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Abstract

Background: Haplotypes combine the effects of several single nucleotide polymorphisms (SNPs) with high linkage
disequilibrium, which benefit the genome-wide association analysis (GWAS). In the haplotype association analysis,
both haplotype alleles and blocks are tested. Haplotype alleles can be inferred with the same statistics as SNPs in
the linear mixed model, while blocks require the formulation of unified statistics to fit different genetic units, such
as SNPs, haplotypes, and copy number variations.

Results: Based on the FaST-LMM, the fastLmPure function in the R/RcppArmadillo package has been introduced to
speed up genome-wide regression scans by a re-weighted least square estimation. When large or highly significant
blocks are tested based on EMMAX, the genome-wide haplotype association analysis takes only one to two rounds
of genome-wide regression scans. With a genomic dataset of 541,595 SNPs from 513 maize inbred lines, 90,770
haplotype blocks were constructed across the whole genome, and three types of markers (SNPs, haplotype alleles,
and haplotype blocks) were genome-widely associated with 17 agronomic traits in maize using the software
developed here.

Conclusions: Two SNPs were identified for LNAE, four haplotype alleles for TMAL, LNAE, CD, and DTH, and
only three blocks reached the significant level for TMAL, CD, and KNPR. Compared to the R/lm function, the
computational time was reduced by ~ 10–15 times.
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Background
In genome-wide association studies (GWAS), single nu-
cleotide polymorphisms (SNPs) are the smallest genetic
units analyzed. Large genetic units can be obtained
through the combination of multiple SNPs in different
forms. For instance, haplotype blocks in high linkage dis-
equilibrium [1–3], copy number variations (CNVs) [4, 5]
in the form of repeated DNA sequences variation, and
larger genetic units, including genes and gene sets (path-
way) [6–8] are comprehensively annotated with the
development of whole-genome DNA re-sequencing.
Genome-wide association analysis for large genetic units
shows major advantages over SNPs in relation to: 1)

explaining large percentages of phenotype variations by
the combined effects of multiple SNPs and 2) facilitating
the study of mechanisms related to complex traits by
biologically meaningful genetic units such as genes and
pathways [9].
Using random polygenic effects excluding the tested

marker to correct confounding factors, such as popula-
tion stratification and cryptic relatedness, linear mixed
models (LMM) improve the power to detect quantitative
trait nucleotides (QTNs) by efficiently controlling false
positive rates. However, the high computing intensity of
LMM has motivated the development of simpler algo-
rithms [10–17] to reduce the computational burden,
allowing LMM to become a widely used and powerful
approach in genome-wide association studies (GWAS).
These simplified methods work by reducing the LMM
or replacing the restricted maximum likelihood (REML)
[18] with spectral decomposition. Although the reduced
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LMMs, such as GRAMMAR [10], EMMAX [11] or P3D
[12], CMLM [12], GRAMMAR-Gamma [13], and
BOLT-LMM [14], retain the same statistical power as
the regular LMM, they over-estimate the residual poly-
genic effects and decrease the goodness-of-fit of pheno-
types. Instead of REML, the efficient mixed-model
association (EMMA) [15] avoids a redundant and com-
putationally expensive matrix operation at each iteration
in the computation of the likelihood function by the
spectral decomposition of phenotype and marker indica-
tors. As such, the computational speed to solve the
LMM is substantially increased by several orders of mag-
nitude. On the other hand, unlike EMMA (which spec-
trally decomposes each tested SNP), the factored
spectrally transformed linear mixed model (FaST-LMM)
[16] only requires a single spectral decomposition to test
all SNPs, thereby offering a decrease in the memory
footprint and additional speedups. Finally, the second
derivatives for the log-likelihood function are considered
in the genome-wide efficient mixed-model association
(GEMMA) [17] algorithm, specifically based on the
spectral decomposition, in order to determine the global
optimum.
Based on the FaST-LMM [16], we transform the

genome-wide mixed model association analysis to a lin-
ear regression scan, along with searching for variance
components, and extend the FaST-LMM for SNPs to
different genetic units by constructing a unified test stat-
istic. To speed up genome-wide regression scans, we
introduce the fastLmPure function in the R/RcppArma-
dillo package to infer the effect of tested genetic units.
When only large or highly significant blocks obtained
from EMMAX are tested, the genome-wide haplotype
association analysis will reduce the analysis to one or
two rounds of genome-wide regression scans. The

software Single-RunKing [19] was developed to imple-
ment the extremely fast genome-wide mixed model as-
sociation analysis for different genetic units. The high-
computing efficiency of the software is demonstrated by
the re-analyzing of 17 agronomic traits from the maize
genomic datasets [20].

Results
Haplotype construction
Haplotype blocks of the genomic dataset were con-
structed using the Four Gamete Test method (FGT)
[21], which is implemented in the Haploview software
[22]. With a cutoff of 1%, a total of 90,770 haplotype
blocks were generated, covering 482,858 SNPs that ac-
count for 89.2% of all analyzed SNPs. Considering the
number of SNPs included in each block, there were 59
kinds of blocks formed by more than 2 SNPs. Figure 1
displays the frequency of haplotype blocks that consist
of different numbers of SNPs. More than 90% of the
haplotype blocks contained less than 10 SNPs, with the
largest block containing 71 SNPs. The number of haplo-
type alleles are less than the theoretical values in most
blocks. Moreover, rare haplotype alleles with frequencies
of less than 0.02 were merged to one allele in each block,
so that only 432,505 haplotype alleles were collected.
Figure 2 shows the distribution of the number of haplo-
type alleles included in the blocks, of which 85% of
haplotype blocks yielded 3~6 alleles and the most haplo-
type alleles were 13 in a single block.

GWAS for genetic units
We applied the Single-RunKing software to associate
SNPs, haplotype alleles, and haplotype blocks genome-
widely with 17 agronomic traits. Prior to GWAS, the
two analyzed variables, SNPs and haplotype alleles, were

Fig. 1 Distribution in numbers of SNPs forming haplotype blocks. The inner picture is an enlargement of the horizontal coordinates from 25
to 70
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Fig. 2 Distribution in number of haplotype alleles included in haplotype blocks

Fig. 3 QQ and Manhattan plots of three genetic units for TMAL trait. The top, the medium and the bottom are for haplotype blocks, haplotype
alleles and SNPs, respectively
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assigned values 0 and 1, but the former corresponds to
two homogeneous genotypes in the resource population
and the latter depends on whether they occur in individ-
uals. When haplotype blocks were analyzed, their last
haplotype alleles were removed to make the regression
of the block identifiable. At a significance level of 5%,
the critical thresholds by the Bonferroni correction were
determined as 7.035, 6.937, and 6.259 to declare signifi-
cance for SNPs, haplotype alleles, and blocks, respect-
ively. The agronomic traits were all associated with
genome-wide SNPs, haplotype alleles, and blocks using
the LM with unified test statistics and the Single-
RunKing software based on the FaST-LMM.
All analyses were performed on a CentOS 6.5 operat-

ing system running in a server with a 2.60 GHz Intel
Xeon E5–2660 Opteron (tm) Processor, 512 GB RAM,
and 20 TB HDD. The data input took 8.7250, 9.0520,
and 13.7064 min for haplotype blocks, haplotype alleles
and SNPs, respectively, and preparation of input vari-
ables 3.4972, 3.4321, and 4.3497 min. More specifically,
the Single-RunKing for the haplotype blocks, haplotype
alleles, and SNPs consumed bare-bone regression scans

of 1.6072, 3.7589, and 5.1181 min, respectively, which
were significantly lower than that of the linear model
implemented in the R/lm function (17.2284, 40.2937 and
54.8637 min). If only the SNPs with statistical probabil-
ities of more than 0.05 were optimized, then the running
time for bare-bone regression scans would reduce to
0.4527, 1.5235, and 1.6927 min using the Single-
RunKing.
Q-Q and Manhattan plots are depicted in Fig. 3, 4 and 5

and Additional file 1: Figure S1-S2 for the agronomic
traits with detected QTLs. In each Q-Q plot obtained with
the Single-RunKing software, the real line for –log10(p)
nearly overlaps with the theoretical expectation except for
the high end of the line, and the genomic control values
were closed to 1 (see Additional file 1: Table S1). This sug-
gests that, compared to the LM algorithm, which seriously
inflates test statistics, the Single-RunKing software per-
forms excellent genomic controls for the confounding fac-
tors. According to the Manhattan plots, GWAS using the
Single-RunKing software are summarized in Table 1 for
the agronomic traits. At least one type of genetic unit was
identified for only five traits: TMAL, LNAE, CD, KNPR,

Fig. 4 QQ and Manhattan plots of three genetic units for CD trait. The top, the medium and the bottom are for haplotype blocks, haplotype
alleles and SNPs, respectively
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and DTH. No SNPs, haplotype alleles, and blocks were lo-
cated together for the same trait, with two types of genetic
units at most being located for a specific trait. Only two
SNPs (chr4.S_216,248,578 and chr4.S_216,248,611), which
are in high degree of linkage disequilibrium, were detected

for LNAE, with the haplotype allele Chr4Block6251_2
(where they reside) being also significant. Two haplotype
alleles and their corresponding blocks were simultan-
eously found to significantly control TMAL and CD, re-
spectively. Only one block, Chr3Block4589, was detected

Fig. 5 QQ and Manhattan plots of three genetic units for KNPR trait. The top, the medium and the bottom are for haplotype blocks, haplotype
alleles and SNPs, respectively

Table 1 Three types of significant genetic units identified for 17 traits using the Single-RunKing software

Traits QTL Chr Position (bp) haplotypes SNPs −log10(p) Heritability (%) Candidate gene

TMAL Block5106 7 154,269,126~154,269,135 4 2 6.83* 1.98 GRMZM5G835323

Block5106_rare 7.79* 0.54

LNAE Block6251 4 216,248,578~216,248,659 4 3 6.00 GRMZM2G138881

Block6251_2 7.32* 7.43

chr4.S_216,248,578 216,248,578 7.29* 7.33

chr4.S_216,248,611 216,248,611 7.18* 7.38

CD Block6253 4 216,318,748~216,319,308 5 3 7.60* 10.69 GRMZM2G477205

Block6253_rare 8.84* 10.16

KNPR Block4589 3 156,814,466~156,936,687 4 2 6.35* 6.64 GRMZM2G336909
GRMZM2G089952

DTH Block7921 3 211,147,258~211,147,654 6 7 5.47 GRMZM2G422651

Block7921_rare 7.45* 7.62
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for KNPR, while one haplotype allele, Chr3Block7921_rare,
was detected for DTH. The two detectable SNPs, chr4.S_
216,248,578 and chr4.S_216,248,611, explained 7.33 and
7.38% of the phenotypic variation, respectively. The four
haplotype alleles accounted for 0.54 to 10.16% of the
phenotypic variation, while the three haplotype blocks
accounted for 1.98, 6.64, and 10.69%, which are quite larger
than the corresponding SNPs or haplotype alleles detected.
Additionally, all the detected genetic units were mapped on
the annotated genes, especially Chr3Block4589 on two
genes with known biological meaning.

Discussion
Using spectral decomposition of phenotypes and markers,
the FaST-LMM transformed the LMM of the tested
marker to LM. Genetic effects of markers were estimated
with re-weighted least square, along with optimization of
genomic variance. A unified test statistic was formulated
to fit different genetic units, such as SNPs, haplotypes, and
copy number variations. In GWAS implemented in the
Single-RunKing software, computational efficiency is
greatly improved in three ways: 1) by using the bare-bones
linear model fitting function, known as R/fastLmPure, to
rapidly estimate genetic effects of the tested SNPs, 2) by
replacing genomic variance with heritability to narrow
down the search of solutions, and 3) by focusing on large
or highly significant SNPs obtained with EMMAX. The
Single-RunKing software was developed to transform the
genome-wide mixed model association analysis into bare-
bones regression scans, where the optimal polygenic herit-
ability of the tested markers is searched by the re-
weighted least square estimation of the genetic effects.
Given the genomic heritability, the EMMAX method
needs a genome-wide regression scan of only one round.
Based on the EMMAX method, the Single-RunKing
software will run genome-wide regression scans within
two rounds if only large or highly significant markers are
tested.
In genome-wide mixed model association analysis, the

construction of kinship matrix by all markers will con-
sume increasingly more memory footprint and comput-
ing time, given that more high-throughput SNPs are
produced by re-sequencing techniques. Furthermore, the
computing time required would be incredibly high if the
kinship matrices vary with the tested markers. Counter-
productively, the use of all or too many SNPs to calcu-
late kinship matrices may yield proximal contamination
[16, 23, 24] due to the over-estimation of polygenic vari-
ance, especially for large genetic units. The simplest
approach is to use random samples of genetic markers
to construct the kinship matrices [12, 24]. Selectively in-
cluding and/or excluding pseudo QTNs to derive kin-
ship matrices for the tested SNPs can improve statistical
power compared to deriving overall kinship matrices

from all or a random sample of genetic markers [23, 25].
Additionally, the CMLM reduces the dimension of the
RRM by clustering individuals into several groups based
on the selected genetic markers. If the resource popula-
tion is too large, a random sample of the population can
also be used to rapidly estimate genomic heritability.
Overall, in order to improve computing efficiency, all
simplified procedures of the genome-wide mixed model
association analysis can be incorporated into the Single-
RunKing software.
In real data analysis, the genetic units SNP, haplotype

alleles, and blocks were analyzed, of which the former is
included in the latter. As produced with the analysis of
variance, three possible outcomes were detected among
the three genetic units: the first which consists of both
the former and the latter, the second which is only the
former or only the latter, and the third is neither the
former nor the latter. With respect to the five mapped
traits, three mapping outcomes occurred between
haplotype alleles and corresponding blocks. Only one
significant SNP was identified together with one corre-
sponding haplotype allele for LNAE. In our test, among
the four significant haplotype alleles, three were merged
by rare alleles with low frequency in one block. After be-
ing applied for the genome-wide mixed model associ-
ation analysis, the haplotype blocks explained more
phenotypic variation than the detected corresponding
SNPs or haplotype alleles due to the combined effects of
multiple SNPs.

Conclusion
A bare-bones linear model fitting function, known as R/
fastLmPure, was used to rapidly estimate effects of gen-
etic units and maximum likelihood values of the FaST-
LMM. When only large or highly significant genetic
units are tested based on the EMMAX, the extended
Single-RunKing software for genetic units takes genome-
wide regression scans one to two times. The algorithm
was applied into the genome-wide association of agro-
nomic traits in maize. Three haplotype blocks were iden-
tified for TMAL, CD, and KNPR traits, while four
haplotype alleles were found for TMAL, LNAE, CD, and
DTH traits.

Methods
Maize genomic data
The dataset was downloaded from http://www.maizego.
org/Resources.html. After a high-quality control was
established, 541,595 SNPs for 508 maize inbred lines
remained for the subsequent analysis. For constructing
haplotypes, missing genotypes were imputed by BEAGLE
[26]. The analyzed traits include plant height (PH), ear
height (EH), ear leaf width (ELW), ear leaf length (ELL),
tassel main axis length (TMAL), tassel branch number
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(TBN), leaf number above ear (LNAE), ear length (EL),
ear diameter (ED), cob diameter (CD), kernel number
per row (KNPR), 100-grain weight (GW), cob weight
(CW), kernel width (KW), days to anthesis (DTA), days
to silking (DTS), and days to heading (DTH).

FaST-LMM for genetic units
In matrix notation, general LMM for GWAS can be de-
scribed as:

y ¼ 1μþ Xβþ Zaþ ε;

where y is a vector of the phenotypic values from n indi-
viduals, which is justified for systemic factors that in-
clude population stratification; μ is the population mean;
β is the additive genetic effect of the tested genetic units,
such as the SNP, haplotype (or block), and copy number
variations; a is a vector of n random polygenic effects ex-
cluding the genetic unit tested, which subjects to the dis-
tribution Nnð0;Kσ2

aÞ with a realized relationship matrix
(RRM) [27–30] K calculated from genetic markers and
an unknown polygenic variance σ2

a ; ε is a vector of n
random residual effects, which are mutually independent
among individuals and follow the distribution Nnð0; Iσ2εÞ
with identity matrix I and residual variance σ2ε ; 1 is a
column vector of n orders; and X and Z are the inci-
dence matrices for β and a, respectively.
The LMM satisfied:

Var yjβð Þ ¼ Kσ2a þ Iσ2ε :

With polygenic heritability h2 ¼ σ2a=ðσ2a þ σ2
εÞ replacing

σ2a [19], the covariance matrix becomes:

Var yjβð Þ ¼ h2

1−h2
Kþ I

� �
σ2ε :

Following the FaST-LMM algorithm [16], we spec-
trally decompose K =USUT, where S is the diagonal
matrix containing the eigenvalues of K in descending
order, and U is the matrix of the eigenvectors corre-
sponding to the eigenvalues. According to UUT = I, the
covariance matrix can be written as:

Var yjβð Þ ¼ U
h2

1−h2
Sþ I

� �
UTσ2ε :

Let ~y ¼ UTy and ~X ¼ UT½1 X�, after which the LMM is
transformed to the following linear model (LM):

~y ¼ ~Xβþ e;

where e∼Nnð0;Wσ2ε Þ with W ¼ h2

1−h2
Sþ I as the diagonal

matrix.
When genetic units such as haplotypes (or blocks) and

CNVs can be divided into more than three genotypes, it
is required that one of those genotypes is constricted to

0 to make the LM identifiable. With the weighted least
square method, the maximum likelihood estimates of β
and σ2ε are obtained as follows:

β̂ ¼ ~XW−1 ~X
T

� �−1
~X
Τ
W−1~y

σ̂2
ε ¼

1
n−1

~y−~Xβ̂
� �Τ

W−1 ~y−~Xβ̂
� � :

With β̂ and σ̂2ε , the maximum likelihood value of the
LM is estimated as:

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π j Wσ̂2

ε j
q exp

1

σ̂2ε
~y−~Xβ̂

� �Τ
W−1 ~y−~Xβ̂

� �" #
:

The log-likelihood is further simplified as:

−2 logL∝n logσ̂2ε þ log j W j;
which represents the polygenic heritability h2 in the
weighted diagonal matrix W. Thus, we can optimize this
function of h2 using a one-dimensional scan within the
open interval (0, 1) to find the maximum likelihood esti-
mate of h2. At the same time, the genetic effect of the

tested genetic unit is statistically inferred by β̂ and σ̂2
ε

corresponding to the optimized h2. The test statistic for
the genetic unit is unified to:

F ¼ 1

d f βσ̂
2
ε

y−1μð ÞT y−1μð Þ−d f εσ̂2ε
h i

which subjects to the F distribution with degrees of free-
dom dfβ as the number of genotypes in the tested gen-
etic unit minus one (dfε = n − dfβ − 1), and F ∼ t(dfβ) in
terms for testing SNPs. For a large sample, F ∼ χ2(dfβ)
with χ2(1) is used for the SNP tested.

Implementation
As stated earlier, the FaST-LMM [16] transforms the
genome-wide mixed model association analysis into lin-
ear regression scans by re-weighted least square estima-
tions for effects of genetic units, along with optimization
of polygenic heritabilities. To speed up computational
efficiency, the regression analysis for the tested genetic
unit is implemented with the bare-bones linear model
fitting function, known as fastLmPure, in the R/RcppAr-
madillo package [19]. The fastLmPure function in the R
software runs dozens of times faster than the lm func-
tion. The fastLmPure function returns only the genetic
effect and the standard error of the tested genetic unit,
and statistics, such as σ2ε , −2logL, student t, and p value,
need to be calculated after running the fastLmPure
function.
In generating input variables, y and X have been spec-

trally transformed into y’ and X’, respectively. Given
polygenic heritability, the weighted diagonal matrix W is
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generated, and then the dependent variable (y� ¼ W−1
2~y)

and independent variable (X� ¼ W−1
2 ~X ) are calculated.

Based on these variables, the subroutine to solve the
LMM with the bare-bones regression is written as:

Theoretically, the polygenic heritability for the tested
genetic unit is equal to the difference between the gen-
omic heritability of traits and the genetic unit heritability
(the proportion that explains the phenotypic variance by
the genetic unit). Although polygenic heritabilities differ
among high-throughput genetic units, they are very
close to the genomic heritability of traits because most
genetic units, except for QTLs, have no influence on
quantitative traits. The genomic heritability of traits
must be pre-estimated based on the LMM without the
genetic unit effect. Starting from the estimated genomic
heritability of quantitative traits, we can search down-
ward to rapidly determine maximum likelihood esti-
mates for the polygenic heritability of the tested genetic
unit. Once the polygenic heritability for each genetic
unit is fixed at a genomic heritability, the fast regression
scan mentioned earlier is simplified as the EMMAX al-
gorithm [11], of which its genome-wide scanning speed
reaches the highest value using the fastLmPure function
without optimization of polygenic heritabilities. This
suggests that the genetic effects and statistical probabil-
ities estimated by EMMAX qualify to serve as references
for the fast regression scans for each genetic unit. To

further enhance computing efficiency, we only selected
genetic units of large effects or those with high signifi-
cance levels (0.05 or 0.01) from the EMMAX algorithm
to optimize the estimation of their polygenic heritabil-
ities [19]. Thus, the computing time complexity for the
genome-wide mixed model association analysis becomes
O (imn) with i being the time of the genome-wide re-
gression scans (1 < i ≤ 2). Based on this, the Single-
RunKing software [19] written in R was extended to im-
plement the genome-wide mixed model association ana-
lysis for genetic units in an extremely fast manner (see
the codes in Additional file 1).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6552-x.

Additional file 1: Table S1. Genomic control values (GC) for the 5 traits
with the QTLs detected by the Single-RunKing software. Figure S1. QQ
and Manhattan plots of three genetic units for LNAE trait. The top, the
medium and the bottom are for haplotype blocks, haplotype alleles and
SNPs, respectively. Figure S2. QQ and Manhattan plots of three genetic
units for DTH trait. The top, the medium and the bottom are for haplo-
type blocks, haplotype alleles and SNPs, respectively. Figure S3. QQ and
Manhattan plots of three genetic units for PH trait. The top, the medium
and the bottom are for haplotype blocks, haplotype alleles and SNPs, re-
spectively. Figure S4. QQ and Manhattan plots of three genetic units for
EH trait. The top, the medium and the bottom are for haplotype blocks,
haplotype alleles and SNPs, respectively. Figure S5. QQ and Manhattan
plots of three genetic units for ELW trait. The top, the medium and the
bottom are for haplotype blocks, haplotype alleles and SNPs, respectively.
Figure S6. QQ and Manhattan plots of three genetic units for ELL trait.
The top, the medium and the bottom are for haplotype blocks, haplotype
alleles and SNPs, respectively. Figure S7. QQ and Manhattan plots of
three genetic units for TBN trait. The top, the medium and the bottom
are for haplotype blocks, haplotype alleles and SNPs, respectively. Figure
S8. QQ and Manhattan plots of three genetic units for EL trait. The top,
the medium and the bottom are for haplotype blocks, haplotype alleles
and SNPs, respectively. Figure S9. QQ and Manhattan plots of three gen-
etic units for ED trait. The top, the medium and the bottom are for haplo-
type blocks, haplotype alleles and SNPs, respectively. Figure S10. QQ
and Manhattan plots of three genetic units for GW trait. The top, the
medium and the bottom are for haplotype blocks, haplotype alleles and
SNPs, respectively. Figure S11. QQ and Manhattan plots of three genetic
units for CW trait. The top, the medium and the bottom are for haplotype
blocks, haplotype alleles and SNPs, respectively. Figure S12. QQ and
Manhattan plots of three genetic units for KW trait. The top, the medium
and the bottom are for haplotype blocks, haplotype alleles and SNPs, re-
spectively. Figure S13. QQ and Manhattan plots of three genetic units
for DTS trait. The top, the medium and the bottom are for haplotype
blocks, haplotype alleles and SNPs, respectively. Figure S14. QQ and
Manhattan plots of three genetic units for DTA trait. The top, the medium
and the bottom are for haplotype blocks, haplotype alleles and SNPs,
respectively.

Abbreviations
CD: Cob diameter; CNV: Copy number variation; CW: Cob weight; DTA: Days
to anthesis; DTH: Days to heading; DTS: Days to silking; ED: Ear diameter;
EH: Ear height; EL: Ear length; ELL: Ear leaf length; ELW: Ear leaf width;
EMMA: Efficient mixed-model association; FaST-LMM: Factored spectrally
transformed linear mixed model; FGT: Four gamete test; GEMMA: Genome-
wide efficient mixed-model association; GW: 100-grain weight;
GWAS: Genome-wide association studies; KNPR: Kernel number per row;
KW: Kernel width; LMM: Linear mixed models; LNAE: Leaf number above ear;
PH: Plant height; QTN: Quantitative trait nucleotide; REML: Restricted
maximum likelihood; RRM: Realized relationship matrix; SNP: Single

Chen et al. BMC Genomics          (2020) 21:151 Page 8 of 9

https://doi.org/10.1186/s12864-020-6552-x
https://doi.org/10.1186/s12864-020-6552-x


nucleotide polymorphisms; TBN: Tassel branch number; TMAL: Tassel main
axis length

Acknowledgements
We are grateful to the two anonymous reviewers for their insightful comments
that greatly improved the presentation of the manuscript.

Authors’ contributions
RQY proposed the method, and supervised this study. HLC wrote computer
codes and analyzed real data. ZYH and YFZ collected data and took part in
explaining results. All authors read and approved the final manuscript.

Funding
This work was supported by the Central Public-interest Scientific Institution
Basal Research Funds, Chinese Academy of Fishery Sciences (2019A002). The
funding bodies had no role in the design of the study and collection, ana-
lysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets analyzed in the current study were free downloaded from
http://www.maizego.org/Resources.html, where gene resequencing data was
available under GenBank accession number: JX404032–JX405439.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 October 2019 Accepted: 4 February 2020

References
1. Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T,

Kouyoumjian R, Farhadian SF, Ward R, et al. Linkage disequilibrium in the
human genome. Nature. 2001;411(6834):199–204.

2. Daly MJ, Rioux JD, Schaffner SE, Hudson TJ, Lander ES. High-resolution
haplotype structure in the human genome. Nat Genet. 2001;29(2):229–32.

3. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR,
Lee DH, Marjoribanks C, McDonough DP, et al. Blocks of limited haplotype
diversity revealed by high-resolution scanning of human chromosome 21.
Science. 2001;294(5547):1719–23.

4. McCarroll SA, Altshuler DM. Copy-number variation and association studies
of human disease. Nat Genet. 2007;39:S37–42.

5. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz
LM, Clark RA, Schwartz S, Segraves R, et al. Segmental duplications and
copy-number variation in the human genome. Am J Hum Genet. 2005;
77(1):78–88.

6. Neale BM, Sham PC. The future of association studies: gene-based analysis
and replication. Am J Hum Genet. 2004;75(3):353–62.

7. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. P Natl Acad Sci USA. 2005;102(43):15545–50.

8. Wang K, Li MY, Bucan M. Pathway-based approaches for analysis of
genomewide association studies. Am J Hum Genet. 2007;81(6):1278–83.

9. Peng G, Luo L, Siu HC, Zhu Y, Hu PF, Hong SJ, Zhao JY, Zhou XD, Reveille
JD, Jin L, et al. Gene and pathway-based second-wave analysis of genome-
wide association studies. Eur J Hum Genet. 2010;18(1):111–7.

10. Aulchenko YS, de Koning DJ, Haley C. Genomewide rapid association using
mixed model and regression: a fast and simple method for genomewide
pedigree-based quantitative trait loci association analysis. Genetics. 2007;
177(1):577–85.

11. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C,
Eskin E. Variance component model to account for sample structure in
genome-wide association studies. Nat Genet. 2010;42(4):348–54.

12. Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ,
Yu J, Arnett DK, Ordovas JM, et al. Mixed linear model approach adapted for
genome-wide association studies. Nat Genet. 2010;42(4):355–60.

13. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS.
Rapid variance components-based method for whole-genome association
analysis. Nat Genet. 2012;44(10):1166–70.

14. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM,
Chasman DI, Ridker PM, Neale BM, Berger B, et al. Efficient Bayesian mixed-
model analysis increases association power in large cohorts. Nat Genet.
2015;47(3):284–90.

15. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E.
Efficient control of population structure in model organism association
mapping. Genetics. 2008;178(3):1709–23.

16. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST
linear mixed models for genome-wide association studies. Nat Methods.
2011;8(10):833–5.

17. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for
association studies. Nat Genet. 2012;44(7):821–4.

18. Patterson HD, Thompson R. Recovery of inter-block information when block
sizes are unequal. Biometrika. 1971;58(3):545–54.

19. Gao J, Zhou X, Hao Z, Jiang L, Yang R. Genome-wide barebones regression
scan for mixed-model association analysis. Theor Appl Genet. 2019;133(1):51.

20. Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan
JB. Genome Wide Association Studies Using a New Nonparametric Model
Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged
Maize Association Panel. PLoS Genet. 2014;10:9.

21. Hudson RR, Kaplan NL. Statistical properties of the number of
recombination events in the history of a sample of DNA sequences.
Genetics. 1985;111(1):147–64.

22. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics. 2005;21(2):263–5.

23. Jennifer L, Christoph L, Kadie CM, Davidson RI, Eleazar E, David H. Improved
linear mixed models for genome-wide association studies. Nat Methods.
2012;9(6):525–6.

24. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and
pitfalls in the application of mixed-model association methods. Nat Genet.
2014;46(2):100–6.

25. Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z. A SUPER powerful method for
genome wide association study. PLoS One. 2014;9(9):e107684.

26. Browning BL, Browning SR. Genotype imputation with millions of reference
samples. Am J Hum Genet. 2016;98(1):116–26.

27. Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD,
Gaut BS, Nielsen DM, Holland JB, et al. A unified mixed-model method for
association mapping that accounts for multiple levels of relatedness. Nat
Genet. 2006;38(2):203–8.

28. Goddard ME, Wray NR, Verbyla K, Visscher PM. Estimating effects and
making predictions from genome-wide marker data. Stat Sci. 2009;24(4):
517–29.

29. Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selection
by using the realized relationship matrix. Genet Res. 2009;91(2):143.

30. Yang JA, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR,
Madden PA, Heath AC, Martin NG, Montgomery GW, et al. Common SNPs
explain a large proportion of the heritability for human height. Nat Genet.
2010;42(7):565.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chen et al. BMC Genomics          (2020) 21:151 Page 9 of 9

http://www.maizego.org/Resources.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Haplotype construction
	GWAS for genetic units

	Discussion
	Conclusion
	Methods
	Maize genomic data
	FaST-LMM for genetic units
	Implementation

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

