the target sites of cyclodiene
organochlorine (e.g. chlordane) and phenylpyrazole (e.g.
fipronil) classes of insecticides that block receptor func-
tion [42]. Mutations in these receptors are responsible
for resistance to these compounds [43]. Insects possess

Rinkevich and Bourgeois BMC Genomics          (2020) 21:154 Page 2 of 12



three GABA-gated chloride channel receptor subunits
[44, 45]. Although not labeled for use in the USA,
Apithor® harborages are impregnated with fipronil and
are effective at reducing SHB populations [14].
Avermectins (e.g. abamectin) are a class of insecticides

that function as allosteric modulators of insect
glutamate-gated chloride channels [41]. This class of
insecticide is highly selective for insects, as mammals do
not possess glutamate-gated chloride channels [46].
Mutations in the GluCl of Drosophila provide avermectin
resistance in bioassays and heterologously-expressed
receptors [47].
Despite pH-sensitive chloride channels (pHCl) possessing

all the hallmarks of cys-loop ligand-gated ion channels, a
systematic analysis showed that classic neurotransmitters
were unable to elicit a response in heterologously-expressed
receptors assembled from these genes [48]. Further investi-
gation showed chloride currents in these channels are inhib-
ited by low extracellular pH and induced by increased
temperature and avermectin application. These pHCls
appear to be restricted to arthropods [49].
Histamine is an important neurotransmitter that is in-

volved in photoreception in insects [50]. Insects possess
two genes that encode histamine-gated chloride recep-
tors (HisCl1 and HisCl2, [44, 45, 48, 51]). Transcripts of
these genes are highly expressed in the eye [52] and
form pharmacologically and physiologically distinct
homomeric receptors [48].
Octopamine and tyramine are phenolamines that act

as neurotransmitters and neuromodulators in the insect
nervous system that regulate complex behaviors such as
grooming, courtship, feeding, learning, and memory [53,
54]. Octopamine and tyramine receptors are types of G-
protein coupled receptors that increase intracellular
Ca2+ concentrations and/or activate molecular signaling
cascades [54]. These receptors are the target sites for
formamidine insecticides, such as amitraz that is used as
a miticide to control Varroa mites in honey bee colonies
[55, 56]. Mutations in these receptors may underlie
amitraz resistance [57, 58].
This manuscript utilizes in silico methods to describe

the SHB orthologs that have been identified as target sites
for most of the widely used and well-developed insecticide
classes. These descriptions provide the comparative foun-
dation to identify potential differences that can be
exploited for SHB-specific control as well as to design a
resistance monitoring program that will identify and track
changes in resistance allele frequencies upon the applica-
tion of insecticides used for SHB control.

Results
AtumSC1
The predicted protein for AtumSC1 (XP_019868698.1)
possesses the characteristic DEEA selectivity filter and

MFL fast inactivation amino acid motifs as seen in other
SC1 orthologs [20]. There were no optional exons in the
predicted transcript (XM_020013139.1), although exten-
sive optional exon usage is observed on other orthologs
[24]. No A-to-I RNA editing events in AtumSC1 were
identified, although SC1 orthologs undergo A-to-I RNA
editing in other species [26]. Reduced sensitivity to DDT
is conferred by an aspartic acid to asparagine mutation
at position 1924 in DSC1 (D1924N, [59]). The aspartic
acid residue in DSC1 is a threonine (T1924) in
AtumSC1, as it is in orthologs in Tribolium (XP_
015837606.1), honey bee (XP_006572013.1), bumble bee
(XP_012173372.1) and carpenter ant (EFN62327.1).
Therefore, it is unlikely if T1924 in AtumSC1 can modu-
late insecticide sensitivity or be exploited for species-
specific control of SHB.

Ryanodine receptor
The ryanodine receptor of small hive beetle (Atum_Ryr)
is predicted to be a 5112 amino acid protein (XP_
019871887.1). Mutations in the ryanodine receptor (i.e.
E1338D, Q4594L, I4790M, and G4946E) are responsible
for high levels of resistance to anthranilic diamide insec-
ticides in the diamondback moth (Pxyl_Ryr [60, 61]).
The homologous residues in the predicted SHB ryano-
dine receptor are either in a susceptible state or homolo-
gous to the honey bee ryanodine receptor (Amel_Ryr).

Cys-loop ligand gated ion channels
A total of 11 α and 1 β nAChR subunits were identified.
These predicted nicotinic acetylcholine receptor sub-
units of Aethina tumida have high similarity in number
and protein sequence to those identified in Tribolium
[45, 62] (Table 1), and this arrangement is similar to the
repertoire in other insects (Table 2). The phylogenetic
relationship between nAChR subunits and all other
CLGICs from Aethina tumida, Tribolium castanuem,
and Apis mellifera is shown in Fig. 1.
There were two predicted transcripts for the α3 ortho-

log. The alternative transcript possessed a 3′ intron ac-
ceptor splice site variant of intron 10 resulting in a 12
base addition to the 5′ end of the exon 11 at nucleotide
1205 that introduced a 4 amino acid addition (i.e. MSSS:
cDNA XM_020016025.1, protein XP_019871584.1) rela-
tive to the primary transcript (cDNA XM_020016026.1,
protein XP_019871585.1) when compared to the gen-
omic DNA (NW_017853156.1; Fig. 2a). Transcripts of
the Tcasα3 subunit in Tribolium also possess an alterna-
tive intron splice site, but it introduces a premature stop
codon [62].
Two predicted proteins had high identity to Tcasα5. The

predicted protein (XP_019867584.1) has the highest iden-
tity to Tcasα5 (90.3%) and covers a similar span of genomic
DNA (Atumα5, NW_017853036.1, LOC109596473, 39,724
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bp; Tcasα5, 36,436 bp), while XP_019867563.1 only shares
82.0% identity to Tcasα5 and has a much more compact
genomic region (NW_017853036.1, LOC109596454, 2326
bp). This gene is directly adjacent to LOC109596473, but in
the reverse orientation on the positive strand, hence the
high likelihood of gene duplication. Therefore, it is
proposed that XP_019867563.1 is to be named Atumα12.
Only one protein (XP_019867426.1) was predicted to

be generated by the Atumα6 locus. More than 18 tran-
scripts of Tcasα6 have been reported [39] and alternative
splicing of this gene is highly conserved across insects
[69]. A diagram of alternative splicing of Atumα6 is
shown in Fig. 2b. The predicted protein contains the
equivalent of exon 3b. The predicted protein contains
exon 8a with high identity (98.1%) to exon 8a from
Tcasα6. An equivalent of exon 8c is encoded in the gen-
ome with 81.8% identity, but exon 8c is rarely included
in transcripts in other insects [69]. There was no signa-
ture of exon 8b in the predicted protein, transcript, or
genomic sequence when using Tcasα6 exon 8b in

alignments. A BLASTn or tBLASTn searches of the con-
sensus nucleotide and protein sequences of exon 8b, re-
spectively, did not return any matches. Therefore, it
appears that Atumα6 is lacking exon 8b. This would be
an unusual situation, as 8b is the most commonly in-
cluded exon in transcripts of α6 orthologs and is the
only exon 8 variant in Bmorα6 of Bombyx mori [69].
Transcripts of α6 orthologs are extensively modified by
A-to-I RNA-editing [69]. Comparisons of the genomic
sequence (NW_017853031.1) to transcript data [70] find
no A-to-I RNA editing aside from editing sites 2 and 3
which are constitutively G in the genome, as in Tribo-
lium and other insects. This is consistent with the re-
duced number of editing sites of Tcasα6 in Tribolium
[62, 69, 71]. Future cloning experiments will likely ex-
pand the repertoire of alternative splicing and A-to-I
RNA editing of Atumα6 or confirm the reduced post-
transcriptional modifications noted here.
The predicted Atumα7 subunit is missing 156 amino

acids when compared to Tcasα7 (Fig. 2c). These missing
amino acids of Atumα7 occur in a region of the protein
that is highly conserved across orthologs and homologs.
This region comprises a large portion of the subunit from
just after ligand-binding loop B through shortly after
TM3. Alignment of the consensus nucleotide sequence of
this region from α7 orthologs does not produce any sig-
nificant matches to the genomic DNA, suggesting this is
not a computational error but rather a genomic deletion.
Both BLASTp and tBLASTn searches yielded no matches.
The lack of many critical features of the Atumα7 subunit
indicates the translated protein is either non-functional or
performs an alternative activity, such as modulating recep-
tor expression [72] or sequestering acetylcholine at the
synapse [73]. The absence of a large region of a nAChR
subunit is not unusual, as transcripts of Dα7 and Amelα7
had an identical truncated region [64].

Table 1 Percent identity and divergence of the predicted protein sequence of nAChRs in Aethina tumida and Tribolium castaneum

Atumα1 Atumα2 Atumα3 Atumα4 Atumα5 Atumα6 Atumα7 Atumα8 Atumα9 Atumα10 Atumα12 Atumβ1

Tcasα1 93.0/7.4 54.4/68.8 58.8/59.0 57.0/63.0 33.0/142.7 38.6/117.0 34.4/135.5 57.4/61.2 24.6/199.0 25.5/193.5 35.5/130.3 42.3/103.2

Tcasα2 56.3/64.5 92.9/7.4 54.7/68.2 50.3/79.1 31.2/152.9 37.3/122.2 31.9/148.7 54.1/59.7 23.7/206.0 27.3/178.8 33.6/139.7 41.6/105.7

Tcasα3 60.9/54.7 53.9/70.1 93.1/7.2 71.1/35.5 33.8/138.7 38.4/117.7 33.5/139.9 60.8/54.9 24.7/198.0 26.2/187.3 36.1/127.5 45.5/92.7

Tcasα4 55.7/65.9 48.6/83.7 70.0/38.2 96.0/4.1 31.9/148.4 39.2/114.6 32.7/144.4 58.7/59.4 24.3/201.0 26.5/185.0 34.2/136.4 44.5/95.8

Tcasα5 33.5/139.8 30.3/158.2 32.4/145.7 31.3/151.8 90.3/10.4 36.3/126.7 30.7/155.5 33.3/140.9 21.4/230.0 24.8/197.0 82.0/20.6 33.9/138.1

Tcasα6 39.2/114.4 38.2/118.5 38.4/117.7 39.5/113.4 38.0/119.5 94.4/5.9 66.4/44.5 38.4/117.5 25.2/196.5 27.8/175.1 37.6/120.8 38.5/117.3

Tcasα7 38.6/117.1 39.2/114.5 39.0/115.3 37.5/121.2 35.3/131.0 68.7/40.5 83.5/18.7 38.6/116.8 23.2/211.0 24.9/196.0 34.3/136.0 35.6/129.8

Tcasα8 59.2/58.1 55.1/67.2 62.0/52.6 59.3/58.0 33.0/142.7 38.2/118.6 31.7/149.6 90.0/10.8 21.6/228.0 26.1/188.9 34.8/133.7 43.6/98.6

Tcasα9 22.4/218.0 20.7/237.0 22.7/215.0 22.1/221.0 21.0/234.0 21.4/230.0 20.3/241.0 20.9/236.0 49.1/82.4 26.9/181.7 20.9/234.0 20.2/243.0

Tcasα10 27.0/180.9 27.3/179.2 25.5/193.5 25.4/195.1 24.4/200.0 27.5/177.4 26.4/186.2 25.5/194.1 27.0/181.5 67.8/41.9 25.5/193.7 26.3/186.8

Tcasα11 58.8/59.0 55.1/66.0 63.2/50.3 60.4/55.7 35.1/132.1 39.8/112.1 33.4/140.3 88.5/12.6 21.9/223.0 26.7/183.8 36.5/125.9 45.6/92.3

Tcasβ1 42.9/101.1 42.1/104.0 45.4/93.0 44.0/97.5 34.5/135.0 37.3/122.1 33.5/139.8 45.1/64.1 21.5/228.0 29.2/164.9 34.9/133.0 98.2/1.8

Putative orthologs are shown in bold

Table 2 Comparison of the number and type of nAChR
subunits across insect species

Species α β Reference

Aethina tumida, small hive beetle 11 1 Current Manuscript

Anopheles gambiae, malaria mosquito 9 1 [63]

Apis mellifera, honey bee 9 2 [64]

Bombyx mori, silkworm moth 9 3 [65]

Meligethes aeneus, pollen beetle 8 1 [66]

Drosophila melanogaster, fruit fly 7 3 [67]

Musca domestica, house fly 7 3 [68]

Nasonia vitripennis, parasitoid wasp 12 4 [51]

Tribolium castaneum, red flour beetle 11 1 [45]
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Two predicted nAChR proteins showed identity to
Tcasα8 and Tcasα11. Upon examination, these two pro-
teins (XP_019873223.1 and XP_019875406.1) could be
merged into a single protein, as the 152 amino acids in
the C-terminus of XP_019873223.1 overlapped with the
N-terminus of XP_019875406.1 with 100% identity. This
merged protein aligned to the Tcasα8 subunit of
Tribolium with 90% identity, thus the merged protein is
identified as Atumα8.
Immediately preceding the channel pore that is com-

prised of the second transmembrane segment of an
nAChR subunit, there is a characteristic GEK amino
acid motif that is important for ion selectivity [74].
However, the Atumα9 subunit possesses a KDR amino
acid motif, which is similar to other divergent nAChR
subunits [44, 45, 65].
Two predicted proteins shared similarity with Tcasα10

(Table 1). The mRNA sequence for XM_020024668.1 is
incomplete at the 5′ end due to an automated trans-
lation discrepancy. Comparison of the protein, cDNA,
and genomic regions of these predicted proteins shows a
very high identity (98.8, 98.0, and 96.9%, respectively),
and the intron positions and length are identical. There-
fore, it suggests that XM_020024668.1 is a computa-
tional error and may not be an alternative transcript of
Atumα10.
The predicted Atumβ1 ortholog shared 98.2% identity

with Tcasβ1. The major difference is the absence of 11

amino acids in the intracellular linker between TM3 and
TM4 of Atumβ1 compared to Tcasβ1. This region is the
source of most variation in β1 orthologs in other species
[44, 45, 51, 63, 75].

GABA-gated chloride channels
The predicted Atum_RDL protein (XP_019870942.1)
shared 92.8% identity to Tcas_RDL and possesses alter-
native exons 3a and 6b. Orthologs of alternative exons
3b, 3c, and 6a of Tcas_RDL [45] were identified in the
Atum_RDL genomic sequence (NW_017853131.1), but
not in the predicted transcript of Atum_RDL (XM_
020015383.1). Another predicted Atum_RDL protein
(XP_019879456.1) only shared 81.0% identity. The latter
protein lacked the transmembrane regions, so it is likely
non-functional. However, alternative exon usage of this
gene may have caused a computational error that yielded
this presumably non-functional protein, as it is bound at
the 5′ and 3′ ends by alternative exons 3a and 6a,
respectively. The PAR amino acid motif immediately
preceding the TM2 domain that forms the pore of the
channel acts as a selectivity filter for anion-selective
receptors is observed in Atum_RDL [74]. The RDL
subunit also undergoes extensive A-to-I RNA editing
that can alter the potency of GABA at the receptor [76].
Comparison of the predicted mRNA to the BLAST-
matched transcriptome sequence [70] showed no evi-
dence of A-to-I RNA editing. The A302S mutation in

Fig. 1 Phylogenetic relationship of the cys-loop ligand gated ion channel superfamily of the small hive beetle, Aethina tumida (green), red flour
beetle, Tribolium castaneum (red), and honey bee, Apis mellifera (black). Genbank accession numbers for the sequences mentioned in this figure
can be found in Additional file 1: Table S1
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RDL that confers resistance to cyclodienes and fipronil
is in the susceptible state in Atum_RDL [43].
Atum_GRD and Atum_LCCH3 shared 80% identity

and 87.9% to the Tribolium orthologs, respectively. The
predicted protein for Atum_GRD contains the variant 1
splice type [45]. Most of the differences in the sequences
of these orthologs were in the intracellular linker
between TM3 and TM4. Unlike the PAR selectivity
motif of RDL, the Atum_GRD and Atum_LCCH3 sub-
units possess ADR and SAR amino acid motifs, respect-
ively. This is consistent with the Tribolium orthologs of
these proteins [45].

Glutamate-gated chloride channels
Five splice variants of the Atum glutamate-gated chlor-
ide channels (Atum_GluCl) were predicted. The Atum_
GluCl x1, x3, and x5 variants yielded highly similar pro-
teins. Of this group, x3 protein was missing K371, which

is in the intracellular linker between TM3 and TM4.
While the x1 and x5 proteins were 100% identical, the
5’UTR differed between these transcripts. The x1, x3, and
x5 transcripts contained alternative exon 3b, while x2 and
x4 possessed alternative exons 3a and 3c, respectively.
Atum_GluCl exon 3c appears to be a beetle-specific exon,
as it has not been reported in transcripts from other
insects besides Tribolium [44, 45, 51, 77].

pH-sensitive chloride channels
The annotation predicted seven distinct Atum_pHCl
proteins that varied due to putative alternative splicing
in regions of the intracellular linker between TM3 and
TM4 (Fig. 3 and Table 3). Exon 9a and 9b of the open
reading frame exhibits cassette exons where either one,
both, or neither are present. These transcript types have
been previously reported as splice variants 3 or 3a [44,
45, 49, 51], however, the co-occurrence of both exons 9a

Fig. 2 Alternative splicing of nicotinic acetylcholine receptor subunits (nAChRs) in the small hive beetle, Aethina tumida. a Variation in the intron
acceptor splice site in Atumα3 that adds 12 nucleotides to the 5′ end of exon 11. Amino acids shown in bold appear under the first base of the
codon. Exon sequences are shown within borders. The shaded sequence represents the alternative intron splice site sequence that is added in
XM_020016025.1. Dashes represent intron 10 of Atumα3 (not to scale). b Predicted transcript from Atumα6. Alternatively-spliced exons 3a/3b and
8a/8b/8c are shaded black and gray, respectively. The conserved exon 8b is not present in the genomic sequence and appears as a box with
dotted border. Exons are shown as boxes and sizes are approximately proportional to nucleotide length. Introns shown as lines connecting the
boxes are not to scale. c Schematic diagram of missing genomic region of Atumα7 compared to Tcasα7. Atumα7 is lacking equivalents of exons
6 and 7 from Tcasα7. Letters and numbers at the top of the diagram represent the approximate locations of ligand binding loops and
transmembrane domains, respectively. Exons are shown as boxes and sizes are approximately proportional to nucleotide length. Introns shown as
lines connecting the boxes are not to scale
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and 9b in a single transcript, as in variants x1–3, is a
novelty. These alternative exons possess additional pro-
tein kinase C phosphorylation sites. There is an N-myr-
istoylation site on exon 9a. Exon 9b adds a casein kinase
II phosphorylation site. The case of the inclusion of both
exons 9a and b gives rise to an additional casein kinase
II phosphorylation site that spans the conjoined exons.
A further source of variation was observed with alterna-
tive splicing of the donor and acceptor sites of intron 10.
A 12 bp extension of the donor site in transcript x2 adds
an additional 4 amino acids (i.e. VNIN) and remains in
frame. The acceptor site may be spliced 15 bp upstream
to add 5 amino acids (i.e. SCLLQ). These intron splice
variants do not add sites for post-translational modifica-
tions. Splice variant 4 that modifies residues in the
extracellular ligand-binding loop C was not predicted in
any of these proteins [44, 45, 51]. Up to 16 transcripts
are possible using combinations of alternative splicing of
exon 9 and intron 10.

Histamine-gated chloride channels
The Atum_HisCl1 and Atum_HisCl2 proteins possess
the PAR amino acid motif at the extracellular pore of
the channel that regulates anion selectivity [74]. The

Atum_HisCl1 and Atum_HisCl2 proteins share 86.6
and 84.1% identity with their respective orthologs in
Tribolium (Tcas_HisCl1 ABU63602.1; Tcas_HisCl2
ABU63603.1).

Phenolamine receptors
The phylogenetic relationship of phenolamine receptors
in SHB compared to other insects is shown in Fig. 4.
One α-andregenic-like and 3 β-andregenic-like octopa-
mine receptor subunits as well as orthologs of tyramine
receptors 1 and 2 were identified in the SHB genome.
The predicted proteins contain the hallmarks of pheno-
lamine receptors. These features include the conserved
DRY sequence at the end of the third transmembrane
segment that is critical for receptor activation, as well as
a pair of cysteine residues in the extracellular loops that
stabilize receptor structure. These receptor subunits are
extensively modified by post-translational modifications
that affect receptor desensitization and internalization
[78]. The locations and types of post-translational
modifications are shown in Table 4.

Discussion
The small hive beetle is an increasingly invasive pest of
honey bee colonies across the globe. Due to its intimate
relationship with honey bees, it is likely that SHB-
selective chemical control measures will become va-
luable tools to manage the impacts of this pest on honey
bee colonies. This in silico study describes the SHB
orthologs for many of the known insecticide target sites
that will identify target sites that can be exploited for
SHB-specific control and facilitate the development of
molecular techniques to evaluate potential mechanisms
of insecticide resistance in this pest.
DSC1 and its orthologs are highly expressed in the an-

tennae and brain [22, 79], and it has been shown to be
critical for odor detection [23, 24]. Small hive beetle

Fig. 3 Transcript variants of Atum_pHCl. a Amino acid sequence of splice variants due to alternative splicing of exon 9 in Atum_pHCl compared
to Tcas_pHCl [45]. Sequence motifs in bold are protein kinase-C phosphorylation sites, underlined motifs are casein kinase II phosphorylation sites,
and shaded motifs are N-myristoylation sites. b Amino acid sequence of splice variants due to alternative splicing of intron 10 in Atum_pHCl. The
corresponding sequence in Tcas_pHCl is identical to the regular splice variant

Table 3 Alternative splicing characteristics of Atum_pHCl
transcripts

Atum_pHCl Transcript Exon 9a Exon 9b Intron 10
Donor

Intron 10
Acceptor

x1 X X – X

x2 X X X –

x3 X X – –

x4 – X – X

x5 X – – X

x6 – – – X

x7 – – – –

Rinkevich and Bourgeois BMC Genomics          (2020) 21:154 Page 7 of 12



adults aggregate to mate and lay eggs by the attraction
to volatile alcohols that are emitted as larval feeding fer-
ments honey via the symbiotic yeast Kodamaea ohmeri
[5]. Therefore, a molecule that can specifically inhibit
AtumSC1 may interfere with the attraction to these
volatile compounds and reduce the SHB infestation rate.
The ryanodine receptor in SHB superficially appears

similar to that in honey bees, prima facie. However,
there are dramatic differences in the binding affinity of
diamide insecticides to ryanodine receptors among in-
sect species. Increased binding affinity of diamide insec-
ticides to ryanodine receptors is correlated with higher
mortality among species [80]. Honey bees lack a high af-
finity binding site for flubendiamide (a diamide insecti-
cide) that is present on the ryanodine receptors of
Lepidopteran pests [30]. However, the exact region or
mutation of the honey bee ryanodine receptor that is re-
sponsible for this lack of high affinity binding has not
been determined. While in silico comparison is incon-
clusive, pharmacological studies comparing diamide
binding affinity of SHB and honey bee ryanodine recep-
tors will be able to identify differences in binding affinity
among these receptors. Ryanodine receptor pharma-
cology is uncharacterized in SHB at this time.
The cys-loop ligand-gated ion channels represent the

target sites for many of the most commonly used insecti-
cide classes (i.e. neonicotinoids, spinosyns, sulfoximines,

avermectins, and fiproles) as well as for new insecticide
classes under development (i.e. isoxazolines, metadiamides,
cycloxaprid, and mesoionics). Insecticides acting at the cys-
loop ligand-gated ion channels account for approximately
40% of insecticide sales [81]. Despite the breadth of insecti-
cides currently used and those under development that act
at this diverse group of target sites, there may only be lim-
ited options for species-specific control of SHB. For ex-
ample, honey bees have very low sensitivity to the
neonicotinoids acetamiprid and thiacloprid [82]. Evaluating
the sensitivity of small hive beetle to these compounds may
present an opportunity for selective control. Other insecti-
cides that act at the cys-loop ligand-gated ion channels
such as spinosad, fipronil, and avermectin are extremely
toxic to honey bees [32, 83, 84]. Selectivity for SHB with
these compounds is likely to be based on differences in
spatial exposure rather than physiological differences in the
target sites for these compounds, as observed in the effect-
iveness of Apithor® traps that are impregnated with fipronil
for SHB control [14, 85].
Mutations in octopamine receptors have been identified

in amitraz-resistant populations of the southern cattle tick,
Rhipicephalus microplus [57, 58]. Upon further examin-
ation, the putative octopamine receptor that was mutated
in the amitraz-resistant Santa Luiza strain is more closely
related to tyramine receptor 1 than a bona fide octopa-
mine receptor. The T8P and L22S mutations that were

Fig. 4 Phylogenetic relationship of octopamine and tyramine receptors in small hive beetle, Aethina tumida (green), red flour beetle, Tribolium
castaneum (red), honey bee, Apis mellifera (black), fruit fly, Drosophila melanogaster (blue), and silk worm, Bombyx mori (purple). Genbank
accession numbers for the sequences mentioned in this figure can be found in Additional file 1: Table S1
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associated with amitraz resistance occur in the N-
terminus of the receptor [57]. This section is highly diver-
gent and no SHB phenolamine receptor aligns to this
region. Therefore, these mutations are not informative for
determining potential amitraz-insensitivity in SHB. How-
ever, the I61F mutation in the octopamine β-andregenic-
like receptor 2 observed in amitraz-resistant populations
of Rhiphecephalus microplus occurs at a highly conserved

residue that is in the susceptible state in SHB [58]. With
the widespread and intense use of amitraz to control
Varroa mites in honey bee colonies, it will be of interest to
observe changes in amitraz sensitivity in SHB.

Conclusions
The global wax trade acts as a conduit for the introduc-
tion of SHB to honey bee colonies across the globe [3].

Table 4 Location and number of types of post-translational modifications of octopamine receptors in Aethina tumida. The residues
involved in post-translational modifications is shown below and the amino acid position in the peptide of the first residue in the
motif is shown as a number

Octopamine
Receptor Subunit

N-linked
glycosylation

Casein kinase II
phosphorylation

Protein kinase C
phosphorylation

N-
myristoylation

Amidation cAMP- and cGMP-dependent
protein kinase phosphorylation

Atum_OctαR NATA 6
NSTL 171
NGSN 272
NSTT 275
NNSL 528

TDPE 20
TLQE 173
SSCD 371
TGRE 376
SSCD 387
SLGD530

SSK 52
SHK 137
TTR 224
TTK 234
TLR 251
SGK 261
SNR 289
SHR 361
SSR 366
SRR 367
TGR 376
SRK 398
SRR 502

GSPHSN 267
GSNSTT 273
GIIVGG 424
GSDGSQ 505
GGDPSD 538

SGKR 261
MGKR 401

RRSS 363
RRSS 368
RRGS 503

Atum_Octβ1R NETD 17
NNTS 26
NTSI 27
NFSV 107
NRTY 214
NYSN 402
NASS 405
NISE 432

TFSE 6
STNE 15
TDFD 19
SVVE 109
TTSD 194
SENE 434

SLR 276
SSK 296
TSK 385

GISAGL 269
GIIVSA 310

Atum_Octβ2R NITV 3
NVTN 7
NATS 10
NFSV 85
NTTY 190
NNTN 240
NSTL 333

TSTE 12
TTEE 170
TNGD 242
TLHE 258
SDLD 369

TKK 141
SSK 253
SIR 380
SDR 399

GSSKTL 252
GIIMGI 290

RRPS 377
RRCS 401

Atum_Octβ3R NATL 19
NRTN 24
NVTN 27
NASV 101

TNIE 29
TTNE 187
SYRE 262
SDGE 275

THR 158
SYR 262
TIR 292
SWR 299

GQINGR 283
GIIMGA 311

NGRR 286 RRST 288

Atum_TAR1 NTSC 3
NFST 13
NQST 236
NNTH 286

SCVD 5
TPRE 241
SHED 295
SLTD 299

TYK 55
TLK 141
TKR 217
TPR 241
SRR 310
SPK 340
TKK 352
SRR 410

GNFSTI 12
GIDICK 97
GXGATK 348
GIIMGV 381

RRNS 311

Atum_TAR2 NESS 3
NNTA 32
NKSS 327
NSTI 404

SSLE 7
SDVD 260
SECE 267
REPE 341

TTR 72
TRR 73
SRK 154
SKR 159
TRK 246
STK 249
SLR 312
SFR 363
TVK 441
TRR 448

GLTVAT 20 KRRS 156
RKST 247
RRET 365
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As the impacts of SHB on beekeeping operations intensi-
fies, the use of chemical control measures will surely
become part of a comprehensive SHB control program.
Over-reliance on insecticides will undoubtedly select for
insecticide resistance and reduce the effectiveness of these
tools for SHB control. The insecticide target sites in the
SHB genome described here and elsewhere [17] provide a
susceptible benchmark for designing molecular diagnostic
tools to identify and monitor changes in resistance alleles.
As more reports of insecticide sensitivity are made avail-
able, potential differences in toxicity between SHB and
honey bees may be explained by differences in target sites.

Methods
Gene identification and sequence alignments
The predicted proteins from the official gene set of Aethina
tumida (NCBI Bioproject PRJNA256171) was queried with
Tribolium castaneum orthologs using a BLASTp search
[86]. Putative orthologs in Aethina tumida were designated
by > 95% query coverage and E-value <1e− 100. Sequence
files were annotated with EditSeq and aligned with MegA-
lign (DNAStar LaserGene 13 Package, Madison WI). A
complete list of insecticide target site orthologs in SHB and
other species is found in Additional file 1: Table S1.
Alternative splicing was performed by aligning the pre-

dicted transcript to the genomic region. Intron boundar-
ies were identified by the GT-AG intron donor and
acceptor consensus sequences [87]. Putative A-to-I RNA
editing sites were identified by aligning the genomic se-
quence to the sequence derived from the SHB transcrip-
tome (NCBI Bioproject PRJNA361278 [70]). A-to-I RNA
editing in AtumSC1 [26], Atumα6 nAChR [69], and
Atum_RDL [76] was compared to previously reported
editing sites.
Alignments of cys-loop ligand-gated ion channel sub-

units and phenolamine (i.e. octaopamine and tyramine)
receptors were made with MEGAv7.0.21 [88] using the
Gonnet Protein Weight Matrix with Gap Opening and
Gap Extension penalties of 10 and 0.2, respectively. The
alignment was used to construct a Neighbor-Joining
Tree [89] with 1000 bootstrap replications [90]. Trees
for CLGIC and phenolamine receptors were visualized
and annotated with the iTOL online tool [91]. Post-
translational-modifications of phenolamine receptors
were examined with ScanProsite tool [92].
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