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Abstract

Background: Gene expression is regulated by DNA-binding transcription factors (TFs). Together with their target
genes, these factors and their interactions collectively form a gene regulatory network (GRN), which is responsible
for producing patterns of transcription, including cyclical processes such as genome replication and cell division.
However, identifying how this network regulates the timing of these patterns, including important interactions and
regulatory motifs, remains a challenging task.

Results: We employed four in vivo and in vitro regulatory data sets to investigate the regulatory basis of expression
timing and phase-specific patterns cell-cycle expression in Saccharomyces cerevisiae. Specifically, we considered
interactions based on direct binding between TF and target gene, indirect effects of TF deletion on gene expression,
and computational inference. We found that the source of regulatory information significantly impacts the accuracy
and completeness of recovering known cell-cycle expressed genes. The best approach involved combining TF-target
and TF-TF interactions features from multiple datasets in a single model. In addition, TFs important to multiple phases
of cell-cycle expression also have the greatest impact on individual phases. Important TFs regulating a cell-cycle phase
also tend to form modules in the GRN, including two sub-modules composed entirely of unannotated cell-cycle
regulators (STE12-TEC1 and RAP1-HAP1-MSN4).

Conclusion: Our findings illustrate the importance of integrating both multiple omics data and regulatory motifs in
order to understand the significance regulatory interactions involved in timing gene expression. This integrated
approached allowed us to recover both known cell-cycles interactions and the overall pattern of phase-specific
expression across the cell-cycle better than any single data set. Likewise, by looking at regulatory motifs in the form of
TF-TF interactions, we identified sets of TFs whose co-regulation of target genes was important for cell-cycle
expression, even when regulation by individual TFs was not. Overall, this demonstrates the power of integrating
multiple data sets and models of interaction in order to understand the regulatory basis of established biological
processes and their associated gene regulatory networks.
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Background
Biological processes, from the replication of single cells
[63] to the development of multicellular organisms [66],
are dependent on spatially and temporally specific
patterns of gene expression. This pattern describes the
magnitude changes of expression under a defined set of
circumstances, such as a particular environment [67, 75],
anatomical structure [20, 62], development process [17],
diurnal cycle [5, 53] or a combination of the above [67].
These complex expression patterns are, in a large part, the
consequence of regulation during the initiation of tran-
scription. Initiation of transcription primarily depends
on the transcription factors (TFs) bound to cis-regula-
tory elements (CREs), along with other co-regulators,
to promote or repress the recruitment of RNA-
Polymerase [37, 43, 64]. While this process is influ-
enced by other genomic features, such as the chromatin
state around the promoter and CREs [7, 44, 49], TF
binding plays a central role. In addition to CREs and
co-regulators, TFs can interact with other TFs to coopera-
tively [35, 38] or competitively [49] regulate transcription.
In addition, a TF can regulate the transcription of other
TFs and therefore, indirectly regulate all genes bound by
that TF. The sum total of TF-target gene and TF-TF inter-
actions regulating transcription in an organism is referred
to as a gene regulatory network (GRN) [45].
The connections between TFs and target genes in the

GRN are central to the control of gene expression. Thus,
knowledge of GRN can be used to model gene expres-
sion patterns and, conversely, gene expression pattern
can be used to identify regulators of specific types of
expression. CREs have been used to assign genes into
broad co-expression modules in Saccharomyces cerevi-
siae [5, 72] as well as other species [20]. This approach
has also been applied more narrowly, to identify enhan-
cer regions involved in myogenesis in Drosophila [17],
the regulatory basis of stress responsive or not in Arabi-
dopsis thaliana [67, 75], and the control of the timing of
diel expression in Chlamydomonas reinhardtii [53].
These studies using CREs to recover expression patterns
have had mixed success: in some cases the recovered
regulators can explain expression globally [67, 75] while
in other it is only applicable to a subset of the studied
genes [53]. This may be explained in part by the differ-
ence in the organisms and systems being studied, but
there are also differences in approach, including how
GRNs are defined and whether regulatory interactions
are based on direct assays, indirect assays, or computa-
tional inference.
To explore the effect of GRN definition on recovering

gene expression pattern, we used the cell cycle of bud-
ding yeast, S. cerevisiae, which both involves transcrip-
tional regulation to control gene expression during the
cell cycle expression [13, 26] and has been extensively

characterized [3, 57, 63]. In particular, there are multiple
data sets defining TF-target interactions in S. cerevisiae
on a genome-wide scale [11, 32, 58, 73]. These ap-
proaches include in vivo binding assays, e.g. Chroma-
tin Immuno-Precipitation (ChIP) [15, 25], in vitro
binding assays such as protein binding microarrays
(PBM) [8, 16], and comparisons of TF deletion mu-
tants with wildtype controls [58]. In this study, we
address the central question of how well existing TF-
target interaction data can explain when genes are
expressed during the cell cycle using machine learn-
ing algorithms for each cell cycle phase. To this end,
we also investigate whether performance could be im-
proved by including TF-TF interactions, identifying
features with high feature weight (i.e. more important
in the model), and by combining interactions from
different datasets in a single approach. Finally, we
used the most important TF-target and TF-TF inter-
actions from our models to characterize the regula-
tors involved in regulating expression timing and
identify the roles of both known and unannotated in-
teractions between TFs.

Results
Comparing TF-target interactions from multiple
regulatory data sets
Although there is a single GRN which regulates transcrip-
tion in an organism, different approaches to defining regu-
latory interactions affect how this GRN is described. Here,
TF-target interactions in S. cerevisiae were defined based
on: (1) ChIP-chip experiments (ChIP), (2) changes in ex-
pression in deletion mutants (Deletion), (3) position weight
matrixes (PWM) for all TFs (PWM1), (4) a set of PWMs
curated by experts (PWM2), and (5) PBM experiments
(PBM; Table 1, Methods, Additional file 8: Files S1, Add-
itional file 9: File S2, Additional file 10: File S3, Additional
file 11: File S4 and Additional file 12: File S5). The number
of TF-target interactions in the S. cerevisiae GRN ranges
from 16,602 in the ChIP-chip data set to 78,095 in the
PWM1 data set. This ~ 5-fold difference in the number of
identified interactions is driven by differences in the average
number of interactions per TF, which ranges from 105.6 in
the ChIP GRN to 558.8 in the PBM GRN (Table 1). For
this reason, even though most TFs were present in > 1 data
sets (Fig. 1a), the number of interactions per TF is not

Table 1 Size and origin of GRNs defined using each data set

Data Set TF Target genes # of interactions Source

ChIP 152 4701 16,062 ScerTF

Deletion 151 5256 26,757 ScerTF

PWM1 230 6536 78,095 YeTFaSCO

PWM2 104 4740 9726 YeTFaSCO

PBM 81 4922 45,264 Zhu et al. (2009 )[73]
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correlated between data sets (e.g. between ChIP and Dele-
tion, Pearson’s correlation coefficient (PCC) = 0.09; ChIP
and PWM, PCC = 0.11; and Deletion and PWM, PCC =
0.046). In fact, for 80.5% for TFs, a majority of their TF-
target interactions were unique to a single data set (Fig. 1b),
indicating that, in spite of relatively similar coverage of TFs
and their target genes, these data sets provide distinct char-
acterizations of the S. cerevisiae GRN.
This lack of correlation is due to a lack of overlap of

specific interactions (i.e. the same TF and target gene)
between different data sets, (Fig. 1c). Of the 156,710 TF-
target interactions analyzed, 89.0% were unique to a sin-
gle data set, with 40.0% of unique interactions belonging
to the PWM1 data set. Although the overlaps in TF-
target interactions between ChIP and Deletion as well as
between ChIP and PWM were significantly higher than
when TF targets were chosen at random (p = 2.4e-65
and p < 1e-307, respectively, see Methods), the overlap

coefficients (the size of intersection of two set divided by
the size of the smaller set) were only 0.06 and 0.22, re-
spectively. In all other cases, the overlaps were either not
significant or significantly lower than random expect-
ation (Fig. 1d). Taken together, the low degree of overlap
between GRNs based on different data sets is expected
to impact how models would perform. Because it re-
mains an open question which dataset would better re-
cover expression patterns, in subsequent sections, we
explored using the five datasets individually or jointly to
recover cell-cycle phase specific expression in S.
cerevisiae.

Recovering phase-specific expression during S. cerevisiae
cell-cycle using TF-target interaction information
Cell-cycle expressed genes were defined as genes with si-
nusoidal expression oscillation over the cell cycle with
distinct minima and maxima and divided into five broad

Fig. 1 Overlap of TF and interactions between data sets. a The coverage of S. cerevisiae TFs (rows) in GRNs derived from the four data sets
(columns); ChIP: Chromatin Immuno-Precipitation. Deletion: knockout mutant expression data. PBM: Protein-Binding Microarray. PWM: Position Weight
Matrix. The numbers of TFs shared between datasets or that dataset-specific are indicated on the right. b Percentage of target genes of each S.
cerevisiae TF (row) belonging to each GRN. Darker red indicates a higher percentage of interactions found within a data set, while darker blue indicates
a lower percentage of interactions. TFs are ordered as in (a) to illustrate that, despite the overlap seen in (a), there is bias in the distribution of
interactions across data sets. c Venn-diagram of the number of overlapping TF-target interactions from different data sets: ChIP (blue), Deletion (red),
PWM1 (orange), PWM2 (purple), PBM (green). The outermost leaves indicate the number of TF-target interactions unique to each data set while the
central value indicates the overlap amongst all data sets. d Expected and observed numbers of overlaps between TF-target interaction data sets.
Boxplots of the expected number of overlapping TF-target interactions between each pair of GRNs based on randomly drawing TF-target interactions
from the total pool of interactions across all data sets (see Methods). Blue filled circles indicate the observed number of overlaps between each pair of
GRNs. Of these, ChIP, Deletion, and PWM1 have significantly fewer TF-target interactions with each other than expected

Panchy et al. BMC Genomics          (2020) 21:159 Page 3 of 17



categories by Spellman et al. [63]. Although multiple
transcriptome studies of the yeast cell cycle have been
characterized since, we use the Spellman et al definition
because it provides a clear distinction between the
phases of the cell cycles which remains in common use
[10, 12, 21, 28, 51, 54, 59, 60]. The Spellman definition
of cell-cycle genes includes five phases of expression,
G1, S, S/G2, G2/M, and M/G1, consisting of 71–300
genes based on the timing of peak expression that corre-
sponds to different cell cycle phases (Fig. 2a). While it is
known that each phase represents a functionally distinct
period of the cell-cycle, the extent to which regulatory
mechanisms are distinct or shared both within cluster
and across all phase clusters has not been modeled using

GRN information. Although not all of the regulatory
data sets have complete coverage of cell cycle genes in S.
cerevisiae genome, on average the coverage of genes
expressed in each phase of cell-cycle was > 70% among
TF-target datasets (Additional file 1: Table S1). There-
fore, we used each set of regulatory interactions as fea-
tures to independently recover whether or not a gene
was a cell-cycle gene and, more specifically, if it was
expressed during a particular cell-cycle phase. To do
this, we employed a machine learning approach using a
Support Vector Machine (SVM, see Methods). The per-
formance of the SVM classifier was assessed using the
Area Under Curve-Receiver Operating Characteristic
(AUC-ROC), which ranges from a value of 0.5 for a

Fig. 2 Cell-cycle phase expression and performance of classifiers using TF-interaction data. a Expression profiles of genes at specific phases of the
cell-cycle. The normalized expression levels of gene in each phase of the cell-cycle: G1 (red), S (yellow), S/G2 (green), G2/M (blue), and M/G1
(purple). Time (x-axis) is expressed in minutes and, for the purpose of displaying relative levels of expression over time, the expression (y-axis) of
each gene was normalized between 0 and 1. Each figure shows the mean expression of the phase. Horizontal dotted lines divide the timescale
into 25 min segment to highlight the difference in peak times between phases. b AUC-ROC values of SVM classifiers for whether a gene is cycling
in any cell-cycle phases (general) or in a specific phase using TFs and TF-target interactions derived from each data set. The reported AUC-ROC
for each classifier is the average AUC-ROC of 100 data subsets (see Methods). Darker red shading indicates an AUC-ROC closer to one (indicating
a perfect classifier) while darker blue indicates an AUC-ROC closer to 0.5 (random guessing). c Classifiers constructed using the TF-target
interactions from the ChIP, Deletion, or PWM1 data, but only for TFs that were also present in PBM data set. Other models perform better than
the PBM-based model even when restricted to the same TFs as PBM. d Classifiers constructed using the TF-target interactions from the PWM1
data, but only for TFs that were also present in ChIP or Deletion data set. Note that PWM1 models preform as well when restricted to TFs used
by smaller data sets
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random, uninformative classifier to 1.0 for a perfect
classifier.
Two types of classifiers were established using TF-

target interaction data. The first ‘general’ classifier
sought to recover genes with cell cycle expression with
at any phase. The second ‘phase specific’ classifier
sought to recover genes with cell cycle expression at spe-
cific phase. Based on AUC-ROC values, both the source
of TF-target interactions data (analysis of variance
(AOV), p < 2e-16) and the phase during the cell cycle
(p < 2e-16) significantly impact performance. Among
datasets, the PBM and the expert curated PWM2 dataset
have the lowest AUC-ROCs (Fig. 2b). This poor per-
formance could be because these data sets have the few-
est TFs. However, if we restrict the ChIP, Deletion and
full set of PWM (PWM1) data sets to only TF present in
the PBM data set, they still perform better than the
PBM-based classifier (Fig. 2c). Hence, the low perform-
ance of PBM and the expert PWM must also depend on
the specific interaction inferred for each TF. Conversely,
if we take the full set of PWMs (PWM1), which has the
most TF-target interactions, and restricts it to only in-
clude TFs present in the ChIP or Deletion datasets, per-
formance is unchanged (Fig. 2d). Therefore, even though
a severe reduction in the number of samples TF-target
interactions can impact performance of our classifiers,
so long as the most important TF-target interactions are
covered, performance of the classifier is unaffected.
Our results indicate that both cell-cycle expression in

general and timing of cell-cycle expression can be recov-
ered using TF-target interaction data, and ChIP-based in-
teractions alone can be used to recover all phase clusters
with an AUC-ROC > 0.7, except S/G2 (Fig. 2b). Neverthe-
less, there remains room for improvement as our classi-
fiers are far from perfect, particularly for expression in S/
G2. One explanation for the difference in performance be-
tween phases is that S/G2 bridges the replicative phase (S)
and the second growth phase (G2) of the cell-cycle that
likely contains a heterogeneous set of genes with diverse
functions and regulatory programs. This hypothesis is
supported by the fact that S/G2 genes are not significantly
over-represented in any Gene Ontology terms (see later
sections). Alternatively, it is also possible that TF-target
interactions are insufficient to describe the GRN control-
ling S/G2 expression and higher-order regulatory interac-
tions between TFs need to be considered.

Incorporating TF-TF interactions for recovering phase-
specific expression
Because a gene can be regulated by multiple TFs simul-
taneously, our next step was to identify TF-TF-target in-
teractions that may be used to improve phase-specific
expression recovery. Here we focused on a particular
type of TF-TF interactions (i.e., a network motif), called

feed forward loops (FFLs). FFLs consist of a primary TF
that regulates a secondary TF and a target gene that is
regulated by both the primary and secondary TF ([2];
Fig. 3a). We chose to focus on FFLs in particular be-
cause it is a simple motif involving only two regulators
that is enriched in biological systems [2]. Therefore,
FFLs represent a biologically significant subset of all pos-
sible two TFs interactions, which would number in the
thousands even in our smallest regulatory data set. Fur-
thermore, FFLs produce delayed, punctuated responses
to stimuli, as we would expect in phase specific re-
sponse, [2] and have previously been identified in cell-
cycle regulation by cyclin dependent kinases [22].
We defined FFLs using the same five regulatory data

sets and found that significantly more FFLs were present
in each of the five GRNs than randomly expected
(Table 2), indicating FFLs are an overrepresented net-
work motif. There was little overlap between data sets
─ 97.6% of FFLs were unique to one data set and no
FFL was common to all data sets (Fig. 3b). Thus, we
treated FFLs from each GRN independently in machine
learning. Compared to TF-target interactions, fewer cell-
cycle genes were part of an FFL, ranging from 19% of all
cell-cycle genes in the PWM2 dataset to 90% in PWM1
(Additional file 2: Table S2). Hence, the models made
with FFLs will be relevant to only a subset of cell-cycle
expressed genes. Nonetheless, we found the same overall
pattern of model performance with FFLs as we did using
TF-target data (Fig. 3c), indicating that FFLs were useful
for identifying TF-TF interactions important for cell-
cyclic expression regulation.
As with TF-target-based models, the best results from

the FFL-based models were from GRNs derived from
ChIP, Deletion, and PWM1. Notably, while the ChIP,
Deletion and PWM1 TF-target-based models performed
similarly over all phases (Fig. 2b), ChIP-based FFLs had
the highest AUC-ROC values for all phases of expression
(Fig. 3c). ChIP FFL models also had higher AUC-ROCs
for each phase than those using ChIP-based TF-target
interactions. However, if we used ChIP TF-target inter-
actions to recover cell-cycle expression for the same
subset of cell cycle genes covered by ChIP FFLs, the per-
formance improves for all phases (Additional file 3:
Table S3). Hence, the improved performance from using
FFLs was mainly due to the subset of TFs and cell-cycle
gene targets covered by the ChIP FFLs. This suggests
that further improvement in cell cycle expression recov-
ery might be achieved by including both TF-target and
FFL interactions across data sets.

Integrating multiple GRNs to improve recovery of cell-
cycle expression patterns
To consider both TF-target interactions and FFLs by
combining data sets, we focused on interactions
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identified from the ChIP and Deletion data sets because
they contributed to better performance than PBM,
PWM1 and PWM2 interactions (Figs. 2b, 3c). We fur-
ther refined our models by using subsets features (TFs
for TF-Target data and TF-TF interactions for FFL data)
based on their importance to the model so that our fea-
ture set would remain of a similar size to the number of
cell cycle genes. The importance of these TF-target

interactions and FFLs was quantified using SVM weight
(see Methods) where a positive weight is correlated with
cell-cycle/phase expressed genes, while a negatively
weighted is correlated with non-cell-cycle/out-of-phase
genes. We defined four subsets using two weight thresholds
(10th and 25th percentile) with two different signs (positive
and negative weights) (see Methods, Additional file 4: Table
S4). This approach allowed us to assess if accurate recovery
only require TF-target interactions/FFLs that include (i.e.
positive weight) cell cycle genes, or if performance depends
on exclusionary (i.e. negative weight) TF-target interac-
tions/FFLs as well.
First, we assessed the predictive power of cell cycle ex-

pression models using each possible subset of TF-target
interactions, FFLs, and TF-target interactions/FFLs iden-
tified using ChIP (Fig. 4a) or Deletion (Fig. 4b) data. In
all but one cases, models using the top and bottom 25th
percentile of TF-target interactions and/or FFLs per-
formed best when TF-target and FFL features were con-
sidered separately (purple outline, Fig. 4a, b). Combing
TF-target interactions and FFLs did not always improve
performance, particularly compared to FFL only models,
which is to be expected given the reduce coverage of

Fig. 3 FFL definition and model performance. a Example Gene Regulatory Network (GRN, left) and feed-forward loops (FFLs, right). The presence
of a regulatory interaction between TF1 and TF2 means that any target gene which is co-regulated by both of these TFs is part of an FFL. For
example, TF1 and TF2 form an FFL with both Tar2 and Ta3, but not Tar1 or Tar4 because they are not regulated by TF2 and TF1, respectively. b
Venn diagram showing the overlaps between FFLs identified across data sets similar to Fig. 1c. c AUC-ROC values for SVM classifiers of each cell-
cycle expression gene set (as in Fig. 2) using TF-TF interaction information and FFLs derived from each data set. Heatmap coloring scheme is the
same as that in Fig. 2b. Note the similarity and AUC-ROC value distribution here to Fig. 2b

Table 2 Observed and expected numbers of FFLs in GRNs
defined using different data sets

Data Set # observed FFLs μ expecteda σ2 expecteda Z-scoreb

ChIP 3777 811 28.47 104.15

Deletion 13,162 2427 49.26 217.90

PWM1 75,514 52,915 230.03 98.24

PWM2 1700 398 19.94 65.26

PBM 67,895 47,371 217.64 94.30
aThe mean (μ) and standard deviation (σ2) of FFLs expected in a GRN was
determined using the cube of the mean connectivity of the GRN
(see Methods)
bThe z-score reflects the difference between the observed and expected
number of FFLs divided by the standard deviation of the expected number of
FFLs (see Methods)
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cell-cycle genes by FFL models (Additional file 3: Table
S3). In contrast, if we compare TF-target only and com-
bined models, which have similar coverage of cell cycle
genes, then only M/G1 is better in TF-target only
models, indicating that combing features perform better
on a broader set of cell-cycles genes. Additionally, the
G1 model built using the top and bottom 10th percentile
of both TF-target interactions and FFLs was the best for
this phase (yellow outline, Fig. 4a, b). These results sug-
gest we can achieve equal or improved performance re-
covering cell-cycle by combing TF-target interactions
and FFLs associated with cell-cycle (positive weight) and
non-cell-cycle (negative weight) gene expression. This

implies that a majority of TFs and regulatory motifs are
not necessary to explain cell-cycle expression genome
wide.
Next, we addressed whether combining ChIP and Dele-

tion data improve model performance. Generally, combin-
ing these two datasets (Fig. 4c) improves or maintains
model performance for the general cycling genes and most
phase (white texts, Fig. 4). The ChIP+Deletion models
were only outperformed by Deletion data set models for
G1 and S phase. For general criteria for classifying all
phases, the consistency with which classifiers built using
both ChIP and Deletion data (Fig. 4c) outperformed clas-
sifiers built with just one data set (Fig. 4a, b) indicates the

Fig. 4 Performance of classifiers using important TF-target and/or FFL features from ChIP, Deletion, and combined data sets. a AUC-ROC values
for models of general cycling or each phase-specific expression set constructed using a subset of ChIP TF-target interactions, FFLs, or both that
had the top or bottom 10th and 25th percentile of feature weight (see Methods). The reported AUC-ROC for each classifier is the average AUC-
ROC of 100 runs (see Methods). b As in a except with Deletion data. In both cases, using the 25th percentile of both features yields the best
performance. c As in a except with combined ChIP-chip and Deletion data and only the top and bottom 10th and 25th subsets were used.
Purple outline: highlight performance of the top and bottom 25th percentile models. Yellow outline: improved G1-specific expression recovery by
combining TF-target and FFL features. White texts: highest AUC-ROC(s) for general cycling genes or genes with peak expression in a specific
phase. Note that the ChIP+Deletion model have the best performance for four of the six models
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power of using complementary experimental data to re-
cover expression. Additionally, these combined models
outperform classifiers based on the entirety of any single
data set even though they contain fewer total features.
Consistent with the results of applying weight thresholds
to TF-target interactions and FFLs, this suggests that only
a subset of TFs and regulatory interactions need to be
considered to explain the regulation of phase-specific cell
cycle expression. We would expect that this subset of TFs
to be enriched for known cell-cycle regulators (discussed
in the next section). We also explore used this subset to
determine if TFs with other functional annotation are
enriched in the cell-cycle GRN and potentially identify
unannotated TFs which are important to cell-cycle
regulation.

Importance and gene ontology analysis of cell-cycle
regulators
In our analysis of the ChIP and Deletion data sets, we
found that performance of classifiers using only the most
important TF-target interactions is similar to those using
the all TF-target interactions. The top/bottom 10th per-
centile of TF-target interactions, which yielded the best
overall performance in our final ChIP+Deletion models,
include 85 TFs from the ChIP data set (Fig. 5a) and 90
TFs from the Deletion data set (Fig. 5b) are important
for recovering cyclic expression in ≥1 phases. Note that
TFs with the top 10th percentile importance rank are
those associated with cell-cycle genes, while those in in
the bottom 10th percentile importance rank are associ-
ated with non-cell cycle genes. A full listing of TFs and
importance can be found in Additional file 5: Table S5.
In ChIP and Deletion-based TF sets, 33 (39%) and 36
(40%) are important to > 1 phases, respectively, indicat-
ing that many cell-cycle regulators play a role in the
regulation of multiple phases. However, there are only
two universal regulators within each data set (SWI4 in
Deletion, FHL1 in ChIP) and no universal regulator
across data sets. Although 49 TF genes overlap between
the ChIP and Deletion-based sets, only 9 of them are
important to > 1 phases in both data sets (Fig. 5), sug-
gesting that these two types of dataset provide unique
regulatory information. Of the 25 TFs annotated as cell-
cycle regulators in S. cerevisiae (GO:0051726), 20 and 17
were among the top 10th percentile of important fea-
tures in the ChIP and Deletion data sets, respectively
(green highlight, Fig. 5). Furthermore, for classifier using
ChIP-chip data only, the top 10th percentile TFs are
enriched for known cell-cycle regulators across all
phases except M/G1 (Table 3). However, this pattern of
enrichment was not found in Deletion features nor in
25th percentile of features for either data set.
Yet, these known TFs represent a minority of TFs with

high importance scores in the top 10thpercentile of TF-

target interactions. To better understand the functions
of these other important (i.e. large positive weight) TFs,
we looked for enriched GO Terms other than cell-cycle
regulation among TFs in the top 10th and 25th percent-
ile weights in classifier for general cyclic expression
using either the ChIP or the Deletion TF-target data
(Additional file 6: Table S6). We identified 126 over-
represented GO terms in total, 94 of which were unique
to either ChIP-based or Deletion-based classifiers. TFs
important in ChIP-based classifiers tend to be enriched
in genes involved in the positive regulation of transcrip-
tion in response to variety of stress conditions (e.g.
freezing, genotoxicity, heat, high salinity, reactive oxygen
species, and amino acid starvation; Additional file 6:
Table S6). This is consistent with the finding that cell-
cycle genes, particularly those involved in the G1-S
phase transition, are needed for heat-shock response
[34]. In contrast, TFs important to Deletion-based classi-
fiers are enriched in categories relevant to cellular me-
tabolism (e.g. amino acid metabolism, glycolysis, and
respiration; Additional file 6: Table S6), consistent with
the view that the metabolic status of the cell determines
cell cycle progression [18]. The distinct functions
enriched in TFs important in ChIP and Deletion data
supports the hypothesis that the improvement in power
from combining feature sets between ChIP and Deletion
data was due to the distinct, but complementary
characterization of gene regulation in S. cerevisiae.

Interaction between TFs important for recovering cell-
cycle expression
To explore the potential regulatory differences between
the ChIP and Deletion datasets, we constructed ChIP
and Deletion GRNs. To focus on the features with great-
est importance across models, we chose the top 10th
percentile of TF-target interactions from the general
cell-cycle model (given the previously noted correlation
between the cyclic model and importance). The resulting
network shows differences in connectivity of GRNs, with
only 3 of 15 TF features in the ChIP are isolated (Fig. 6a),
while 10 of 15 TF are not connected to any other TF in
the Deletion network (Fig. 6b). In addition, only two
nodes (MBP1 and SWI4) are shared between these two
GRNs (orange outline, Fig. 6a, b). This connectivity dif-
ferences likely reflects the nature of the methods in
assessing interactions, one direct (ChIP-chip) and the
other indirect (Deletion). The SWI6-SWI4-MBP1 mod-
ule, which regulates G1/S phase transition [4, 33, 68]
and part of the FKH1-FKH2-NDD1 module, which regu-
lates S/G 2[74] and G2/M [40] expression, are present in
the ChIP but not the Deletion data-based network. We
would expect this outcome for the Deletion GRN, as the
10th percentile of important TFs was not enriched for
known cell cycle regulations (Table 3).
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We should also point that while SWI6-SWI4-MBP1 is
present in the ChIP GRN, FKH1 is missing (Fig. 6a), sug-
gesting that we may be missing important interactions if
we only consider TFs that are individually important. To
address this issue, we also built GRNs with top 10th per-
centile of FFLs from general cell-cycle models based on
ChIP (Fig. 6c) and Deletion (Fig. 6d) data. Since these
FFLs were also used as features in phase-specific models,
we labeled interactions that were above the 10th percent-
ile of importance for individual phases (edge labels, Fig.
6c, d). In the GRN based on the ChIP FFL data (Fig. 6c),
61% interactions were important for ≥1 phases of cell-
cycle expression. Furthermore, both SWI6-SWI4-MBP1
(red) and FKH1-FKH2-NDD1 (green) modules are fully
represented in this network and are important for mul-
tiple phases of cell cycle expression (Fig. 6c). Additionally,
we identified two modules that are not annotated as cell-
cycle regulators in relevant GO categories. The first is the
feedback loop between STE12 and TEC1, which is import-
ant for both the S/G2 and M/G1 phases (purple, Fig. 6c).
STE12 and TEC1 are known to form a complex that
shares co-regulators with SWI4 and MBP1 to promote
filamentous growth [23]. Furthermore, both genes were
identified in a survey of potential cell cycle regulators
which employed integrated omics data [69] and since then
TEC1 has been shown to be cell cycle regulated [14]. Both
TEC1 and STE12 deletions can led to cell cycle defects
[19]. The second is the RAP1-HAP1-MSN4 module, which
is important for the M/G1 and G1 phases (blue, Fig. 6c).
RAP1 is involved in telomere organization [29, 42] and its
association with telomeres is affected by cell cycle phases
and arrest [41, 56]. HAP1 is an oxygen response regulator
[39, 65], while MSN4 is a general stress response regulator
[48, 61] and, like STE12 and TEC1, was recently shown to
cause cell-cycle defects when deleted [19].

Fig. 5 TFs with the top/bottom 10th percentile importance scores
in ChIP and Deletion data-based models. Heatmap of importance of
TFs in ChIP (a) and Deletion (b) data-based models. Rows represent
individual TFs and columns represent models of general cycling
genes (cyclic) and genes cyclic at a phase (G1, S, S-G2, G2-M, and M-
G1). Blue: TFs in the lower 10th percentile of importance. Red: TFs in
the upper 10th percentile of importance. White: TFs with importance
between the top and bottom 10th percentiles. Green: know cell-
cycle regulators. Note the frequency of TFs which are important to
multiple models and the lack of correspondence between the
importance of genes in ChIP and Deletion models. Additionally,
there are strong correlations between the number of phases as TF is
important to (weighted by whether it is positive or negative feature)
and both its importance rank for the general cyclic model (R2,
ChIP = 0.66, Deletion = 0.63) and the average rank across phase
models (R2, ChIP = 0.84, Deletion = 0.89). As such, TF which are
positively associated with many phases are have high average rank
and rank in the cyclic model and vice versa, meaning the cyclic
model is, in general a good predictor of the strength and sign
of features
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In contrast, using the 10th percentile of FFLs based
the Deletion data to construct a GRN dataset revealed
none of the modules uncovered using the ChIP data ex-
cept SWI4 and SWI6 (Fig. 6d). Nonetheless, the Deletion
data allows for the identification of known cell cycle reg-
ulators not found in the ChIP network, particular SFP
1[71] that also plays roles in regulation of ribosomes in
response to stress [36, 47] (green outline, Fig. 6d). These
findings highlight the importance of incorporating TF-
TF interaction information, as well as both ChIP and
Deletion datasets. TFs that are potentially novel cell-
cycle regulators can also be identified. For example,
RPN4 regulates proteolytic stress response [46, 50, 70]
and CST6 controls carbon utilization [27](green outlines,
Fig. 6d).
Overall, these findings demonstrate the utility of the

FFL-based classifiers and the need to consider the import-
ance ranks of TF-TF interaction features when recovering
gene expression. The GRN constructed from carefully se-
lected TF-TF interactions allow the recovery of regulatory
modules which cannot be identified based on TF-target
interaction data. Furthermore, GRNs built from the ChIP
and Deletion TF-TF interactions both identified interac-
tions important to > 1 phases of cell-cycle expression, but
the characteristics of these interactions differ. ChIP-based
interactions contain modules with known shared func-
tions, while Deletion-based interactions involve central
metabolism regulators like SFP1and consist of both direct
and indirect relationships.

Discussion
Recovering the expression of genes from their regulators
and regulatory interactions remains a challenging exer-
cise, but one that can be useful for both studying how
organisms respond to various stimuli and how that re-
sponse is regulated at the molecular level. Here, we have
shown that the problem of recovering complex expres-
sion patterns, such as the timing of expression across
the cell-cycle, directly from regulatory information can
be improved using a variety of experimental and compu-
tational methods for defining gene regulatory interac-
tions. In spite of painting distinctly different pictures of
the S. cerevisiae GRN, interactions inferred from ChIP-
chip, Deletion and PWM data sets were useful for

characterizing genes expressed during the cell cycle and
for distinguishing between cell cycle genes expressed at
different phases. However, each of these data sets also
has certain limitations. ChIP-chip and PBMs directly
assay TF binding, but they do so outside of the context
of chromatin state and other factors which regulate tran-
scription. Deletion experiments more conclusively dem-
onstrate that the TF affects the expression of a target
gene, but do not distinguish between direct and indirect
regulation. PWMs present their own challenge in that
the frequency of bases may not accurately reflect actual
binding site (i.e. a PWM could have a high frequency for
C and G at neighboring sites, but ‘CG’ may be rare or
never occur together in an actual TF binding sites). As
such, the set ChIP-chip, PBM, and PWM derived inter-
actions tend to be overly broad as only a subset of TFs
with potential/proven binding at given promoter actually
regulate it, while the set of Deletion TFs may be more
relevant, but also, redundant because it can include TFs
which indirect regulate a promoter through any already
identified TF that binds it directly. It was our hope that
by using a machine learning approach and integrating
features, we might overcome the limitations of each in-
dividual data set to improve overall recovery.
In fact, we found that combining features from the

ChIP and Deletion sets into a single model improved the
overall performance and coverage of our machine learn-
ing approach, thus providing a more accurate picture of
how cell-cycle timing is regulated. It is encouraging that
independent models using ChIP and Deletion features
both recovered a majority of annotated cell cycle TFs,
but the lack of enrichment of annotated TFs and inter-
connectivity seen in the top Deletion features is illustra-
tive of the limitations of using any single data set.
Furthermore, using only TF-target interactions repre-
sents a significant limitation as we found that models
were improved with the addition of TF-TF interactions
in the form of FFLs. Particularly, a subset of the most
important TF-TF interactions, combined with a subset
of the most important TF-target interactions, led to
models that performed better than either the full set of
TF-target interactions or FFLs and allowed to identify
novel regulatory interactions we would have otherwise
missed.

Table 3 Enrichment p-values of known cell-cycle regulators among TF features important to general cell-cycle or phase-specific
expression

Data Set Top TF feature percentile Generala G1a Sa S-G2a G2-Ma M-G1a

ChIP 10th 7.31e-06 0.035 0.0004 0.004 0.0007 0.085

ChIP 25th 0.0003 0.099 0.099 0.26 0.27 0.1

Deletion 10th 0.42 0.123 0.41 0.41 1 0.11

Deletion 25th 1 0.2775 1 0.78 0.27 0.58
aP-values determined by Fisher’s Exact tests
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Fig. 6 Cell-cycle GRNs based on important TF Features. (a, b) The GRNs consisting of TFs with the top 10th percentile weights for all cell-cycle
expressed genes using TF-target interactions from ChIP (a), or Deletion (b) data. (c, d) The GRNs consisting of TFs in FFLs with the top 10th
percentile weights for all cell-cycle expressed genes using ChIP (c) or deletion (d) data. Interactions are further annotated with the phase of cell-
cycle expression they are important for (10th percentile of SVM weight in ChIP-chip models). Insert: Cell-cycle phase 1 = G1, 2 = S, 3 = S/G2, 4 =
G2/M, 5 = M/G1. Red edges: new interactions identified compared to (c). In (a-d), node outline colors indicate TFs shared between GRNs in:
orange - (a) and (b); pink - (a) and (c); blue – (b), (c), and (d); cyan - (c), and (d). Filled colors: four modules with TF-TF interactions important for
expression in ≥2 phases. Red and green modules consist of known cell-cycle regulations, blue and purple modules consist of non-annotated cell
cycle regulators
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By studying the TFs involved in the most important
features of our models, we were also able to make infer-
ence about how TFs and TF-TFs interactions regulate
the cell-cycle. We found many of the same TFs in the
top percentile of features across models of all phases of
cell cycle expression. This suggests that most TFs which
are important to multiple phases of the cell cycle also
have a greater impact on the phases they regulate.
Therefore, these multi-phase regulators play a more cen-
tral role in regulating the cell cycle compared to TFs im-
portant to only one phase. Using ChIP-chip data, we
found that the top 10th percentile of important TFs
from every phase except M/G1 were enriched for TFs
with known cell-cycle annotations. Finally, we identified
important TF-TF interactions that involve non-
annotated cell-cycle regulators, such as the regulatory
modules STE12-TEC1 and RAP1-MSN4-HAP1. The
RAP1-MSN4-HAP1 module in particular stands out in
that, while these regulators are individually not well cor-
related with cell-cycle expression, interactions between
these TFs are among the most important features to re-
covering both cell-cycle expression in general and of the
M/G1 and G1 phases in particular. Furthermore, while
there was prior indication that these genes functioned
during the cell cycle [19, 41, 56], unlike STE12-TEC1,
there was no prior indication that RAP1-MSN4-HAP1
might play a role in the regulation of phase specific gene
expression.
Our GO analysis found that important TFs were

enriched for genes associated with metabolism (CST6),
invasive growth (STE12-TEC1), and stress responses
(RPN4, RAP1-MSN4-HAP1), This was reflected in our
network analysis which showed that interactions import-
ant to regulating multiple phases of cell-cycle expression
were clustered around TFs involved in those processes.
The identification of these unannotated regulators illus-
trates the importance of investigating expression regula-
tion at the whole genome level: while there are easier
ways of identifying individual cyclic genes and their po-
tential regulators, without such a comprehensive ap-
proach the importance of these factors would be
overlooked. In addition, the significance of these features
is apparent only using ChIP data, further illustrating the
importance of considering multiple approaches to defin-
ing GRNs.
Although our best performing model was based on

data with nearly complete coverage of S. cerevisiae TF-
DNA interactions, our models do not provide a
complete picture of the regulation of cell-cycle expres-
sion. While we did include a direct assay of TF binding
sites, more accurate representation of where TFs bind
the promoter exist in the form of methods that incorp-
orate information about both position and DNA modifi-
cation of the binding site [22, 52]. Additionally, our

approach to understanding interactions between TFs in-
volves only FFLs, a relatively simple type of network mo-
tifs. More complicated interactions involving > 2 TFs
could further improve the recovery of gene expression
patterns. Nevertheless, the fact we were able to recover
certain patterns of cell-cycle expression using only FFLs
justifies their use in an expression modeling context.
Furthermore, FFLs can be used to compose more com-
plex interactions. For example, negative-feedback loops,
which have previously been identified as being involved
in the regulation of biological oscillations [9, 55], are
composed of two FFL where the primary or secondary
TFs are reversed. Our identification of the STE12-TEC1
interaction as important to cell-cycle expression is an
example of how more complicated regulatory pathways
can be captured by using their constituent FFLs.

Conclusion
This work shows that machine learning models can pro-
vide a framework for identifying both individual regula-
tors and multi-regulator interactions controlling
temporal gene expression. Understanding the molecular
basis of the timing of expression is of interest not only
for the cell-cycle, but other important biological pro-
cesses, such as the response to acute stresses like preda-
tion and infection and to cyclical changes in the
environment including light, heat, and other cues. Al-
though there remains room for improvement, the ap-
proach described here demonstrates that regulation of
genes with time specific expression can be recovered
and thus the overall methodology could potentially be
applied to any expression pattern with discrete phases.
The utility of this approach is further demonstrated not
only by the recovery of known cell-cycle regulators and
the associations between them, but also the identifica-
tion of previously unannotated regulators in the form of
STE12-TEC1 and RAP1-MSN4-HAP1. Although the
function of some of these genes was known to affect or
be affected by the cell-cycle, our results suggests a broad,
transcriptional regulatory role of phase-specific expres-
sion during the cell-cycle, which in the case of RAP1-
MSN4-HAP1 has not been sugggested before.

Methods
TF-target interaction data and regulatory cite mapping
Data used to infer TF-target interactions in S. cerevisiae
were obtained from the following sources: ChIP-chip
[32] and Deletion [58] data were downloaded from
ScerTF (http://stormo.wustl.edu/ScerTF/), PWMs [11]
and the expert curated subset of these PWMs were
downloaded from YetFaSCO (http://yetfasco.ccbr.utor-
onto.ca/), and PBM binding scores were taken from Zhu
et al. (see Supplemental Table 5, [73]). For ChIP-chip
and Deletion data, the interaction between TF and their
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target genes were directly annotated, however, for
PWMs and PBMs data we mapped inferred binding sites
to the promoters of genes in S. cerevisiae downloaded
from Yeastract (http://www.yeastract.com/). All position
weight matrices were mapped for the PWM data set,
however for PBM data we only used the oligonucleotides
in the top 10th percentile of scores for every TF. This
threshold was determined using a pilot study which
found that using the 10th percentile as a cutoff maxi-
mized performance using PBM data. Mapping was done
according to the pipeline previously described in Zou
et al. [75] using a threshold mapping p-value of 1e-5 to
infer a TF-target interaction.

Overlap between TF-target interaction data
To evaluate the significance of the overlap in TF-target
interactions between GRNs from different data sets, we
compared the observed number of overlaps between
data sets to a null distribution generated using the as-
sumption that the association between TFs and target
genes was random. Specifically, we pooled target genes
from across all five data sets. Then, for each TF in each
data set, selected a number of unique target genes from
the pool equal to the number of interactions for that TF
in the actual data set. As such, this produced a new
GRN for each data set with the same number of TF-
target interactions as the actual data, but with random
association between TF and target genes reflective only
of possible targets, not their frequency in any or all data
sets. We then counted the number of overlapping fea-
tures between each pair of randomized GRNs. This
process was repeated 1000 times to determine the mean
and standard deviation of overlap between the GRNs of
each data set expected under this randomization regi-
men. To determine to what degree the observed overlap
differed from the expectation under this random model,
we evaluated the null hypothesis that the number of
overlaps observed between two actual data sets is not
significantly different from the null distribution pro-
duced by our randomization regime using a two-tailed
z-test.

Expected feed-forward loops in S. cerevisiae regulatory
networks
FFLs were defined in each set of TF-target interactions
as any pair of TFs with a common target genes where a
TF-target interaction also existed between one TF (the
primary TF) and the other (the secondary TF) which, for
clarity, we refer to as a TF-TF interaction. The expected
number of FFLs in each data set was determined accord-
ing to the method described in “An Introduction to Sys-
tems Biology” [1]. Briefly, the expected number of FFLs
(NFFL) in a randomly arranged GRN is approximated by
the cube of the mean connectivity (λ) of the network

with a standard deviation equal to the square-root of the
mean. Therefore, for each data set we compared the ob-
served number of FFLs to the expected number of FFLs
from a network with the same number of connections,
but with those connections randomly arranged by defin-
ing λ as the number of TF-target interactions divided by
the total number of nodes (TFs + target genes) and cal-
culating mean the standard deviation as above.

Validating FFLs in cell-cycle expression
FFLs were validated in the context of cell-cycle expres-
sion by modeling the regulation and expression of genes
involved in the FFL using a system of ordinary differen-
tial equations:

Δð S
T
Þ ¼ ð

αS 0

βS;T αT
Þð

S

T
Þ þ ð

βP;S

βP;T

Þ f ðtÞ

Where S and T are the expression of the secondary TF
and target gene respectively, ∝S and ∝T are the decay
rates of the secondary TF and target gene respectively,
and βS, T indicates the production rate of the target gene
dependent on the secondary TF. In the nonhomoge-
neous term portion of the equation, βP,S and βP,T are the
production rate of the secondary TF and target gene, re-
spectively, which depend on the primary TF, while f(t) is
the expression of the primary TF over time which is in-
dependent of both the secondary TF and the target gene.
This system was solved in Maxima (http://maxima.sour-
ceforge.net/index.html). For each FFL, maximum likeli-
hood estimation, implemented using the bbmle package
in R (https://cran.r-project.org/web/ packages/bbmle/
index.html), was used to fit the model parameters to the
observed expression of genes during the cell-cycle as de-
fined by Spellman et al. [63]. Each run was initialized
using the same set of initial conditions and only FFLs for
which a reasonable (∝ < 0, βs > 0), non-initial parameters
could be fit were kept. Between 80 and 90% of FFLs in
each data set passed this threshold, while only 21% of
FFLs built from random TF-TF-target triplets were fit.

Classifying cell-cycle genes using machine learning
Recovering cell-cycle expression and the phase of cell-
cycle expression was done using the Support Vector
Machine (SVM) algorithm implemented in Weka [30].
We used a linear kernel so that we could later recover fea-
ture weights to evaluate feature importance. Furthermore,
Han and Jiang [31] suggest that linear kernel avoid overfit-
ting problems related to large difference between samples
and still performs well compared to other kernels. In pre-
paring out data, we treated each gene as a separate sample.
The features were the presence (1) or absence (0) of TF-
target and/or TF-TF interactions in FFLs defined using
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each of five regulatory datasets (ChIP-chip, Deletion,
PWM, Expert-PWM, and PBM). For the general model,
two classes were defined, cyclic and non-cyclic, based on
Spellmen et al. [63](see Additional file 7: Table S7). For
each SVM run, the full set of positive instances (cyclic ex-
pression) and negative instances (non-cyclic expression)
was used to generate 100 balanced (i.e. 1-to-1 ratio of
positive to negative) training inputs to ensure that final
evaluation, which is tested against the full data set, is not
biased by the fact that most of the genome it not cyclically
expressed under any cell-cycle phase. Genes were only
used for the input of an SVM run if at least one TF-target
or TF-TF interaction feature was present. In addition to
the general cell-cycle model, an SVM model was estab-
lished for recovering genes in each cell-cycle phase.
Models were constructed as above expect that classes
were defined as expression during a specific phase of the
cell-cycle, again based on data from on Spellman et al.
[63]. Each balanced input set was further divided for 10-
fold cross validation with SVM implemented in Weka [24,
30]. Each model was optimized using a grid search of two
hyper-parameters: (1) C: the margin of the separator
hyper-plane, and (2) R: the ratio of negative (non-cell
cycle) to positive examples (cell-cycle) in the training set.
More generally, C regulates how harshly misclassified
samples are penalized in training (larger C = larger pen-
alty) at the cost of a more rigid classifier, while R controls
the frequency of cell-cycle genes in the training set (large
R =more cell-cycle genes). The tested range of values of
the two hyper-parameters were: C = (0.01, 0.1, 0.5, 1, 1.5,
2.0) and R = (0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4). We used the
-p and -distribution options in the Weka command line to
generate a class prediction output file which lists class spe-
cific scores. For each pair of hyper-parameters, perform-
ance was measured by using the score values averaged
across the 100 balanced input sets to calculate the AUC-
ROC. For each choice of positive class and feature set, the
pair of grid search hyper-parameters which maximized
the average AUC-ROC was used to define the representa-
tive model and calculate the reported AUC-ROC. Because
cell cycle genes have already been identified in S. cerevisiae
and we are interested in the underlying relationship be-
tween cell cycle genes and their regulators, we do not
withhold additional samples for independent testing. Ra-
ther we use these representative models as a baseline for
comparison to determine which of TF and FFLs features
are most important for recovering cell cycle regulation
and therefore are most likely to be biologically significant.

Evaluating the relationship between model performance,
class and feature
The effect of the phase (general cell-cycle, G1, S, S/G2,
G2/M or M/G1) of expression being recovered (class)
and the data set (ChIP-chip, Deletion, PWM, Expert

PWM or PBM) from which TF-target interactions were
derived (feature) on the performance of each SVM
model was evaluated using analysis of variance
(ANOVA). This was done using the “aov” function in
the R statistical language using the following model:

S ¼ C þ Dþ C�D

Where “S” is the real valued AUC-ROC score of the
SVM model, “C” is a categorical feature representing the
positive-class set (i.e., general, G1, S, S/G2, G2/M, or M/
G1), and “D” is a categorical feature representing the
data set of regulations used (i.e., ChIP, Deletion, PWM1,
PWM2, or PBM).

Importance of features to recovering cell-cycle expression
To determine the most important of features in each
model, we first reran each SVM model using the best
pair of parameters with the -k command line option
in Weka to generate a full statistical output file which
lists feature weights. Custom python scripts were then
used to extract and order the weight values of the
feature to define an importance rank, such that the
feature with the largest positive value (most strongly
associated with the positive class) had the first/highest
rank and the feature with the largest negative value
(most strongly associated with the negative class) had
the last/lowest rank. Because multiple features often
had the same weight value, we defined cutoff scores
for the 10th and 25th percentile conservatively, such
that the cutoff for the Xth percentile of positive fea-
tures was smallest weight above which includes X%
or less of all features and the Xth percentile of nega-
tive features was the largest weight below which in-
cludes X% or less of all features. The effect of this is
observed most prominently in the 25th percentile
features sets as ties between feature weights were
more common towards the middle of the weight
distributions.

GO analysis
GO annotation for genes in S. cerevisiae were obtained from
the Saccharomyces Genome Database (2017-1-14
version, https://downloads.yeastgenome.org/curation/
literature/). The significance of enrichment of a par-
ticular term in a set of important TF compared to the
incidence of the GO annotation across the genome was
determined using the Fisher’s Exact Test and adjusted
for multiple-hypothesis testing using the Benjamini-
Hochberg method [6]. The Fisher Exact Test and
multiple-hypothesis testing were implemented using
the R functions fisher.test and p.adjust, respectively.
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