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Abstract

Background: Penicillium italicum (blue mold) is one of citrus pathogens causing undesirable citrus fruit decay even
at strictly-controlled low temperatures (< 10 °C) during shipping and storage. P. italicum isolates with considerably
high resistance to sterol demethylation inhibitor (DMI) fungicides have emerged; however, mechanism(s)
underlying such DMI-resistance remains unclear. In contrast to available elucidation on anti-DMI mechanism for P.
digitatum (green mold), how P. italicum DMI-resistance develops has not yet been clarified.

Results: The present study prepared RNA-sequencing (RNA-seq) libraries for two P. italicum strains (highly resistant
(Pi-R) versus highly sensitive (Pi-S) to DMI fungicides), with and without prochloraz treatment, to identify prochloraz-
responsive genes facilitating DMI-resistance. After 6 h prochloraz-treatment, comparative transcriptome profiling
showed more differentially expressed genes (DEGs) in Pi-R than Pi-S. Functional enrichments identified 15 DEGs in
the prochloraz-induced Pi-R transcriptome, simultaneously up-regulated in P. italicum resistance. These included
ATP-binding cassette (ABC) transporter-encoding genes, major facilitator superfamily (MFS) transporter-encoding
genes, ergosterol (ERG) anabolism component genes ERG2, ERG6 and EGR11 (CYP51A), mitogen-activated protein
kinase (MAPK) signaling-inducer genes Mkk1 and Hog1, and Ca2+/calmodulin-dependent kinase (CaMK) signaling-
inducer genes CaMK1 and CaMK2. Fragments Per Kilobase per Million mapped reads (FPKM) analysis of Pi-R
transcrtiptome showed that prochloraz induced mRNA increase of additional 4 unigenes, including the other two
ERG11 isoforms CYP51B and CYP51C and the remaining kinase-encoding genes (i.e., Bck1 and Slt2) required for Slt2-
MAPK signaling. The expression patterns of all the 19 prochloraz-responsive genes, obtained in our RNA-seq data
sets, have been validated by quantitative real-time PCR (qRT-PCR). These lines of evidence in together draw a
general portrait of anti-DMI mechanisms for P. italicum species. Intriguingly, some strategies adopted by the present
Pi-R were not observed in the previously documented prochloraz-resistant P. digitatum transcrtiptomes. These
included simultaneous induction of all major EGR11 isoforms (CYP51A/B/C), over-expression of ERG2 and ERG6 to
modulate ergosterol anabolism, and concurrent mobilization of Slt2-MAPK and CaMK signaling processes to
overcome fungicide-induced stresses.
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Conclusions: The present findings provided transcriptomic evidence on P. italicum DMI-resistance mechanisms and
revealed some diversity in anti-DMI strategies between P. italicum and P. digitatum species, contributing to our
knowledge on P. italicum DMI-resistance mechanisms.

Keywords: Transcriptome, Penicillium italicum, Demethylation inhibitor (DMI)-resistance, Prochloraz-responsive
genes

Background
Penicillium digitatum (green mold) and P. italicum (blue
mold) are well known as the predominant citrus patho-
gens causing postharvest diseases during fruits storing
and transportation. The resulted economic losses are so
great that aroused enormous attentions all over the
world [1]. The sterol demethylation inhibitor (DMI)
fungicides, such as imazalil and prochloraz, have been
widely applied to control citrus molds [2–6]. However,
resistance to these DMI fungicides has frequently
occurred for the Penicillium molds in the past decade,
especially for P. digitatum isolates with high DMI-
resistance [5, 7], considerably reducing the efficacy of
the fungicides. Up to date, we have got some under-
standing on the mechanism of azole fungicide resistance
in P. digitatum [8–13]. However, little information is
available to explain P. italicum resistance induced by the
DMI fungicides. It would be theoretically important to
address molecular background of P. italicum isolates
causing their DMI resistance.
The mechanism of fungal DMI-resistance involves strat-

egies targeting ergosterol-biosynthesis enzymes. The site
mutations in CYP51s (ERG11-encoding proteins) can alter
drug-target interactions and increase DMI-resistance for
various fungal pathogens, as reported in the model yeast
Saccharomyces cerevisiae [14–16], the clinical pathogens
Candida albicans [17–20] and Aspergillus fumigatus [21–
23], and the plant pathogens Mycosphaerella graminicola
[24, 25], Monilinia fructicola [26] and P. digitatum [27].
Fungal resistance to DMIs can also be ascribed to over-
expression of CYP51s, especially by some enhancer ele-
ments [9, 27–33]. In addition to CYP51s, recently, other
genes encoding fungal ergosterol biosynthesis-related
enzymes have been proposed to be potential targets, in-
cluding ERG2 (encoding C− 8 sterol isomerase) [34–36]
and ERG6 (encoding C− 24 sterol methyltransferase) [37–
40]. The importance of both ERG2 and ERG6 to
cycloheximide resistance for S. cerevisiae has also been
genetically emphasized [41].
Fungal DMI-resistance has also been ascribed to

specific drug-transporter proteins that can reduce fungi-
cide accumulation in fungal cells, including ATP-
binding cassette (ABC) transporter family proteins,
major facilitator superfamily (MFS) proteins, and multi-
drug and toxic compound extrusion (MATE) family

proteins. ABC transporters have been functionally char-
acterized in many fungal pathogens including green
mold and verified to be up-regulated in their fungicide
resistance [42–54]. MFS proteins constitute another
class of broad-spectrum transporters to develop fungal
DMI-resistance, including CaMDRl in C. albicans [55],
MgMfsl in wheat pathogen Mycosphaerella graminicola
[56], and PdMFS1 and PdMFS2 in P. digitatum strains
[57, 58]. Unlike ABC and MFS transporters, MATE pro-
teins function predominantly in bacterial drug-resistance
[59–61]. To date, the MATE contribution to fungal
drug-resistance was only reported in the ectomycorrhizal
fungus Tricholoma vaccinum [62] and the citrus patho-
genic fungus P. digitatum [11].
Fungicide resistance is further associated with particu-

lar protein kinase signaling and calcium (Ca2+) signaling.
The mitogen-activated protein (MAP) kinase signaling
pathways, ubiquitously found in eukaryotes (from yeasts
to various pathogenic fungi), comprise a set of cascaded
protein kinases, MAP kinase kinase kinase (MAPKKK),
MAP kinase kinase (MAPKK) and MAP kinase (MAPK),
acting in series to modulate target protein activities [63,
64]. Three major MAPK signaling pathways, Fus3/Kss1,
Hog1, and Slt2, have been revealed in model yeasts [65–
67] and filamentous fungi, including the citrus patho-
gens Alternaria alternata [68–71] and P. digitatum [72,
73], regulating pheromone/invasion processes, high
osmolarity glycerol anabolism, and stress-induced cell
wall remodeling, respectively. Hog1-MAPK (PdOs2)-me-
diated CWI signaling are involved in P. digitatum resist-
ance to the fungicides iprodione and fludioxonil [72].
Hog1 homolog BcSak1 was identified in Botrytis cinerea
and functionally required for iprodione resistance [74,
75]. FgOs2 also participated in Fusarium graminearum
resistance to fludioxonil [76]. The latest evidence has
suggested an essential role of PdSlt2 MAPK in regulating
gene expression to develop azole-fungicide resistance
[73]. Ca2+ signaling via Ca2+/calmodulin (CaM)-
dependent kinases (CaMKs), usually linked with particu-
lar MAPK pathway(s), extensively participates in fungal
responses to environmental stresses. The over-
expression of CaMK2 (also named Cmk2) in the yeast S.
cerevisiae facilitated its resistance to some azole-
fungicides (e.g., dithiothreitol and miconazole) [77]. Re-
cent studies also implied the essential role of CaMKs in
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protecting fungal cell wall integrity against oxidative
and/or heat stresses [78–80].
RNA sequencing (RNA-seq) technology has become a

powerful tool to profile transcriptomic response to re-
veal azole-resistance mechanism for some pathogenic
fungi including prochloraz-resistant P. digitatum [11],
voriconazole-resistant A. fumigatus [81], tetraconazole-
resistant Cercospora beticola [82], tebuconazole-resistant
Fusarium culmorum [83], and fluconazole-resistant
Candida glabrata [84]. Our earlier report has elucidated
the mechanism of P. digitatum resistance to DMI-
fungicide prochloraz through RNA-seq analysis [11].
Nevertheless, the molecular mechanism(s) of P. italicum
resistance to such fungicides are poorly understood.
Now we have isolated two P. italicum strains exhibiting
desirably contrasting response to common DMI fungi-
cides including prochloraz, i.e. Pi-R (highly resistant to
prochloraz with EC50 = 30.2 ± 1.5 mg·L− 1) versus Pi-S
(highly sensitive to prochloraz with EC50 = 0.007 ± 0.002
mg·L− 1). The purpose of this work was to compare tran-
scriptomic profiles between these two P. italicum strains
with and without prochloraz treatment, to identify
differentially expressed genes (DEGs) involved in the
azole-class fungicide resistance, and to provide theoret-
ical cues to explain P. italicum anti-azole mechanism.

Results
Transcriptome sequencing and assembly
In the present study, Pi-R and Pi-S were treated with or
without DMI-fungicide prochloraz to prepare four RNA-
seq samples, i.e., Pi-R-I, Pi-R-NI, Pi-S-I and Pi-S-NI.
After Illumina sequencing, the four transcriptomic
libraries contained 61,610,574, 70,012,472, 61,976,398
and 67,336,730 raw reads, respectively. By removing
adaptor sequences and undesirable reads (ambiguous,
low quality, and duplicated sequence reads), 58,744,798,
66,490,626, 59,134,840 and 64,262,170 clean reads were
generated from the four libraries with Q30 > 90%,
suggesting high quality for the present sequencing re-
sults. These clean reads were predominantly distributed
in exon and intergenic regions (Additional file 4: Figure
S2). Using reference genome (PHI-1) as mapping tem-
plate, clean reads were assembled into 47,195,871, 54,

176,219, 48,955,731 and 53,362,929 unigenes for the four
libraries, respectively. All unigene expression levels in
the four libraries were classified into five intervals, ac-
cording to FPKM values (Table 1), and more than 50%
of the total unigenes in each library were defined as
highly expressed (i.e., FPKM interval ≥ 15).

Identification and analysis of differentially expressed
genes (DEGs)
Based on the above FPKM values, hierarchical cluster
(i.e., heat map) analysis was performed to visualize DEG
profiles between Pi-R-I, Pi-R-NI, Pi-S-I and Pi-S-NI
libraries (Fig. 1). Pi-R and Pi-S were gathered into two
independent groups each containing two clusters (i.e.,
with and without prochloraz induction). Noticeably, pro-
chloraz induced more dramatic change in gene expres-
sion profile between Pi-R-I and Pi-R-NI than between
Pi-S-I and Pi-S-NI, suggesting the involvement of more
DEGs in Pi-R response to prochloraz.
Further, the q-value 0.005 (i.e., corrected p-value 0.005)

and an absolute value of log2(fold change) ≥ 1 were set as
cut-off standard to identify DEGs between different librar-
ies, including a) Pi-R-I vs Pi-R-NI, b) Pi-S-I vs Pi-S-NI, c)
Pi-R-I vs Pi-S-I, and d) Pi-R-NI vs Pi-S-NI (Fig. 2). We
identified 1) 1052 DEGs between Pi-R-I and Pi-R-NI (614
up-regulated and 438 down-regulated) (Fig. 2a and Add-
itional file 5: Table S3), representing the drug-responsive
genes in prochloraz-resistant strain; 2) 298 DEGs between
Pi-S-I and Pi-S-NI (63 up-regulated and 235 down-
regulated) (Fig. 2b and Additional file 6: Table S4), repre-
senting the drug-responsive genes in prochloraz-sensitive
strain; 3) 1482 DEGs between Pi-R-I and Pi-S-I (811 up-
regulated and 671 down-regulated) (Fig. 2c and Additional
file 7: Table S5), representing difference in drug-induced
gene expression between fungicide-resistant and -sensitive
P. italicum strains; and 4) 958 DEGs between Pi-R-NI and
Pi-S-NI (422 up-regulated and 536 down-regulated) (Fig.
2d and Additional file 8: Table S6), representing different
genetic background between the two P. italicum strains.
Among these DEGs, we identified a considerable amount
of common-accepted target protein genes associated with
DMI resistance, including cytochrome P450 genes and
drug efflux pump genes (ABC and MFS genes rather than

Table 1 FPKM intervals to assess unigene expression level for four P. italicum RNA-seq libraries

FPKM interval Pi-R-I Pi-R-NI Pi-S-I Pi-S-NI

0~1 1930 (18.78%) 1662 (16.18%) 1746 (16.99%) 1653 (16.09%)

1~3 810 (7.88%) 725 (7.06%) 703 (6.84%) 648 (6.31%)

3~15 2296 (22.35%) 1995 (19.42%) 1874 (18.24%) 1866 (18.16%)

15~60 2831 (27.55%) 3251 (31.64%) 3314 (32.25%) 3404 (33.13%)

60~ 2408 (23.44%) 2642 (25.71%) 2638 (25.67%) 2704 (26.32%)

0~1, 1~3, 3~15, 15~60, and 60~ indicate different FPKM intervals. The Table lists unigene number in each FPKM interval for each P. italicum RNA-seq library, and
for each RNA-seq library, the percentage in bracket indicates unigene numbers in specific FPKM interval to the total unigene number
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MATE genes) (Table 2). Based on the volcano plot
analysis, we applied Venn diagrams to profile the DEG
distribution between Pi-R-I vs Pi-R-NI and Pi-S-I vs Pi-S-
NI (Fig. 3a) and between Pi-R-I vs Pi-S-I and Pi-R-NI vs
Pi-S-NI (Fig. 3b). As shown in Fig. 3b, the overlap part of
circles Pi-R-I vs Pi-S-I and Pi-R-NI vs Pi-S-NI comprised
513 DEGs that might represent DEGs irrelevant to
prochloraz induction. In contrast, only 110 DEGs were
distributed in the overlap part of circles Pi-R-I vs Pi-R-NI
and Pi-S-I vs Pi-S-NI (Fig. 3a), indicating a proportion of
DEGs potentially involved in prochloraz response in both
resistant and sensitive P. italicum strains.

GO and KEGG enrichments of prochloraz-responsive DEGs
The DEGs were classified into three GO categories by the
Blast2GO (GOseq R package: http://www.geneontology.

org), including biological process (BP), cellular component
(CC), and molecular function (MF). The number of total
GO terms and its distribution in the three categories for
each comparison are listed in Table 3. In the comparison
Pi-R-I vs Pi-R-NI (Fig. 4a), 770 DEGs were enriched into
2005 GO terms without significant enrichment. In the
comparison Pi-S-I vs Pi-S-NI (Fig. 4b), 225 DEGs were
enriched into 1025 GO terms with 11 significant
enrichments (q value ≤0.05), and the top 5 terms signifi-
cantly enriched were oxidoreductase activity (GO:
0016491; q value 1.55E-07), oxidation-reduction process
(GO:0055114; q value 3.05E-06), single-organism meta-
bolic process (GO:0044710; q value 2.67E-04), catalytic
activity (GO:0003824; q value 1.21E-03), and single-
organism process (GO:0044699; q value 4.68E-03). In the
comparison Pi-R-I vs Pi-S-I (Fig. 4c), 1086 DEGs were
enriched into 2298 GO terms without significant enrich-
ment. In the comparison Pi-R-NI vs Pi-S-NI (Fig. 4d), 711
DEGs were enriched into 1684 GO terms with 11 signifi-
cant enrichments (q value ≤0.05), and the top 5 terms
significantly enriched were oxidoreductase activity (GO:
0016491; q value 1.73E-06), oxidation-reduction process
(GO:0055114; q value 1.73E-06), hydrolase activity (hydro-
lyzing O-glycosyl compounds; GO:0004553; q value
1.60E-04), hydrolase activity (acting on glycosyl bonds;
GO:0016798; q value 3.50E-04), and transmembrane
transport (GO:0055085; q value 8.85E-04). Figure 5 re-
ports the distribution of up- and down-regulated unigenes
in the top 30 enriched GO terms for the 4 comparisons
mentioned above. Interestingly, the DEGs enriched in the
top 30 GO terms were found mostly up-regulated in the
comparisons Pi-R-I vs Pi-R-NI and Pi-R-I vs Pi-S-I (Figs.
5a and c) and generally down-regulated in the compari-
sons Pi-S-I vs Pi-S-NI and Pi-R-NI vs Pi-S-NI (Figs. 5b
and d).
Importantly, the up-regulated DEGs mapped to spe-

cific GO terms included a number of typical genes
related to fungicide resistance. As summarized in Table
4, drug-pump genes (ABC1, ABC2, MFS1, MFS2, MFS3
and MFS4, mapped to GO:0016020 (membrane)), drug-
target P450 gene (CYP51A, mapped to GO:0055114
(oxidation-reduction process)), steroid biosynthesis-
related genes (ERG2 and ERG6, mapped to GO:
0006694 (steroid biosynthetic process)) and MAPK/cal-
cium signaling-related genes (Mkk1, Hog1, CaMK1,
CaMK2 and EF-hand1, mapped to GO:0016301 (kinase
activity) and GO:0005509 (calcium ion binding)) were
up-regulated in prochloraz-treated Pi-R, as compared
to drug-untreated Pi-R or to drug-treated Pi-S. In con-
trast, most of these prochloraz-responsive DEGs, except
for CYP51A, were down-regulated or unchanged in
prochloraz-treated Pi-S, comparing to untreated Pi-S.
GO enrichment also indicated lower transcript abun-
dance of some of these prochloraz-responsive DEGs in

Fig. 1 Hierarchical cluster analysis of differentially expressed genes
(DEGs). Blue to red colors represent gene expression levels (i.e.,
FPKM values from −1 to 1)
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Pi-R when compared with Pi-S under fungicide-free
conditions (Table 4), including ABC2, MFS1, MFS2,
MFS4, and CaMK2. The GO-term map distribution
(i.e., hit and ranking records) of the prochloraz-
responsive DEGs mentioned above was summarized in
Additional file 9: Table S7.
Further, KEGG enrichment was applied to identify

pathways associating the prochloraz-responsive DEGs
with resistance mechanisms. In the present four
comparisons, KEGG analysis enriched prochloraz-
responsive DEGs into only two pathways, i.e., steroid

biosynthesis (KEGG ID: pcs00100; q value = 0.013) and
MAPK signaling pathway (KEGG ID: pcs04011; q
value = 0.021) (Table 5): the former pathway exclusively
included up-regulated DEGs, i.e., CYP51A (PITC_
083360) in the comparisons Pi-R (I/NI) and Pi-S (I/NI),
ERG2 (PITC_020620) in the comparisons Pi-R (I/NI)
and Pi-S (I/NI), and ERG6 (PITC_014340) in the com-
parisons Pi-R (I/NI) and I (Pi-R/Pi-S); while the latter
pathway included 1) up-regulated DEGs (i.e., Mkk1 and
Hog1) in Pi-R-involved comparisons, i.e., Pi-R (I/NI)
and I (Pi-R/Pi-S) and 2) down-regulated DEG (i.e.,
Hog1) only in comparison Pi-S (I/NI). All the KEGG-
enriched DEGs, as components of metabolic and/or
signal-transduction pathway(s), were well coincident
with the results of GO enrichment. In other words, the
present GO-enriched DEGs, if involved in specific
biological pathway(s), were exclusively KEGG-included,
and certainly, pathway-irrelevant genes, e.g., drug-
pump genes and drug-target genes, were KEGG-
excluded, without exception.

Fig. 2 Volcano plot of DEGs in the comparison between Pi-R-I and Pi-R-NI (a), Pi-S-I and Pi-S-NI (b), Pi-R-I and Pi-S-I (c), and Pi-R-NI and Pi-S-NI (d).
X-axis indicates log2(fold change) of DEGs between each two samples. Y-axis indicates the -log10(q value) (i.e., corrected p value and abbreviated
as qval.) of gene expression variations, and the qval. Was applied to assess statistical significance of the change of unigene expression. The up-
regulated, down-regulated, and unchanged unigenes are dotted in red, green, and blue, respectively

Table 2 Analysis of target protein genes associated with azole
resistance among identified DEGs

Comparison between samples Cytochrome P450 ABC MFS MATE

Pi-R-I vs Pi-R-NI 16 6 37 0

Pi-S-I vs Pi-S-NI 8 1 19 0

Pi-R-I vs Pi-S-I 19 12 68 0

Pi-R-NI vs Pi-S-NI 9 11 57 0
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Real-time quantitative PCR (qRT-PCR) validation of
prochloraz-responsive DEGs
According to the GO and KEGG enrichments combined,
we selected 15 prochloraz-responsive DEGs to perform
qRT-PCR validation. The 15 prochloraz-responsive
DEGs, never reported before, potentially involved in P.

italicum response to DMI fungicides, included 1) drug-
pump genes: ABC1 (PITC_032590), ABC2 (PITC_
006400), MFS1 (PITC_098100), MFS2 (PITC_012240),
MFS3 (PITC_056240), and MFS4 (PITC_091150); 2)
ergosterol biosynthesis-related genes: CYP51A (PITC_08
3360), ERG2 (PITC_027000), and ERG6 (PITC_014340);
3) MAPK signaling-related genes: Mkk1 (PITC_088710)
and Hog1 (PITC_062470); 4) Ca2+ signal transducer-
related genes: CaMK1 (PITC_087700), CaMK2 (PITC_
025800), EF-hand1 (PITC_033750), and EF-hand2
(PITC_036760). Additionally, FPKM-based unigene ex-
pression quantification combined with local Blast-based
annotation revealed differential expression patterns for
particular prochloraz-responsive unigenes in the present
4 comparisons, including CYP51B (PITC_064600),
CYP51C (PITC_028940), Bck1 (PITC_061930) and Slt2
(PITC_008290) (Additional file 10: Table S8). Consider-
ing 1) functional clustering of CYP51A/B/C (i.e., iso-
froms of drug-target gene CYP51) and 2) cascaded
association of Bck1 (encoding MAPKKK), Mkk1 (encod-
ing MAPKK) and Slt2 (encoding MAPK) in Slt2-MAPK
pathway, we also performed qRT-PCR validation for the
4 prochloraz-responsive unigenes that were not included
in the present DEG list for comparison (i.e., not included
in Additional files 5-8: Tables S3–6). As shown in Fig. 6,
the qRT-PCR expression patterns of the total 19
prochloraz-responsive DEGs (including 4 FPKM-defined
DEGs) were all in agreement with the obtained RNA-seq
results. Further, the qRT-PCR results using internal ref-
erence gene β-actin were confirmed by another dataset
of qRT-PCR analysis based on a different housekeeping
gene GAPD (Additional file 11: Figure S3).
In detail, the transcript abundance of drug-pump

gene ABC1 was strikingly increased in both Pi-R (I/NI)
and I (Pi-R/Pi-S), by nearly 500- and 800-folds, respect-
ively, while remarkably decreased in both Pi-S (I/NI)
and NI (Pi-R/Pi-S); the similar (but not so strikingly)
changing pattern was observed for the rest drug-pump
genes including MFS1 (Fig. 6a). When comparing Pi-R
(I/NI) with Pi-S (I/NI) or comparing I (Pi-R/Pi-S) with
NI (Pi-R/Pi-S), the obviously higher increasing-fold of
transcript abundance was also validated for the other
prochloraz-responsive genes, including typical drug-
target genes (i.e., CYP51A/B/C) (Fig. 6b), ergosterol
biosynthesis-related genes ERG2 and ERG6 (Fig. 6b),
MAPK signaling-related genes (Fig. 6c), and Ca2+ signal
transducer-related genes CaMK1, CaMK2 and EF-
hand2 (Fig. 6d). In addition, to functionally verify par-
ticular prochloraz-responsive gene, an mfs1-knockout
mutant (Δmfs1) was constructed from its parental
strain Pi-R, exhibiting obviously lower prochloraz-
resistance (i.e., lower prochloraz EC50 value) as com-
pared to the Pi-R wild-type (Additional file 12: Figure
S4). This was a sort of preliminary observation from

Fig. 3 Venn diagram of DEGs shared in DEG groups Pi-R-I vs Pi-R-NI
and Pi-S-I vs Pi-S-NI (a) and DEG groups Pi-R-I vs Pi-S-I and Pi-R-NI vs
Pi-S-NI (b). Yellow circle stands for number of DEGs between Pi-R-I
and Pi-S-I (a) and between Pi-R-I and Pi-R-NI (b). Purple circle
represents number of DEGs between Pi-R-NI and Pi-S-NI (a) and
between Pi-S-I and Pi-S-NI (b). The overlapping region comprises the
DEGs shared in the two DEG groups Pi-R-I vs Pi-R-NI and Pi-S-I vs Pi-
S-NI (a) and another two DEG groups Pi-R-I vs Pi-S-I and Pi-R-NI vs
Pi-S-NI (b)

Table 3 Summary of GO term distribution

Comparison between samples GO term in total BP CC MF DEG

Pi-R-I vs Pi-R-NI 2005 1158 245 602 770

Pi-S-I vs Pi-S-NI 1025 574 105 346 225

Pi-R-I vs Pi-S-I 2298 1302 308 688 1086

Pi-R-NI vs Pi-S-NI 1684 910 214 560 711

The Table lists term numbers in GO enrichment and in the three GO
categories, i.e., Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF), for each comparison in the present study, and correspondingly,
also lists differentially expressed gene (DEG) numbers
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the present RNA-seq analysis, and further biological
support is in process.

Discussion
In the past decades, conventional synthetic DMI-
fungicides, such as prochloraz and imazalil, were widely
applied to control Penicillium decay, but undesirably, a
considerable number of resistant isolates including P.
digitatum and P. italicum strains have developed [5–7].
The mechanisms underlying DMI-fungicide resistance
have been elucidated for P. digitatum species by tran-
scriptomic analysis [11]. However, how to develop DMI-
resistance in P. italicum species is still not clear, might
due to rare opportunity to find highly DMI-resistant P.
italicum strain(s). The EC50 values of P. italicum isolates
towards DMI-fungicide(s) (e.g., imazalil), published to
date, were ≤ 0.92 ± 0.09 mg·L− 1, no more than moderate

resistance level [5, 85]. Nevertheless, some recent inves-
tigations have suggested evolutional potential to develop
high DMI-resistance in P. italicum species [85–87]. Now
we have isolated a P. italicum strain (Pi-R) with
extremely high resistance to some common DMI-
fungicides including prochloraz (Additional file 1: Figure
S1 and Additional file 2: Table S1). We believed that this
strain could be useful to investigate DMI-fungicide re-
sistance mechanism in P. italicum.
Fungal resistance to azole-fungicides including a num-

ber of DMI-fungicides has been usually ascribed to over-
expression of specific drug-efflux pumps such as ABC
and MFS transporters [8, 42–50, 53, 54, 57, 58, 88]. Spe-
cially, ABC and MFS transporter-encoding genes, each
containing multiple isoforms, were reported to be simul-
taneously up-regulated in the prochloraz-resistant P.
digitatum [11]. The similar up-regulation of multiple

Fig. 4 Gene ontology (GO) classifications of DEGs for Pi-R-I vs Pi-R-NI (a), Pi-S-I vs Pi-S-NI (b), Pi-R-I vs Pi-S-I (c), and Pi-R-NI vs Pi-S-NI (d). For each
comparison, GO enrichment classified DEGs into three categories (types) (i.e., biological process, cellular component, and molecular function), as
shown in green, orange, and purple bars, respectively. Each GO category (type) displays 30 terms (listed on Y-axis) significantly or most enriched
for DEGs in the given comparisons, and X-axis indicates the number of DEGs involved in particular GO term
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ABC and MFS gene members (i.e., ABC1–2 and MFS1–
4) was also observed in the prochloraz-treated Pi-R ra-
ther than Pi-S (Table 4 and Fig. 6a), indicating the need
of drug-efflux pumps to develop DMI-resistance in P.
italicum. The evidence that the knockout of mfs1 (i.e.,
MFS1-encoding gene) in Pi-R decreased the fungal
resistance to prochloraz confirmed the involvement of
particular drug-efflux pump in P. italicum anti-DMI
mechanism (Additional file 12: Figure S4), and more bio-
logical support would be required for the other drug-
efflux pumps. Interestingly, regarding these drug-efflux
pump-encoding genes, over-expressed in the prochloraz-
induced P. italicum transcriptome, their orthologous
genes in the prochloraz-induced P. digitatum transcrip-
tome [11], as shown in Additional file 13: Table S9, were
not responsive or negatively responsive to the DMI-
fungicide treatment. Such different isogene responsive
profiles suggested a special drug-pump preference for
different Penicillium species to develop DMI-fungicide

resistance. Here we provide the first evidence that the
two Penicillium species (i.e., green mold and blue
mold) with close evolutionary association did differ in
selecting drug-transporters to support their DMI re-
sistance, and the mechanism(s) underlying need fur-
ther research.
More interestingly, regarding another class of drug-

pump-encoding genes, i.e., MATEs, none was found to
be differentially expressed in the prochloraz-induced
Pi-R and Pi-S transcriptomes (Table 2). In contrast, Liu
et al. [11] reported up-regulation of three MATE
transporter-encoding genes (MATE1–3) in P. digitatum
resistance to prochloraz. The orthologous gene of
PdMATE3 has been identified in the present Pi-R and
Pi-S genomes, however, no mRNA transcripts of this
gene was detected in the prochloraz-treated P. italicum
strains. This might suggest transcriptional irrelevance
of MATE transporter with P. italicum resistance to
prochloraz. Unlike ABC and MFS transporters, MATE

(See figure on previous page.)
Fig. 5 Distribution of up- and down-regulated genes in the top 30 enriched GO terms for Pi-R-I vs Pi-R-NI (a), Pi-S-I vs Pi-S-NI (b), Pi-R-I vs Pi-S-I
(c), and Pi-R-NI vs Pi-S-NI (d). In each panel, from top to bottom shows three GO categories, i.e., biological process, cellular component, and
molecular function, comprising the top 30 GO terms in total, and the up- and down-regulated genes in each term is represented by red and
green bars, respectively. X- and Y-axis indicate GO terms and corresponding number of DEGs, respectively

Table 4 Summary of GO-enriched DEGs associated with prochloraz resistance

GO ID (term) DEG ID DEG name (GO-annotated) Fold change (log2) of DEG expression in the
comparison below

Pi-R (I/NI) Pi-S (I/NI) I (Pi-R/Pi-S) NI (Pi-R/Pi-S)

GO:0016020 (membrane) PITC_032590 ABC1 7.746 / 7.523 /

PITC_006400 ABC2 1.393 / / −1.385

PITC_098100 MFS1 3.880 / 1.838 −1.709

PITC_012240 MFS2 3.853 / / −3.011

PITC_056240 MFS3 2.602 / 1.922 /

PITC_091150 MFS4 2.069 −1.512 1.225 −2.336

GO:0055114 (oxidation-reduction process) PITC_083360 CYP51A 2.865 2.425 / /

GO:0006694 (steroid biosynthetic process) PITC_027000 ERG2 2.002 / 1.422 /

PITC_014340 ERG6 1.757 / 1.365 /

GO:0016301 (kinase activity) PITC_088710 Mkk1 2.603 / 2.143 /

PITC_062470 Hog1 / −1.215 1.801 /

PITC_087700 CaMK1 2.402 / / −1.237

PITC_025800 CaMK2 1.138 −1.752 2.578 /

GO:0005509 (calcium ion binding) PITC_033750 EF-hand1 1.510 / 1.543 /

PITC_036760 EF-hand2 −1.814 / −1.504 /

The abbreviated names for the selected DEGs are listed as: ABC1, CDR ABC transporter 1; ABC2, ABC transporter 2 (integral membrane type); MFS1, major facilitator
superfamily protein 1; MFS2, major facilitator superfamily protein 2; MFS3, major facilitator superfamily protein 3; MFS4, major facilitator superfamily protein 4; CYP51A,
cytochrome P450 51A; ERG2, ergosterol biosynthesis methyltransferase 2; ERG6, ergosterol biosynthesis methyltransferase 6; Mkk1, MAP kinase kinase (i.e., Mkk1,2); Hog1,
MAP kinase (i.e., MpkC); CaMK1, calcium/calmodulin-dependent protein kinase 1; CaMK2, calcium/calmodulin-dependent protein kinase 2; EF-hand1, calcium-binding EF-
hand 1; EF-hand2, calcium-binding EF-hand 2. Pi-R (I/NI), Pi-S (I/NI), I (Pi-R/Pi-S) and NI (Pi-R/Pi-S) indicate comparisons Pi-R-I vs Pi-R-NI, Pi-S-I vs Pi-S-NI, Pi-R-I vs Pi-S-
I and Pi-R-NI vs Pi-S-NI, respectively. The log2(fold change) of DEG expression was generated from original data in DEG information lists (Table S2–5), and the
slash ‘/’ indicates the unfeasibility to generate log2(fold change) when the DEG is not included in the comparison
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transporters are more associated with bacterial drug-
resistance [59–62]. To date, the transcriptional re-
sponse of MATE isogenes to DMI fungicides was only
documented in prochloraz-resistant P. digitatum tran-
scriptomes [11]. But such transcriptomic response of
MATE transporter-encoding genes did not occur in the
present P. italicum transcriptomes. Thus a potential de-
bate on real function of MATE family member(s) in

citrus Penicillium pathogens’ resistance to DMI-
fungicides would be an interesting study topic.
Over-expression of ERG11s, the P450-dependent sterol

14α-demethylase (CYP51)-encoding genes (e.g., CYP51A/
B/C), has been accepted as a primary strategy to develop
fungal DMI-resistance [9, 27, 33]. Under prochloraz
induction, the increasing fold of CYP51A in Pi-R (~ 9-fold)
was more than that in Pi-S (~ 4.5-fold) (Fig. 6b),

Table 5 Summary of KEGG enrichments for prochloraz-responsive DEGs in the present 4 comparisons

KEGG pathway (ID) Gene name (ID) Comparison involved Regulated

Steroid biosynthesis (pcs00100) CYP51A (PITC_083360) Pi-R (I/NI) Up

Pi-S (I/NI) Up

Steroid biosynthesis (pcs00100) ERG2 (PITC_020620) Pi-R (I/NI) Up

Pi-S (I/NI) Up

Steroid biosynthesis (pcs00100) ERG6 (PITC_014340) Pi-R (I/NI) Up

I (Pi-R/Pi-S) Up

MAPK signaling pathway-yeast (pcs04011) Mkk1 (PITC_088710) Pi-R (I/NI) Up

I (Pi-R/Pi-S) Up

MAPK signaling pathway-yeast (pcs04011) Hog1 (PITC_062470) Pi-S (I/NI) Down

I (Pi-R/Pi-S) Up

Fig. 6 qPCR validation of 19 prochloraz-responsive DEGs including drug transporter genes (a), ergosterol biosynthesis-related genes (b), MAPK
signaling pathway genes (c), and Ca2+ signal transduction genes (d). The housekeeping gene β-actin was used as internal reference to calculate
the relative mRNA abundance for the selected unigenes. Relative ratios for the expression of each selected DEG were calculated as Pi-R (I/NI), Pi-S
(I/NI), I (Pi-R/Pi-S), and NI (Pi-R/Pi-S). All values obtained in the qRT-PCR analysis were expressed as the mean ± SD from 5 biological repeats each
containing 3 technical replicates, and independent samples t-test (n = 5) was applied in the SPSS Statistics 17.0 context to assess the significance
of differences between the means (*p < 0.05 and **p < 0.01)
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suggesting a positive correlation between CYP51A abun-
dance and anti-DMI potential in P. italicum strains. On
the other hand, the simultaneous up-regulation of ERG11
isoforms (CYP51A/B/C) was observed only in prochloraz-
induced Pi-R, rather than Pi-S (Table 4 and Fig. 6b). This
indicated that CYP51B and CYP51C could contribute to
P. italicum prochloraz-resistance. However, according to
the prochloraz-induced P. digitatum transcriptome [11],
the orthologous genes of CYP51B and CYP51C in the
prochloraz-resistant P. digitatum strain were not up-
regulated (Additional file 13: Table S9). The difference in
choice of ERG11-encoding targets suggested diverse strat-
egies for P. italicum and P. digitatum species to develop
DMI-resistance. ERG2 and ERG6, the other two ERGs in
ergosterol-biosynthesis pathway, as recommended to be
potential multidrug targets [89], were up-regulated in the
prochloraz-treated Pi-R (Tables 4, 5 and Fig. 6b). These
ERGs could be contributors to the P. italicum DMI-
resistance. Previous reports have documented azole-
induced mRNA increase of ERG2 and ERG6 [39, 81],
correlating these ergosterol-biosynthesis genes with acute
response of fungal membrane rigidity caused by azole-
fungicides. Such ERGs expression profile was observed in
the DMI-resistant P. italicum, but not in the prochloraz-
resistant P. digitatum strain [11] (Additional file 13: Table
S9). These results suggested different strategies in ERGs
response of the two Penicillium species to develop DMI-
resistance.
Fungal multidrug resistance has been linked with

MAPK signaling pathways including Slt2-MAPK [73,
90–92]. The Slt2-MAPK middle-stream components,
two MAPKK-encoding genes ScMkk1 and ScMkk2, have
been characterized in the model yeast S. cerevisiae to
function in CWI signaling-mediated fungicide resistance
[90, 91]. In the present study, Mkk1 (PITC_088710), the
homolog of ScMkk1 in P. italicum species, was GO- and
KEGG-enriched as up-regulated DEG in the prochloraz-
treated Pi-R (Tables 4 and 5), indicating the involvement
of Slt2-MAPK in the P. italicum DMI-resistance. Bck1
(PITC_061930) and Slt2 (PITC_008290), the MAPKKK-
and MAPK-encoding genes located upstream and down-
stream of Mkk1, respectively, were both up-regulated in
prochloraz-treated Pi-R (Fig. 6c and Additional file 10:
Table S8). These results supported Slt2-MAPK contribu-
tion to the P. italicum prochloraz-resistance. Disruption
of slt2 led to increased sensitivity to DMI-fungicide
imazalil in wheat pathogen M. graminicola [93], also
suggesting Slt2-MAPK function in fungal DMI-
resistance. However, slt2-deleted P. digitatum exhibited
no obvious change in DMI-resistance [73], indicating
that Slt2-MAPK might be irrelevant to the fungal anti-
DMI strategy. Actually, according to prochloraz-resistant
P. digitatum transcriptomes [11], the orthologs of
PiSlt2-MAPK genes were not included in up-regulated

DEGs (Additional file 13: Table S9). These contrasting
results indicated an interesting difference in MAPK
choice for different fungal pathogens to resist DMI fun-
gicide(s). Fungal resistance to azole fungicides addition-
ally required some cellular Ca2+-signaling processes via
CaMKs, specially, via CaMK1, CaMK2 and their homo-
logues [78–80, 94]. Here we also identified two CaMK
homologues CaMK1 (PITC_087700) and CaMK2
(PITC_025800), both up-regulated only in prochloraz-
treated Pi-R (Table 4 and Fig. 6d), thus suggesting the
contribution of CaMKs to fungal DMI-resistance.
CaMKs mediated fungal responses to cell-wall and oxi-
dative stresses induced by fungicides [77–80]. Thus the
involvement of CaMKs in P. italicum DMI-resistance
would be a strategy to cope with some azole-induced
stresses. Unlike Pi-R, the prochloraz-resistant P. digita-
tum strain showed no up-regulation of CaMK homo-
logues (Additional file 13: Table S9). The difference in
CaMK response to DMI-fungicides in the two Penicil-
lium species needs further research.

Conclusions
In conclusion, the present work for the first time pro-
vided transcriptomic analysis of prochloraz-responsive
gene expression profiles for two P. italicum strains with
contrasting response to prochloraz, revealing potential
mechanisms underlying P. italicum resistance against
DMI fungicides. The strategies that P. italicum species
adopt to overcome the azole stresses, based on DEG en-
richment analysis, are summarized as 1) up-regulation of
specific isogenes encoding ABC and MFS transporters,
2) simultaneous induction of all major EGR11 isoforms
including CYP51A/B/C, 3) over-expression of ERG2 and
ERG6 to modulate ergosterol anabolism, and 4) concur-
rent mobilization of Slt2-MAPK and CaMK signaling
processes to adapt azole-induced stresses. Some differ-
ences in the choice of anti-DMI strategy between P.
italicum and P. digitatum species were also discussed.

Methods
Strains, cultivation and treatments
P. italicum strains Pi-R and Pi-S, used in this study,
were isolated from rotten citrus fruits in local packing-
houses (Yunnan Province) and orchards (Hainan
Province), respectively. Pi-R exhibits dramatically high
prochloraz-resistance (EC50 = 30.2 ± 1.5 mg·L− 1), while
Pi-S is prochloraz-sensitive (EC50 = 0.007 ± 0.002 mg·L−
1) (Additional file 1: Figure S1). Meanwhile, Pi-R and Pi-
S did show contrasting response to the other two DMI
fungicides (imazalil and triadimefon) and the two
benzimidazole-class fungicides (carbendazim and
benomyl), according to their EC50 values; however, the
two fungal strains were both highly sensitive to the phe-
nylpyrrole fungicide fludioxonil (Additional file 2: Table
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S1). Fungal strains were routinely cultivated on potato
dextrose agar (PDA) medium for 5 days to prepare re-
spective conidial suspension (107 spores mL− 1) as previ-
ously described [11]. Afterwards, for each fungal strain,
200 μL of conidial suspension (approximately 2 × 106

spores) was incubated with 200 mL potato dextrose
broth (PDB) medium for 2 days at 28 °C and 180 rpm
shaking, and the resulting mycelia were treated with or
without prochloraz. In detail, prochloraz was added to
the PDB medium at final concentration that was in
agreement with EC50 value for each P. italicum strain
(i.e., 30.2 mg·L− 1 for Pi-R and 0.007 mg·L− 1 for Pi-S).
Prochloraz was pre-dissolved in 100 μL DMSO, and the
same volume of DMSO was added to 200 mL PDB
medium to prepare control samples. The prochloraz-
induced and no-induced (control) samples were cultured
at the same conditions (at 28 °C and 180 rpm shaking)
for 6 h before RNA extraction. The present study col-
lected 4 samples in total for the following RNA manipu-
lations, i.e. prochloraz-induced and no-induced Pi-R
(designated as Pi-R-I and Pi-R-NI, respectively), and
prochloraz-induced and no-induced Pi-S (designated as
Pi-S-I and Pi-S-NI, respectively).

RNA extraction, RNA-seq library construction and Illumina
sequencing
Total RNA was extracted for the four fungal samples with
three biological replicates, according to the method de-
scribed before [11]. The integrity of RNA samples was first
examined by 1% (w/v) agarose gel electrophoresis analysis
and then confirmed by Bioanalyzer 2100 (Agilent Tech-
nologies, CA, USA). Each RNA sample was further
checked by Nano-Photometer (Implen, CA, USA) to en-
sure its purity, and quantified using Qubit RNA Assay Kit
(Life Technologies, CA, USA). Sequencing libraries were
constructed according to the protocol of NEBNext Ultra™
RNA Library Prep Kit for Illumina sequencing (NEB,
USA), using the amount of 3 μg RNA for each sample.
Briefly, Poly (A) mRNA was purified and enriched from
total RNA by oligo-dT paramagnetic beads, and fragmen-
ted to provide templates for the first- and second-strand
cDNA synthesis. The cDNA products were end-repaired
to be blunt fragments and adenylated at their 3′ ends.
NEBNext adaptors (sequencing adapters) were ligated
with the 3′-adenylated DNA fragments. Then 3 μL USER
Enzyme (NEB, USA) was applied to produce double-
stranded cDNA templates for polymerase chain reaction
(PCR) amplification with Pfu DNA polymerase and spe-
cific primers. The obtained index-coded samples were
clustered by cBot Cluster Generation System for sequen-
cing using Illumina HiSeq X platform, and the resulting
paired-end reads (raw reads) in ~ 150 bp length were de-
posited at NCBI database under accession number
PRJNA421419.

Reads mapping to the reference genome
Raw reads stored in fastq format after the Illumina se-
quencing were first processed through in-house perl
scripts to thoroughly remove low quality reads, as de-
scribed before [11], to generate clean reads with high
quality that were assessed by parameters Q20, Q30 and
GC content. The clean reads were mapped to P. italicum
PHI-1 reference genome (GenBank accession number:
JQGA01000000) [95] using TopHat version 2.0.11 [96].
Prior to the reads mapping, the gene annotation files
were downloaded from the website (http://genome.jgi.
doe.gov/Pendi1 /Pendi1.home.html), and the reference
genome was indexed by Bowtie version 2.0.6.

Gene expression analysis and functional enrichments
Gene expression level (transcript and/or unigene abun-
dance) in each sample was estimated using HTSeq v0.6.1,
according to FPKM analysis [97], which processed based
on uniquely mapped reads and thus eliminating the ex-
perimental bias due to sequencing discrepancies. Then,
the read counts were adjusted by edgeR program package
through one scaling normalized factor, as previously de-
scribed [98], to prepare for differential gene expression
analysis. To identify differentially expressed genes (DEGs)
between samples, fold-changes of expression level for each
gene, defined as the ratio of the RPKM values, were calcu-
lated by DEGSeq R package (1.12.0), and P-values were
statistically corrected to assess the significance for the dif-
ferences in transcript abundance according to Benjamini
& Hochberg method [99]. In the present study, DEGs
were selected as transcripts and/or unigenes differentially
expressed with at least 2-fold change (i.e., the absolute
value of log2 Fold change ≥1.0) and corrected P-value
≤0.005 between two groups of comparison. The identified
DEGs were hierarchically clustered by Cluster 3.0 [100],
and then subjected to heat-map analysis by Plotly
(Montreal, Quebec) software and Venn diagram analysis
at the website http://bioinfogp.cnb.csic.es/tools/venny/
index.html. Further, DEGs were functionally enriched to
Gene Ontology (GO) database (http://www. geneontolo-
gy.org) using the GOseq R package based on Wallenius’
non-central hyper-geometric distribution [101], and also
enriched to Kyoto Encyclopedia of Genes and Genomes
(KEGG) public database (http://www.genome.jp/kegg/),
using the KOBAS software to test the significance of
enriched DEGs in particular metabolic and signal trans-
duction pathways [102].

Quantitative real-time PCR (qRT-PCR) validation
Nineteen unigenes related to azole-drug resistance in
the present P. italicum transcriptoms were selected for
qRT-PCR validation, including 6 drug transporter genes,
5 ergosterol biosynthesis-related genes, 4 MAPK signal-
ing pathway-related genes, and 4 Ca2+ signal transducer-
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related genes. Total RNA was extracted from the same
P. italicum samples used for RNA-seq, according to
Fungi RNA Kit user guide (OMEGA, USA). First-strand
cDNA synthesis was performed with PrimeScript™RT re-
agent Kit with gDNA Eraser (TaKaRa, Dalian, China),
according to the manufacturer’s instructions, and the
qRT-PCR was performed using a BIO-RAD CFX96
qPCR system with SYBR Green I fluorescent dye detec-
tion as previously described [11]. The specific primers
used in this study are shown in Additional file 3: Table
S2, and the two housekeeping genes, i.e., β-actin and
glyceraldehyde-3-phosphate dehydrogenase (GAPD), were
respectively applied as internal reference to calculate the
relative mRNA abundance for the selected unigenes, ac-
cording to the 2–ΔΔCt method [103] with 5 biological re-
peats each containing three technical replicates. Relative
ratios for the expression of each selected unigene were
further calculated in the 4 comparison groups, including
Pi-R (I/NI) (i.e., Pi-R-I relative to Pi-R-NI), Pi-S (I/NI)
(i.e., Pi-S-I relative to Pi-S-NI), I (Pi-R/Pi-S) (i.e., Pi-R-I
relative to Pi-S-I), and NI (Pi-R/Pi-S) (i.e., Pi-R-NI rela-
tive to Pi-S-NI). All values obtained in the qRT-PCR
analysis were expressed as the mean ± SD (standard
deviation of the mean), and based on 5 independent ex-
periments (i.e., 5 biological repeats), independent sam-
ples t-test (n = 5) was applied in the SPSS Statistics 17.0
context to assess the significance of differences between
the means (*p < 0.05 and **p < 0.01).

Construction of mfs1-knockout mutant (Δmfs1) from Pi-R
The mutant Δmfs1 was derived from its parental strain
Pi-R by introduction of mfs1- knockout cassette into the
DMI-resistant P. italicum protoplasts that were prepared
according to the method of Zhao et al. [104]. Double-
joint PCR was performed to construct the desirable
knockout cassette, also according to the method of Zhao
et al. [104]. In detail, the hygromycin phosphotransferase
(hph) resistance gene (approximately 2.1 kb) from the
plasmid pTFCM (generously provided by Dr. Daohong
Jiang, Huazhong Agricultural University, China) was
inserted between the upstream and downstream flanking
sequences of mfs1 gene (approximately 2.0 kb in total)
from the Pi-R genomic DNA. The knockout cassette was
introduced into wild-type Pi-R protoplasts as described
by Zhao et al. [104], and thus the Pimfs1 gene was re-
placed by the hph resistance gene.
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