
RESEARCH ARTICLE Open Access

Biased visibility in Hi-C datasets marks
dynamically regulated condensed and
decondensed chromatin states genome-
wide
Keerthivasan Raanin Chandradoss1†, Prashanth Kumar Guthikonda2†, Srinivas Kethavath2, Monika Dass1,
Harpreet Singh1, Rakhee Nayak2, Sreenivasulu Kurukuti2* and Kuljeet Singh Sandhu1*

Abstract

Background: Proximity ligation based techniques, like Hi-C, involve restriction digestion followed by ligation of
formaldehyde cross-linked chromatin. Distinct chromatin states can impact the restriction digestion, and hence the
visibility in the contact maps, of engaged loci. Yet, the extent and the potential impact of digestion bias remain
obscure and under-appreciated in the literature.

Results: Through analysis of 45 Hi-C datasets, lamina-associated domains (LADs), inactive X-chromosome in
mammals, and polytene bands in fly, we first established that the DNA in condensed chromatin had lesser
accessibility to restriction endonucleases used in Hi-C as compared to that in decondensed chromatin. The
observed bias was independent of known systematic biases, was not appropriately corrected by existing
computational methods, and needed an additional optimization step. We then repurposed this bias to identify
novel condensed domains outside LADs, which were bordered by insulators and were dynamically associated with
the polycomb mediated epigenetic and transcriptional states during development.

Conclusions: Our observations suggest that the corrected one-dimensional read counts of existing Hi-C datasets
can be reliably repurposed to study the gene-regulatory dynamics associated with chromatin condensation and
decondensation, and that the existing Hi-C datasets should be interpreted with cautions.
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Background
The three-dimensional genome organization is tightly
linked with the regulation of essential genomic functions
like transcription, replication and genome integrity [1–5].
While the significance of genome organization has been
realized for decades, the comprehensive evidence emerged
somewhat recently through the advent of proximity
ligation based techniques like Chromosome Conformation

Capture (3C), Circular-3C (4C), 3C-Carbon-Copy (5C)
and High-throughput 3C (Hi-C) [6–10]. It is recognized
that the eukaryotic genome is hierarchically organized into
self-interacting topologically associated domains (TADs),
which can have distinct chromatin states that are insulated
from neighbourhood through boundaries marked with
CCCTC-binding factor (CTCF), Cohesins, ZNF143 and
TOP2b factors [11–14]. The TADs are ancient genomic
features and are depleted in evolutionary breakpoints in-
side [15, 16]. It is proposed that chromatin extrudes
through the ring formed by the Cohesins until the chro-
matin encounters the CTCF insulator, a model known as
‘loop extrusion’ model [17–20]. CTCF binding is transi-
ently lost during pro-metaphase, which coincides with the
loss of TAD structures during M-phase [21–23].
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Systematic depletion of CTCF and Cohesins also leads to
de-insulation and partial disruption of TADs [24, 25]. An
array of studies has shown that TADs function as basic
units of three-dimensional (3D) genome organization and
dynamically associate with the epigenetic states of genes,
including replication timing, during development and dif-
ferentiation [26–34]. How these dynamical epigenetic
states of TADs are regulated is not entirely clear. One of
the ways this can be achieved is through chromatin con-
densation and decondensation, implying inactive and ac-
tive states of TADs respectively [2, 35–38] (Benabdallah
et al. 2018, bioRxiv). While it is established that the gene-
poor and transcriptionally inactive domains locate towards
nuclear periphery and mostly remain stably condensed,
with exceptions of local gene-specific alterations during
differentiation [39, 40], the dynamics of chromatin con-
densation and decondensation in the other regions of the
genome largely remains under-explored. Condensation
and decondensation of chromatin is generally studied
through microscopic methods. In this study, we demon-
strate that the condensed and decondensed states of chro-
matin domains can be directly inferred from the one-
dimensional Hi-C read counts.
Yaffe and Tanay have shown that Hi-C datasets have

systematic bias due to differential ligation efficiencies of
restriction fragments of different lengths, differential am-
plifications of fragments of different GC contents, and dif-
ferential mappability of sequences [41]. Several methods
have since been developed to normalize the aforemen-
tioned systematic biases. These methods can be broadly
categorized into two classes, the ones that define the
aforementioned biases explicitly in the algorithm and the
ones that do not define the source of bias and instead
adopt an implicit approach based on fractal folding of the
chromatin and the equal visibility of all genomic loci [41–
45]. In this study, we show that the differential visibility of
genomic loci to the restriction endonucleases used in Hi-
C protocols induct potential bias in Hi-C data. Hi-C reads
are significantly depleted for the interactions impinging
from condensed heterochromatin domains, and this bias
is not appropriately corrected by existing computational
methods. By repurposing the observed bias, we first dem-
onstrate that the bias in one-dimensional read counts of
Hi-C datasets reliably marks the known condensed and
decondensed domains in the genome and then highlight
the developmentally regulated dynamics of condensed and
decondensed states of chromatin genome-wide.

Results
Biased visibility in Hi-C data marks condensed and
decondensed chromatin domains
Restriction endonucleases are the preferred choice of
chromatin digestion in Hi-C studies. We first tested if
the in-situ restriction digestion of chromatin is uniform

in the genome. This could be tested by comparing the
sequencing data of restriction endonuclease digested
chromatin and the naked DNA. Regional depletions in
read counts obtained from digested chromatin when
compared with the reads obtained from digested naked
DNA would mark the biased restriction digestion of
chromatin. Towards this, we obtained the ‘Restriction
Endonuclease Digestion coupled with sequencing’ (RED-
seq) data of in-situ restriction digested chromatin and
in-solution restriction digested naked DNA of mouse
embryonic stem cells (mESC) from Chen et al. [46]. We
calculated the read counts for 10 kb bins of the mouse
genome and normalized by the total reads. We further
corrected the read counts for restriction site density
(RE-density) and the GC content of the bins using loess
regressions, in that order (Methods, Fig. S1a-b). The
scatter-plot of restriction digested naked DNA and in-
situ digested chromatin showed skew towards naked
DNA axis marking the inefficient digestion of certain
genomic regions in chromatin but not in naked DNA
(Fig. 1a). This suggests that chromatin structure influ-
ences its own digestibility. The likely explanation is that
the decondensed chromatin is readily digested while het-
erochromatin domains have limited accessibility to re-
striction endonuclease due to compact packing.
To further assess the above hypothesis, we obtained

the Lamina Associated Domains (LADs), which are
known heterochromatin domains attached to the nuclear
periphery in condensed form [35, 47]. We calculated the
raw and corrected one-dimensional (1D) read counts in
the constitutive LADs (cLADs) and constitutive inter-
LADs (ciLADs) in mESC. As shown in the Fig. 1b-c,
cLADs exhibited significantly less raw read counts as
compared to ciLADs in in-situ digested chromatin as
well as in in-solution digested naked DNA, suggesting
that the reads from digested naked DNA had bias likely
due to varying densities of restriction sites and distinct
GC compositions of cLADs and ciLADs (Fig. 1b-c, p <
2.2e-16). The read counts corrected for RE-density and
GC content, however, exhibited bias only in the in-situ
digested chromatin and not in the naked DNA,
highlighting that the cLADs were relatively inaccessible
to restriction endonuclease likely due to condensed na-
ture of the chromatin (Fig. 1b-c, p < 2.2e-16). We further
identified the chromatin domains significantly enriched
(decondensed) or depleted (condensed) in corrected read
counts (Methods, Fig. S1). Overall, 77% of the length
covered by condensed domains were within cLADs and
23% mapped to ciLAD regions, marking the novel con-
densed domains other than nuclear lamina associated
domains (Fig. S1d).
These analyses suggest that the molecular techniques,

like Hi-C, involving restriction digestion as preferred
method of chromatin fragmentation might suffer from
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bias in final readouts. We, therefore, expanded our ana-
lyses to 45 Hi-C datasets (21 in-situ Hi-C, 11 in-solution
Hi-C and 8 single cell Hi-C, 2 Drosophila Hi-C, 2 DNase
Hi-C, 1 native Hi-C) and obtained the processed reads
(Fig. 1d-f, Fig. S2, Table S1, Methods). One-dimensional
read counts were corrected for the density of restriction
sites and GC content as earlier. Through analysis of
mESC data, we observed that the read counts from in-
situ Hi-C had a significant correlation with the read

counts obtained from in-situ digested chromatin, but ex-
hibited skewed scaling towards the read-counts of
digested naked DNA (Fig. 1d). This suggested that the
in-situ Hi-C reads exhibited bias similar to the one ob-
served in in-situ digested chromatin. As shown in the
Fig. 1e-f and Fig. S2, the corrected read counts exhibited
enrichment in ciLADs and depletion in cLADs (p < 2.2e-
16). Again, 70% of the total length covered by the con-
densed domains was within cLADs and 30% was within

Fig. 1 Biased visibility of chromatin domains in in-situ Hi-C datasets. a Scatter plots of raw and corrected read counts (per Mb) in in-situ digested
chromatin vs. in-solution digested naked DNA. b Distribution of raw and corrected read counts of in-situ digested chromatin and in-solution digested
naked DNA in cLADs and ciLADs. P-values were calculated using one-tailed Mann-Whitney U tests. c Illustrative example of raw and corrected read
counts of in-situ digested chromatin and in-solution digested naked DNA along chr4: 20-40Mb region. d Top: scatter plots of raw and corrected read
counts in in-situ Hi-C and in-situ digested chromatin. Bottom: scatter plots of raw and corrected read counts in in-situ Hi-C and in-solution digested
naked DNA. ‘ρ’ represents the Spearman’s correlation coefficient. e Distribution of raw and corrected read counts of in-situ Hi-C datasets in cLADs and
ciLADs. P-values were calculated using two-tailed Mann-Whitney U test. f Illustrative examples of corrected read counts of in-situ Hi-C datasets along
chr7: 100–120Mb. Regions (i) and (ii) mark constitutively condensed and decondensed regions respectively. Regions (iii)-(v) mark cell-type specific
condensed and decondensed states. (ii) (g-i) Same as d-f, but for in-solution Hi-C data obtained from Fraser et al.
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ciLAD regions, marking the condensed domains other
than LADs. (Fig. S1d). Our observations with cLADs
and ciLADs were consistent with different in-situ Hi-C
datasets, including single-cell Hi-C, generated using dis-
tinct restriction endonucleases (Fig. 1d-i and S2, p <
2.2e-16). We illustrated the examples of condensed do-
mains that mapped to cLADs, to ciLADs and the ones
that exhibited cell-type specificity in the Fig. 1f and S2.
We also showed that the observed differences for the

cLAD and ciLADs were not due to processing of Hi-C
sequencing data through Hi-C User Pipeline (HiCUP).
We observed the bias in reads simply processed through
bowtie too (Fig. S3a, p < 2.2e-16, Methods). Further, the
biased visibility was not the property of in-situ Hi-C
only, but was also observed in in-solution Hi-C (Fig. 1g-
i, S3b, p < 2.2e-16). As shown in the Fig. S3c, the cor-
rected reads from in-situ Hi-C exhibited good correl-
ation with those from in-solution Hi-C in the same cell-
type (mouse fetal liver) from the same study [48]. These
analyses suggest that the visibility bias is not affected by
the method of ligation and that the source of bias is
likely the difference in accessibility to the restriction en-
donucleases, and not the difference in ligation.
HiCNorm, an explicit method of Hi-C correction,

failed to remove the bias in the read counts, supporting
that the observed bias was independent of known sys-
tematic biases of Hi-C data (Fig. 2a & S4, p < 2.2e-16).
Iterative correction, an implicit method, normalized the
read counts attributing to its intrinsic nature of polishing
the Hi-C matrices for equal visibility of all loci without
defining the bias at first place (Fig. 2a & S4). Data ob-
tained from Genome Architecture Mapping (GAM) [49],
which directly obtains the co-localized DNA segments
through large number of thin nuclear sections and does
not involve any restriction digestion and ligation steps,
did not exhibit any bias in the read counts. By compar-
ing GAM and ICE-corrected Hi-C data, we further ob-
served that ICE merely lifted the background and the
obscure signals in the contact matrices. In the process of
lifting the obscure signals in the poorly digested con-
densed regions, ICE inadvertently lifted the long-range
background interactions among condensed domains as
shown in the Fig. 2b and S4. To address this, we pro-
posed that the ICE-corrected Hi-C datasets needed a
further distance dependent optimization of interaction
frequencies. We termed this additional step as Distance
Sorted Contact Optimization (DiSCO) and implemented
it on raw, HiCNorm-corrected and ICE-corrected Hi-C
matrices. As shown in in the Fig. 2b, the method cor-
rected the distance dependent bias in interaction fre-
quencies of condensed and decondensed domains.
Though DiSCO corrected only the distance dependent
bias when implemented on the raw data, it was able to
balance the contact matrices for most of the biases when

combined with the ICE. In particular, the long-range in-
teractions of condensed domains, which were inadvert-
ently lifted by ICE, were corrected by DiSCO, and the
short-range interactions remained largely unaltered (Fig.
2b-c & S4). Inclusion of DiSCO did not reintroduce the
coverage bias in the ICE-corrected 1D read counts, sug-
gesting the overall suitability of the approach (Fig. S4b).
The comparison with the GAM matrices also showed
sub-TAD structures and other types of interactions in
the condensed domains (Fig. 2c & S4c-e), which were
clearly not captured by raw or any of the corrected Hi-C
matrices, suggesting the inherent limitation of Hi-C in
resolving the organization of condensed chromatin.
To further scrutinize the differential digestion of con-

densed and decondensed domains, we obtained the Hi-C
data of Drosophila polytene chromosome, which is a
typical example of spatially condensed (polytene bands)
and decondensed (inter-bands) domains [50]. The Hi-C
reads were mapped and corrected as earlier. The analysis
suggested that the polytene bands had lesser enrichment
of corrected reads as compared to inter-band regions on
both the polytene chromosome and the normal diploid
chromosome (Fig. 3a, p < 2.2e-16). We illustrated our
observations through examples in the Fig. 3b. On similar
lines, we analysed the DNase Hi-C data for active and
inactive X-chromosomes in brain and patski cells [51].
As shown through the scatter plots in Fig. 3c and exam-
ples in Fig. 3d, the X-chromosome had regions that were
more visible in active X-chromosome and less visible in
inactive X-chromosome. This suggested that the bias
due to differential chromatin accessibility existed in both
restriction endonuclease digested and DNase digested
Hi-C datasets.
These observations highlight that: 1) the observed bias

in corrected 1D Hi-C read counts is independent of
known systematic biases of Hi-C; 2) the bias captures the
condensed and decondensed states of chromatin domains
reliably, and 3) the existing computational approaches of
Hi-C normalization need further optimization for the con-
densed and decondensed domains.

Dynamics of condensed and decondensed domains
To assess if the condensed and decondensed domains iden-
tified from restriction digestion bias in the ciLAD regions
had functional significance, we analysed their dynamics
during mouse embryonic stem cell (mESC) differentiation
to neuronal progenitor cells (NPC) to cortical neurons
(CN). As shown in the Fig. S5a, the differentiation from
mESC to NPC exhibited greater overall change in corrected
read counts as compared to NPC to CN differentiation.
We, therefore, focussed on mESC to NPC differentiation to
assess the developmental regulation of chromatin conden-
sation and decondensation. We first mapped the histone
modification and CTCF binding data around boundaries of
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domains by placing all decondensed domains upstream and
all condensed domains downstream to the domain bound-
aries (Fig. 4a & S5b). We observed enrichment of active
and inactive histone marks in decondensed and condensed

domains respectively with transitions around boundaries
that were marked with CTCF, RAD21, YY1, TOP2b, MIR
and simple repeat elements (Fig. 4a-b & S5c, p = 4.5e-05 to
2.2e-16). Total 27.7% of condensed ciLAD domains in

Fig. 2 Bias in explicitly and implicitly normalized Hi-C, and GAM datasets. a Distribution of 1D read-counts of decondensed and condensed
domains in raw, HiCNorm-corrected, ICE-corrected Hi-C and GAM datasets of mESCs. Values were scaled from 0 to 1. P-values were calculated
using two-tailed Mann-Whitney U tests. b Upper panel: ratio of interaction frequencies of decondensed-to-decondensed and condensed-to-
condensed interactions as a function of genomic distance in raw, HiCNorm-corrected, ICE-corrected and GAM datasets. Lower panel: plots after
DiSCO correction. c Illustrative examples of raw, HiCNorm-corrected, and ICE-corrected data before and after DiSCO correction. Ratio matrices in
the bottom panel show gain and loss of signals after DiSCO correction. GAM data is shown on extreme right for comparison. Additional
examples are given in the Fig. S4
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mESC were decondensed in NPC and 13.5% decondensed
domains in mESC were condensed in NPC, suggesting sig-
nificant cell-type specificity of domains identified through
biased visibility in Hi-C data (Fig. S5d). Genes exhibiting
condensation during differentiation switched to repressed
state and the ones showing decondensation switched to ac-
tive state (Fig. 4c, p = 6.6e-13 & 2.2e-16). Through scatter
plots of histone marks between mESC and NPC cells, we
observed that the condensation of open chromatin domains
during differentiation was associated with the coherent
change of active to inactive chromatin states (Fig. 4d). Simi-
larly, the domains that exhibited decondensation during dif-
ferentiation switched to active states from inactive
chromatin states (Fig. 4d). Enrichment of neuronal develop-
ment related terms among genes exhibiting decondensa-
tion, and the metabolism related terms among genes
exhibiting condensation during ESC-to-NPC differentiation

coherently supported the underlying functional significance
(Fig. S6a). We illustrated a few examples of constitutive and
cell-type specific chromatin domains in the Fig. 4e and S5e-
g. These observations not only highlight the developmental
regulation of chromatin domains identified in the study,
but also argue strongly against the dismissal of restriction
digestion bias merely as an artefact.
While the shift of active chromatin states towards the

axis that represented the decondensed state of the in-
volved domain in mESC or NPC was clear in Fig. 4d, the
repressive chromatin state (H3K9me3 mark) showed
relatively subtle shift only. This was coherent with the
earlier reports that suggested only subtle changes in
H3K9 tri-methylation profiles during mESC differenti-
ation [40, 52]. We instead observed that the enrich-
ment of polycomb associated marks and proteins
(H3K27me3, Suz12 and Ezh2) exhibited shift towards

Fig. 3 Low visibility of polytene bands and inactive X-chromosome. a Distribution of raw and corrected read counts in band and inter-band
regions of polytene chromosome and the corresponding regions in diploid chromosome. P-values were calculated using two-tailed Mann-
Whitney U tests. b Illustrative examples of read counts and contact maps in band and inter-band regions (chr2R: 17.5-18 Mb) of polytene and
diploid chromosome. Band regions are marked as horizontal line below the line plots. c Scatter plots of raw and corrected DNase-Hi-C read
counts of active vs. inactive x-chromosomes in Brain and Patski cells. d Illustrative examples of corrected read counts and contact maps of chrX:
36–44 Mb region in active and inactive X-chromosome
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the axis that represented condensed state of chroma-
tin domains (Fig. 5). Polycomb association was also
supported by the significant overlap of genes exhibit-
ing decondesation during ESC-to-NPC transition with
the Suz12 targets, Eed targets, PRC12 targets, and the
targets of bivalent histone modifications (Fig. S6b,
right panel). These results imply that the non-LAD
condensed domains uncovered in this study are likely
representative of polycomb-repressed chromatin.
Chromatin condensation and decondensation can be

induced by knocking out certain factors like Lamins.

We, therefore, tested if such experimentally induced
decondensation of LADs can be captured through ana-
lysis of 1D Hi-C reads of Lamin knock out (KO) cells.
We obtained the Hi-C data for wild-type (WT) and
Lamin (Lmb1, Lmb2, Lmna) KO mouse embryonic stem
cells from Zheng et al. [53]. As shown in the Fig. 6a,
cLADs exhibited significant increase in 1D read counts
in Lamin KO over WT when compared to rest of the
genome (p < 2.2e-16). We illustrated this observation
through examples in Fig. 6b-c. Our observations high-
light that the 1D Hi-C read-counts alone can capture

Fig. 4 Developmental dynamics of chromatin condensation and decondensation. a Aggregation plots of histone modifications +/− 1 Mb around
the boundary of decondensed and condensed domains in mESC and NPC. P-values were calculated using two-tailed Mann-Whitney U tests by
comparing mean enrichment values in the bins of condensed and decondensed domains. b Enrichment of CTCF, RAD21, YY1, TOP2b binding,
MIR and simple repeats +/− 1 Mb around domain boundaries (red) and around domain centres (grey). c Boxplots representing change in gene
expression in the chromatin domains that were constitutively present in mESC and NPC, the ones that switched to condensed state in NPC from
decondensed state in mESC and vice-versa. P-values were calculated using two-tailed Mann-Whitney U tests of RPKM values in mESC and NPC. d
Scatter plots of histone modifications in domains that remained unchanged in mESC and NPC, and the ones that switched from decondensed to
condensed or vice-versa in mESC and NPC. e Examples of decondensed and condensed domains that remained consistent in mESC and NPC
(left), and a decondensed region in mESC that switched to condensed state in NPC (right).
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the decondensation of LAD domains after lamin
deletion.

Discussion
To study the dynamics of gene regulatory activity in re-
sponse to environmental and developmental clues, map-
ping chromatin accessibility remained an important task
over decades. While DNase-I has been a preferred
choice to digest the open chromatin due to relatively
lesser sequence specificity of the enzyme, only few stud-
ies attempted restriction endonucleases to identify ac-
cessible regions in the chromatin [46, 54, 55]. On the
contrary, restriction endonucleases have been extensively
used to digest the chromatin, presumably in an unbiased
manner, in proximity ligation based techniques like 3C,
4C, 5C and Hi-C [6–9]. In techniques like 3C, which has
limited scope in terms of regions to be tested for spatial
interactions, the efficiency of restriction digestion of the
regions of interest can be tested and controlled [56]. For
high throughput assays like Hi-C, data on genome-wide
assessment of digestion efficiency is rarely seen in the re-
search articles and the associated supplementary mate-
rials. Prior to prolonged restriction digestion, in-situ Hi-
C involves treatment of nuclei with 0.1–0.5% sodium do-
decyl sulphate (SDS) at 62 °C for 5–10 min, followed by
quenching of SDS using 10% Triton X-100 at 37 °C for

15 min [8, 45, 57]. The heat and the detergent treat-
ments are expected to open the chromatin and ease the
accessibility of DNA to restriction endonuclease. We
have shown that despite these treatments, the visibility
of condensed chromatin to restriction endonucleases is
significantly limited. As a result, interactions within het-
erochromatin and the ones impinging onto heterochro-
matin are under-represented in the current Hi-C
datasets.
HiCNorm, which defines the potential sources of sys-

tematic bias in Hi-C data explicitly, could not correct
the biased visibility. Widely used iterative correction
method (ICE) scales the contact matrices for equal visi-
bility of each locus, without defining the source of bias
at first place [43]. ICE correction could balance the Hi-C
signals in condensed and decondensed regions of the
contact matrix locally, though at the cost of inadvertent
elevation of long-range signals impinging from the con-
densed chromatin domains. To mitigate this artefact, we
suggest a distance-dependent corrective step to be added
post ICE-correction. Further, ICE only elevates the ob-
scure signals in the Hi-C matrix uniformly and does not
resolve the structured sub-TAD pattern of the con-
densed domains as observed through GAM. This sug-
gests that computational methods have their own
limitations in resolving the obscure signals and Hi-C

Fig. 5 Polycomb association of non-LAD condensed domains identified through visibility bias. a Scatter plots of Suz12, Ezh2 and H3K27me3 in
domains that switched from decondensed to condensed or vice-versa in mESC and NPC. b-c Examples of decondensed and condensed domains
that switched their status in mESC and NPC
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might need appropriate experimental refinement to re-
solve the condensed chromatin domains at sub-TAD
levels.
Williamson et al. had earlier reported discrepancy be-

tween 5C/Hi-C and the DNA FISH results concerning the
condensation and decondensation of HoxD locus during
embryonic stem cell differentiation. While 5C/Hi-C
largely showed that the locus remained condensed, DNA
FISH clearly suggested that the locus decondensed upon
differentiation [37]. In contrast, Kundu et al. has recently
corroborated the 5C and DNA-FISH results on HoxA and
HoxD locus. We suggest that the biased efficiency of

restriction digestion of condensed and decondensed forms
of the locus might underlie these discrepancies. Indeed,
we were able to infer the condensed and decondensed
states of HoxA and HoxD loci in mESC and NPC respect-
ively from 1D read counts of Hi-C data [29] (Fig. S5h).
While we have shown that the biased visibility in Hi-C

datasets can be largely addressed using ICE with an add-
itional corrective step, the uncorrected bias itself is ad-
vantageous to explore another layer of chromatin
organization. Differential visibility of chromatin domains
helps inferring dynamics of condensed and decondensed
states of chromatin. Towards this, our analysis on devel-
opmental regulation of condensed and decondensed
chromatin domains serve as a proof of principle. Coordi-
nated changes in restriction enzyme accessibility and the
epigenetic states of the genes contend against the argu-
ments dismissing the observed bias merely a trivial one.
We also observed the dynamical changes in the restric-
tion enzyme accessibility during synthetic manipulation
of the genome organization. Lamin deletion in the gen-
ome is associated with decondensation of LADs [53].
We readily captured the decondensation of LADs in
Lamin knock out cells from the 1D Hi-C reads itself.
To identify the sequence features of domain boundar-

ies, we tested the enrichment of several different gen-
omic and epigenomic attributes (Fig. 4b, S5c). We
observed the enrichment of CTCF, RAD21, TOP2b, YY1
binding sites and repeat elements like MIR at boundar-
ies, which are well known boundary elements of chro-
matin domains [11, 14, 58, 59]. These observations
collectively reinforce our claim on biological authenticity
of condensed and decondensed domains identified out-
side the LAD regions.
Our proposal that the potential source of the biased visi-

bility is differential restriction digestion can be subjected to
criticisms. It can be argued that restriction digestion is gen-
erally uniform, but the differential ligation could cause the
biased visibility. We do not entirely rule out the possibility
that the restriction endonuclease effectively nicks the DNA
in condensed domains, but ligase fails to ligate the digested
DNA due to stiffness and steric hindrance caused by nucle-
osomes and heterochromatin proteins in the condensed do-
mains. However, this is not supported by some of our
analyses. When we plotted the Hi-C read counts against
those of restriction digested chromatin, we observed a lin-
ear scaling, while there should have been bias towards the
axis of restriction digested chromatin because of presumed
efficient digestion and poor ligation in Hi-C experiments.
We also propose that the inefficient ligation of digested
condensed chromatin could largely be a property of in-situ
Hi-C and not the in-solution Hi-C, which involves dilution
of digested chromatin and condensed chromatin is likely to
exhibit relatively loose conformation owing to the usage of
detergent and the heat during the dilution step. We,

Fig. 6 Capturing chromatin decondensation in Lamin KO cells. a
Boxplots representing change in Hi-C read counts in the LAD
domains after Lamin knock out in mESC cells. P-value was calculated
using two-tailed Mann-Whitney U test. b-c Examples representing
change in Hi-C read counts and contact matrices in WT and Lamin
KO cells. The bottom panel of matrices represent the Lamin KO to
WT fold-change in interaction frequencies
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therefore, compared the read counts of in-situ Hi-C and in-
solution Hi-C datasets obtained from the same study. As
shown in the Fig. S3c, we found good correlation between
the two, while bias should have been reflected towards the
axis representing reads from in-solution Hi-C assuming effi-
cient digestion but poor ligation in in-situ HiC. We thus
propose that the biased visibility in Hi-C datasets is caused
by biased restriction digestion, and not the ligation.
It can also be argued that the cross-linking of proteins

with DNA might mask the visibility of restriction sites.
To test this hypothesis, we analysed the native Hi-C (in-
situ Hi-C without cross-linking step) data from Rao
et al. [45]. We observed striking correlation between
corrected 1D read-counts of in-situ Hi-C and native Hi-
C (ρ = 0.94 and 0.83 for raw and corrected read counts
respectively, Fig. S7a). Accordingly, the distributions of
1D read counts for cLADs and ciLADs exhibited similar
patterns in native and in-situ Hi-C (Fig. S7b-c), implying
that majority of the observed bias was not merely the
consequence of masking of restriction sites by cross-
linking. This was further supported by the negative cor-
relation observed between corrected 1D Hi-C read
counts and the half-life (t1/2) of the chromatin confor-
mations calculated through restriction digestion of chro-
matin prior to Hi-C in a recently appeared liquid-
chromatin Hi-C study (Belaghzal et al 2019, bioRxiv) (Fig.
S7d). These observations were also consistent with our
observations through data not involving cross-linking
and ligation steps, namely RED-seq, which clearly sug-
gested differential digestion of condensed and decon-
densed domains. We also showed that the biased
digestion of the chromatin was not restricted to particu-
lar restriction endonuclease. Hi-C datasets generated
using 6-cutter (HindIII, NcoI and BglII) and 4-cutter
(DpnII and MboI) restriction endonucleases consistently
showed the biased visibility (Table S1). Recently Chereji
et al. [60] has also shown ~ 30% decrease in the fraction
of AluI-digested heterochromatin when compared to ac-
tive chromatin (fraction cut: 0.24 vs. 0.35 respectively).
These observations suggest that the visibility bias per-
vade to datasets generated through most, if not all, of
the widely used restriction endonucleases. Altogether,
our observations imply that the bias in 1D read-counts
of Hi-C experiments primarily associates with the differ-
ential restriction digestion, and not with the masking of
restriction sites through formaldehyde cross-linking, the
differential ligation efficiency, and the choice of restric-
tion endonuclease.
While the Hi-C data generated through DNase enzyme

also exhibit the bias, it is interesting to note that the di-
gestion through Micrococcal Nuclease (MNase) does
not exhibit significant bias [61–63] (Fig. S7e). Through
analysis of time-course MNase-seq data in drosophila
Kc167 cells, we observed significant difference in the

corrected read counts of polytene band and inter-band
regions during the initial time-points (upto 15min). This
difference diminished gradually and completely disap-
peared after 40 min of MNase digestion, highlighting
successive digestion of compact heterochromatin regions
by MNase. We suggest that the smaller size of MNase
enzyme (~16KDa as compared to ~30Kda HindIII and
DNase I) and its intrinsic specificity to linker region of
nucleosomal DNA might implicate in accessing and
digesting the heterochromatin in a progressive manner.

Conclusion
Taken together, the study highlights significant bias in
the visibility of condensed and decondensed chromatin
domains in Hi-C datasets attributing to non-uniform di-
gestion of chromatin through restriction endonuclease.
The existing computational methods fail to correct this
bias appropriately and need additional corrective mea-
sures. Finally, we show that the repurposing of digestion
bias is instrumental in deciphering another layer of
gene-regulation through the dynamics of chromatin con-
densation and decondensation.

Methods
We did not use any statistical method to predetermine
sample size. We did not randomize any experiment. We
were not blinded to allocations during experiments and
outcome assessment. We mentioned the sample sizes
and statistical tests wherever applicable. Source of each
dataset is listed in Table S1.

Processing of RED-seq data
Hi-C includes additional steps like cross-linking and
ligation besides restriction digestion. To delineate our
claims of biased restriction digestion, we used data gen-
erated through sequencing of in-situ restriction digested
chromatin and compared with that of in-solution restric-
tion digested naked DNA. We obtained the bedgraph
files (mm9) of mapped and processed reads of in-situ
digested chromatin and in-solution digested naked DNA
of mESC from GSE51821. The files were converted to
mm10 assembly using University of California Santa
Cruz (UCSC)‘s ‘liftover’ utility (http://genome.ucsc.edu/
cgi-bin/hgLiftOver). The reads were binned into 10 kb
bins, which were then corrected for the density of re-
striction sites and the GC content sequentially in that
order, as elaborated in the next section. We also mapped
the raw reads (sequence read archive or SRA files) dir-
ectly to mm10 genome assembly to test if our observa-
tions were not the artefacts of lifting over. ‘SRA’ files
were first converted to ‘fastq’ files using ‘fastq-dump’
function of ‘SRA toolkit’ (https://www.ncbi.nlm.nih.gov/
sra/docs/toolkitsoft/). Reads were mapped to indexed
mouse genome (mm10) using bowtie2 (http://bowtie-
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bio.sourceforge.net/bowtie2/index.shtml). Mapped reads
were sorted using ‘sort’ and PCR duplicates were re-
moved using ‘markdup’ functions of SAMtools (https://
github.com/samtools/samtools). Mapped reads with
quality less than 30 were discarded. The results from
bowtie2 mapping were consistent with the results ob-
tained through lifting over the mapped bedgraph data.
Since Chen et al. also used additional in-house programs
(some of which are now deprecated) to process the
RED-seq data, we decided to keep the analysis through
lifting over their mm9-mapped and processed data to
mm10 in the Fig. 1 in order to maintain the consistency
between Chen et al’s and our analyses of RED-seq data.
We kept the results of bowtie2-mapped RED-seq data in
the supplementary (Fig. S1d).

Processing of Hi-C datasets and correction of 1D read
counts
HiCUP processing of hi-C data
Wherever processed Hi-C data was not available, we ob-
tained the SRA files and converted to fastq files using
NCBI SRA toolkit. We implemented HiCUP package
(http://www.bioinformatics.babraham.ac.uk/projects/
hicup/) to process the Hi-C reads. The forward and re-
verse reads were mapped separately to the indexed refer-
ence genome. The data was further filtered for invalid
and duplicated read pairs.

In-house processing of Hi-C data
To verify if our observations were not specific to HiCUP
processing, we also used an in-house pipeline to process
the Hi-C reads through bowtie2 (http://bowtie-bio.sour-
ceforge.net/bowtie2/index.shtml). Hi-C paired-end reads
were mixed, aligned to the indexed reference genome as
single-end reads using bowtie2, and filtered for dupli-
cates using ‘markdup’ function of ‘SAMtools’. Reads with
quality score less than 30 were discarded.

Calculation and correction of 1D read counts
To calculate 1D read count, we mixed forward and reverse
reads and binned into 10 kb bins genome-wide. Since the
number of restriction sites (RE-density) in the bins might
influence the 1D read counts, we first removed the RE-
density associated bias from Hi-C read counts. We used
the residuals of read counts after loess regression against
RE density of genomic bins. The 1D read counts can also
be biased due to varying GC content of genomic bins
since GC-rich domains are readily captured in sequencing
reactions as compared to GC-poor regions. We removed
this bias by calculating residuals of RE-corrected read
counts through loess regression against GC content of
corresponding genomic bins. The final corrected read
count had no scaling against RE density and GC content
of the genomic bins as shown in the Fig. S1a-b. We

considered the genomic regions with high mappability
(≥0.8, 75% of whole genome) for our analysis. The mapp-
ability score above this cut-off did not exhibit significant
scaling with the corrected 1D read count (Fig. S1c). The
corrected read counts followed the Gaussian distribution
(Fig. S1e) and we further converted these values to Z-
score for plotting purpose.

Normalization of atypical systematic biases of Hi-C data
To normalize the known systematic biases in Hi-C contact
maps, we used HiCNorm (http://www.people.fas.harvard.
edu/~junliu/HiCNorm/) and ‘Iterative Correction and
Eigen vector decomposition’ (ICE) packages (https://
github.com/mirnylab). Table S1 marks the details of Hi-C
datasets and their processing details. To calculate the 1D
read count of normalized datasets, we summed the values
for each column in the normalized Hi-C contact matrices.

Analysis of GAM data
We downloaded the normalized contact matrices of 30 kb
resolution from GSE64881 and converted to 1D track by
summing up the columns of the matrix. We obtained the
condensed and decondensed domains inferred from the
1D read counts of mESC Hi-C data of Bonev et al. [33] to
make boxplots of contact strengths given by GAM.

Analysis of MNase-seq data
SRA files were downloaded from GSE128689. The SRA
files were converted to fastq files using ‘fastq-dump’ from
NCBI SRA toolkit and aligned on to indexed Drosophila
genome (dm6) using bowtie2 with ‘very-sensitive’ align-
ment. The output ‘sam’ files were converted into ‘bam’
files, the reads were sorted using ‘sort’ and duplicates were
removed using ‘markdup’ functions of ‘SAMtools’ pack-
age. Reads with mapping quality greater than 40 were
binned at 5 kb resolution and corrected for GC bias.

Domain calling
We identified the condensed and decondensed domains
using the strategy given by Guelen et al. [64]. In short,
read counts were first binarized as + 1 and − 1 depending
upon whether the values were positive or negative in the
Z-scores. The domain boundaries were identified by sub-
tracting the average of 20 windows on either side of uni-
formly distributed (per 10 kb) reference points. We
determined a cut-off on this value through randomization
of the read counts in the genome and keeping the false
discovery rate to < 5%. By calculating the relative propor-
tion of positive and negative values in each inter-boundary
region, we demarcated condensed and decondensed do-
mains. We set the minimal proportion of either positive
or negative values to 0.8 in order to classify the domains
as decondensed and condensed respectively.
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Analysis of constitutive LADs and constitutive inter-LADs
We downloaded constitutive LAD (cLAD, n = 3843) and
constitutive inter-LAD (ciLAD, n = 3452) regions of
mouse ES cells (mESC), neuronal progenitor cells (NPC)
and astrocytes from GSE17051. Similarly, 605 cLADs in
human were obtained by comparing LAD coordinates in
IMR90 and heterochromatin domain coordinates in
h1ESC and K562 cell-lines from ENCODE (https://www.
encodeproject.org/comparative/chromatin/). To analyse
the alteration in the conformation of cLAD domains, we
obtained the WT and the Lamin knockout Hi-C data of
mESCs, binned the reads into 10 kb bins and used log
ratio of Lamin KO to WT for our analyses.

Analysis of polytene and normal diploid hi-C data of
Drosophila
We downloaded Hi-C SRA files from GSE72510 (poly-
tene, dm6) and GSE63518 (normal diploid Kc167, dm6)
and processed using HiCUP pipeline. We binned the
reads at 5 kb resolution and corrected for RE-density
and GC content as before. We downloaded polytene
TADs from Eagen et al. (2015) [50] and lifted over the
coordinates to dm6 assembly. We mapped 5 kb bins to
polytene TADs and considered those inside TADs as
polytene band bins and rest as inter-band bins. We gen-
erated raw contact maps at a 5 kb resolution and nor-
malized using HiCNorm and ICE methods as earlier.

Allele-specific Hi-C analysis of mouse X-chromosome
We downloaded the allele-specific valid DNase Hi-C pairs
of brain and patski cells from GSE68992. We removed the
reads mapping to both the references and binned the
allele-specific reads at 20 kb resolution to obtain one-
dimensional read counts. We corrected the read counts
for GC content using loess regression as earlier. To
visualize the interactions, we generated raw and ICE cor-
rected contact maps at 100 kb. HiCNorm does not suit to
DNase-Hi-C data due to the usage of DNase instead of re-
striction endonuclease, and hence not used.

Analysis of histone modification and CTCF chromatin
immunoprecipitation (ChIP-seq) datasets
Source of ChIP-Seq datasets are given in Table S1. We
binned the reads at 10 kb resolution, collated into a table
and quantile normalized using normalize.quantiles func-
tion of preprocessCore R-package (https://github.com/
bmbolstad/preprocessCore). We generated mean enrich-
ment plots by aligning all boundaries that had at-least
200 kb of condensed/decondensed domain on either
side. We used R-package ggplot2 (https://ggplot2.tidy-
verse.org/) to scatterplot the data.

Analysis of repeat elements
Repeat elements were obtained from ‘RepeatMasker’
track of UCSC genome browser (https://genome.ucsc.
edu/). The mean enrichment, scaled between 0 to 1, of
each repeat element was plotted as a function of dis-
tance from the boundary of condensed and decondensed
domains, at 10kb resolution.

Distance sorted contact optimization (DiSCO)
We optimized the raw, HiCNorm-corrected and ICE-
corrected Hi-C data for the distance dependent bias in the
interaction frequencies of condensed and decondensed do-
mains. To balance the interaction frequencies in condensed
and decondensed domains, we performed the following
steps: i) We first prepared two separate lists of condensed-
to-condensed and decondensed-to-decondensed interac-
tions. ii) We prepared the bins of distance spans of the in-
teractions starting from 10 kb to 100Mb and measured the
mean values of pairwise interaction frequencies for each dis-
tance bin, individually for each list. iii) The curve of mean
interaction frequency as a function of genomic distance
served as regression line from which we calculated the re-
siduals for all the pairwise interactions in the two lists. This
was achieved by subtracting mean interaction frequency (μ)
from the individual interaction frequency (x) at different
distance ranges, separately for each list. iv) The mean values
for different genomic distances in the two lists were quantile
normalized using ‘normalize.quantiles’ function of ‘prepro-
cessCore’ R-package (https://github.com/bmbolstad/prepro-
cessCore). v) We finally added the residuals to quantile-
normalized mean values to recover the transformed data of
individual pairwise interactions in the two lists.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6580-6.

Additional file 1: Table S1. Details of the datasets used in the study.
The universal resource locations (URLs) of NCBI GEO, ENCODE, UCSC
genome browser and ArrayExpress are https://www.ncbi.nlm.nih.gov/
geo/, https://www.encodeproject.org/, https://genome.ucsc.edu/ and
https://www.ebi.ac.uk/arrayexpress/ respectively. Figure S1. Related to
Fig. 1. (a) Loess correction for the negative scaling of raw read counts
against the restriction site (RE) density in 10 Kb genomic bins. Left panel
represents data before loess correction and right panel after loess
correction of read counts against REdensity (b) Loess correction for the
positive scaling of RE-corrected read counts against the GC content of 10
Kb genomic bins. First panel shows scatter plot of GC content vs. REcor-
rected read counts. Second panel shows scatter plot of GC content vs.
GC- and REcorrected read counts. Third panel represents RE-density vs.
GC- and RE-corrected read counts. Fourth panel shows scaling of GC-
and RE-corrected read counts against the raw read counts. (c) Corrected
1D read count as a function of mappability score (≥0.8). The datasets
analysed are mentioned on top of each panel. (d) Analysis of RED-seq
data by directly mapping the reads to mm10 assembly of mouse gen-
ome. The scatter plot of naked DNA vs. in-situ chromatin re-captures the
pattern shown in Fig. 1a. The distributions of corrected read-counts of in-
situ digested chromatin and in-solution digested naked DNA for cLADs
and ciLAD regions echo our observations in Fig. 1b. (e) The distribution
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of corrected 1D Hi-C read counts in mESC. (f) Size distribution of domains
identified through analysis of corrected read counts. Plotted are the
mean values with the standard error bars (g) Genomic coverage of con-
densed domains within constitutive LAD and constitutive inter-LAD re-
gions. Shown are the pie charts of 10Kb bins mapping to cLAD and
ciLADs in different datasets. Figure S2. Related to Fig. 1. (a) Distributions
of raw and corrected read count in cLAD and ciLADs across different in-
situ Hi-C datasets in mouse. (b) Distributions of raw and corrected read
count in cLAD and ciLADs across different in-situ Hi-C datasets in human.
We calculated p-values using two-tailed Mann-Whitney U test. Figure
S3. Related to Fig. 1. (a) Distributions of bowtie-processed raw and cor-
rected read counts in cLAD and ciLADs across in-situ Hi-C datasets of
mESC, NPC and CN cells. We calculated p-values using two-tailed Mann-
Whitney U test. (b) Side-by-side comparison of raw and corrected read
counts mapping to cLAD and ciLADs in in-situ and in-solution (dilution)
Hi-C datasets obtained for the same cells (mouse fetal liver) from the
same study. (c) Scatter plot of corrected read counts obtained from in-
situ and in-solution Hi-C datasets. Figure S4. Related to Fig. 2. (a) Distri-
bution of interaction frequencies of decondensedto-decondensed and
condensed-to-condensed interactions as a function of genomic distance
in the raw, HiCNorm-corrected and ICE-corrected HiC, and GAM datasets.
Upper and lower panels show plots without and with DiSCO corrections
respectively. Both axes are log10 tranformed and y-axis was further scaled
from 0 to 1 for comparison across plots. (b) Distribution of ICE+DiSCO
corrected 1D read counts in the condensed and decondensed domains.
(c) Additional examples comparing the corrected 1D read counts and the
contact matrices of raw, HiCNorm-corrected, ICE-corrected HiC, and the
GAM datasets. (d-e) Additional examples comparing the contact matrices
of raw, HiCNorm-corrected, and ICEcorrected Hi-C datasets with and with-
out DiSCO correction. Figure S5. Related to Figure4. (a) Scatter plots of
corrected read counts in mESC vs. NPC and in NPC vs. CN. (b) Enrichment
of histone modifications around boundary between decondensed and
condensed domains in mouse cortical neurons (CN). (c) Enrichment of
various genomic attributes around domain boundaries and domain cen-
ters. (d) Distribution of condensed and decondensed states of chromatin
domains during mESC to NPC differentiation. (e-g) Examples of histone
modification profiles around ciLAD condensed and decondensed do-
mains in mESC and NPC. (h) Visibility bias at polycomb regulated HoxA
and HoxD loci. These loci are condensed in mESC through polycomb
proteins, but are decondensed in NPC. The corrected 1D read counts of
Hi-C (Fraser et al. 2016) corroborated this pattern. Figure S6. Related to
Fig. 4. (a) Enrichment of Gene Ontology Process terms among the genes
exhibiting condensation (left) and decondensation (right) during ESC-to-
NPC transition. Shown are the top 30 terms through ToppGene Suite.
Nervous system associated terms are highlighted in brown colour. (b) Sig-
nificance of overlap between MSigDB gene sets and the genes exhibiting
condensation (left) and decondensation (right) during ESC-to-NPC transi-
tion. Shown are the top-30 terms through Gene Set Enrichment Analysis
(GSEA). Polycomb associated terms are highlighted in brown colour. Verti-
cal dashed line in each plot marks FDR of 0.05. Figure S7. (a) Analysis of
Native Hi-C data. Scatter plots represents the correlation between 1D
reads of in-situ Hi-C and native Hi-C. (b) The boxplots represent the distri-
butions of raw and corrected 1D read counts of in-situ and native Hi-C
for the cLAD and ciLAD regions. (c) An example of chromosomal tracks
of raw and corrected read counts of in-situ and native Hi-C. (d) Chromo-
somal tracks of raw and corrected read counts for the region Chr2: 120–
240 mb in K562 cell-line. These tracks should be viewed in an approxi-
mate alignment to Fig. 4F of Belaghzai et al, bioRxiv 2019. (e) Distributions
of raw and corrected read counts of MNase digested chromatin for poly-
tene band and inter-band regions in drosophila Kc167 cell-line. From left
to right are the boxplots for different time points of MNase digestion. It is
apparent that after 40 min of MNase digestion, both the band and inter-
band regions exhibit similar levels of read counts, implying lack of bias.

Abbreviations
1D: One-dimensional; 3C: Chromosome Conformation Capture; 3D: Three-
dimensional; 4C: Circular Chromosome Conformation Capture;
5C: Chromosome Conformation Capture Carbon Copy; ChIP: Chromatin
Immuno Precipitation; ciLAD: constitutive inter Lamina Associated Domains;
cLAD: constitutive Lamina Associated Domains; CN: Cortical Neurons;

DiSCO: Distance Sorted Contact Optimization; GAM: Genome Architecture
Mapping; H3K27me3: Histone-3-lysine-27-tri-methylation; H3K9me3: Histone-
3-lysine-9-tri-methylation; Hi-C: High-throughput Chromosome Conformation
Capture; HiCUP: Hi-C User Pipeline; ICE: Iterative Correction and Eigen Vector
decomposition; KO: Knock Out; mESC: mouse Embryonic Stem Cell;
MIR: Mammalian-wide Interspersed repeats; NPC: Neuronal Progenitor Cell;
RE-density: Restriction Endonuclease site density; RED-seq: Restriction
Endonuclease Digestion coupled with sequencing; SRA: Sequence Read
Archive; TAD: Topologically Associated Domain; UCSC: University of California
Santa Cruz; WT: Wild-Type

Acknowledgements
We acknowledge the Computational facility at the CMSD-UoH and DST-FIST-
Level II-Phase I sponsored NGS facility at the Department of Animal Biology,
School of Life Sciences, University of Hyderabad for facilitating the data
analysis.

Authors’ contributions
KRC wrote the codes, performed most of the analyses, and prepared the
figures. PKG and SK2 conceptualized the project and PKG contributed
significantly in data analyses, and related discussions. SK1, MD, HS and RN
helped in data analysis, interpretation and improvisation. SK2 and KSS
improvised and supervised the whole project. KSS wrote the manuscript. The
authors read and approved the final manuscript.

Funding
SK2 lab is supported by the funds from the Department of Biotechnology
(DBT-India), (BT/PR13596/GET/119/31/2015; BT/PR8688/AGR/36/755/2013) and
Indian Council of Medical Research (F.No.90/09/2012/SCRT (TF)/BMS). KSS
acknowledges financial support from SERB (EMR/2015/001681) and DBT (BT/
PR16366/BID/7/598/2016).

Availability of data and materials
The accession IDs of all the datasets analysed in this study are available in
Table S1. The bedgraph files for the corrected read counts of all the Hi-C
datasets are available at following link: https://bitbucket.org/ken_at_keerthi-
vasan/compaction_from_hic/downloads/
The computer programs used in the analysis are available at: https://github.
com/rckeerthivasan/compaction

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 10 September 2019 Accepted: 13 February 2020

References
1. Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev

Genet. 2016;17:772.
2. Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA.

Chromatin decondensation is sufficient to alter nuclear organization in
embryonic stem cells. Science. 2014;346:1238–42.

3. Dekker J, Mirny L. The 3D genome as moderator of chromosomal
communication. Cell. 2016;164:1110–21.

4. Gonzalez-Sandoval A, Towbin BD, Kalck V, Cabianca DS, Gaidatzis D, Hauer
MH, Geng L, Wang L, Yang T, Wang X, et al. Perinuclear Anchoring of H3K9-
Methylated Chromatin Stabilizes Induced Cell Fate in C. elegans Embryos.
Cell. 2015;163:1333–47.

5. Garcia-Nieto PE, Schwartz EK, King DA, Paulsen J, Collas P, Herrera RE,
Morrison AJ. Carcinogen susceptibility is regulated by genome architecture
and predicts cancer mutagenesis. EMBO J. 2017;36:2829–43.

6. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED,
Krumm A, Lamb J, Nusbaum C, et al. Chromosome conformation capture
carbon copy (5C): a massively parallel solution for mapping interactions
between genomic elements. Genome Res. 2006;16:1299–309.

Chandradoss et al. BMC Genomics          (2020) 21:175 Page 13 of 15

https://bitbucket.org/ken_at_keerthivasan/compaction_from_hic/downloads/
https://bitbucket.org/ken_at_keerthivasan/compaction_from_hic/downloads/
https://github.com/rckeerthivasan/compaction
https://github.com/rckeerthivasan/compaction


7. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome
conformation. Science. 2002;295:1306–11.

8. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive
mapping of long-range interactions reveals folding principles of the human
genome. Science. 2009;326:289–93.

9. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C,
Lezcano M, Sandhu KS, Singh U, et al. Circular chromosome conformation
capture (4C) uncovers extensive networks of epigenetically regulated intra-
and interchromosomal interactions. Nat Genet. 2006;38:1341–7.

10. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van
Steensel B, de Laat W. Nuclear organization of active and inactive chromatin
domains uncovered by chromosome conformation capture-on-chip (4C).
Nat Genet. 2006;38:1348–54.

11. Uuskula-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M,
Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, et al.
Topoisomerase II beta interacts with cohesin and CTCF at topological
domain borders. Genome Biol. 2016;17:182.

12. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B.
Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature. 2012;485:376–80.

13. Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome
organization. Mol Cell. 2016;62:668–80.

14. Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang
MQ, Snyder MP. Genome-wide map of regulatory interactions in the human
genome. Genome Res. 2014;24:1905–17.

15. Harmston N, Ing-Simmons E, Tan G, Perry M, Merkenschlager M, Lenhard B.
Topologically associating domains are ancient features that coincide with
metazoan clusters of extreme noncoding conservation. Nat Commun. 2017;8:441.

16. Krefting J, Andrade-Navarro MA, Ibn-Salem J. Evolutionary stability of
topologically associating domains is associated with conserved gene
regulation. BMC Biol. 2018;16:87.

17. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA.
Formation of chromosomal domains by loop extrusion. Cell Rep. 2016;15:
2038–49.

18. Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. DNA loop
extrusion by human cohesin. Science. 2019;366:1338–45.

19. Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, Dekker C. Real-
time imaging of DNA loop extrusion by condensin. Science. 2018;360:102–5.

20. Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. Human cohesin compacts DNA
by loop extrusion. Science. 2019;366:1345–9.

21. Agarwal H, Reisser M, Wortmann C, Gebhardt JCM. Direct observation of
cell-cycle-dependent interactions between CTCF and chromatin. Biophys J.
2017;112:2051–5.

22. Nagano T, Lubling Y, Varnai C, Dudley C, Leung W, Baran Y, Mendelson
Cohen N, Wingett S, Fraser P, Tanay A. Cell-cycle dynamics of chromosomal
organization at single-cell resolution. Nature. 2017;547:61–7.

23. Oomen ME, Hansen AS, Liu Y, Darzacq X, Dekker J. CTCF sites display cell
cycle-dependent dynamics in factor binding and nucleosome positioning.
Genome Res. 2019;29:236–49.

24. Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N,
Dekker J, Mirny LA, Bruneau BG. Targeted degradation of CTCF decouples
local insulation of chromosome domains from genomic
compartmentalization. Cell. 2017;169:930–44 e922.

25. Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-
Mie Y, Fonseca NA, Huber W, HH C, Mirny L, Spitz F. Two independent
modes of chromatin organization revealed by cohesin removal. Nature.
2017;551:51–6.

26. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen
RS, Canfield TK, et al. Topologically associating domains are stable units of
replication-timing regulation. Nature. 2014;515:402–5.

27. Neems DS, Garza-Gongora AG, Smith ED, Kosak ST. Topologically associated
domains enriched for lineage-specific genes reveal expression-dependent
nuclear topologies during myogenesis. Proc Natl Acad Sci U S A. 2016;113:
E1691–700.

28. Le Dily F, Bau D, Pohl A, Vicent GP, Serra F, Soronellas D, Castellano G,
Wright RH, Ballare C, Filion G, et al. Distinct structural transitions of
chromatin topological domains correlate with coordinated hormone-
induced gene regulation. Genes Dev. 2014;28:2151–62.

29. Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, Barbieri M,
Moore BL, Kraemer DC, Aitken S, et al. Hierarchical folding and

reorganization of chromosomes are linked to transcriptional changes in
cellular differentiation. Mol Syst Biol. 2015;11:852.

30. Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, et al. 3D
chromatin structures of mature gametes and structural reprogramming
during mammalian embryogenesis. Cell. 2017;170:367–81 e320.

31. Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV, Abdennur N,
Razin SV, Mirny LA, Tachibana-Konwalski K. Single-nucleus hi-C reveals
unique chromatin reorganization at oocyte-to-zygote transition. Nature.
2017;544:110–4.

32. Kaaij LJT, van der Weide RH, Ketting RF, de Wit E. Systemic loss and gain of
chromatin architecture throughout Zebrafish development. Cell Rep. 2018;
24:1–10 e14.

33. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL,
Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G. Multiscale 3D
genome rewiring during mouse neural development. Cell. 2017;171:
557–72 e524.

34. Boya R, Yadavalli AD, Nikhat S, Kurukuti S, Palakodeti D, Pongubala JMR.
Developmentally regulated higher-order chromatin interactions orchestrate
B cell fate commitment. Nucleic Acids Res. 2017;45:11070–87.

35. Ciabrelli F, Cavalli G. Chromatin-driven behavior of topologically associating
domains. J Mol Biol. 2015;427:608–25.

36. Rafique S, Thomas JS, Sproul D, Bickmore WA. Estrogen-induced chromatin
decondensation and nuclear re-organization linked to regional epigenetic
regulation in breast cancer. Genome Biol. 2015;16:145.

37. Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D,
Dostie J, Bickmore WA. Spatial genome organization: contrasting views from
chromosome conformation capture and fluorescence in situ hybridization.
Genes Dev. 2014;28:2778–91.

38. Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear
reorganization of the HoxB locus upon induction of transcription. Genes
Dev. 2004;18:1119–30.

39. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman
W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, et al. Molecular maps of
the reorganization of genome-nuclear lamina interactions during
differentiation. Mol Cell. 2010;38:603–13.

40. Lienert F, Mohn F, Tiwari VK, Baubec T, Roloff TC, Gaidatzis D, Stadler MB,
Schubeler D. Genomic prevalence of heterochromatic H3K9me2 and
transcription do not discriminate pluripotent from terminally differentiated
cells. PLoS Genet. 2011;7:e1002090.

41. Yaffe E, Tanay A. Probabilistic modeling of hi-C contact maps eliminates
systematic biases to characterize global chromosomal architecture. Nat
Genet. 2011;43:1059–65.

42. Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm: removing biases in
hi-C data via Poisson regression. Bioinformatics. 2012;28:3131–3.

43. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie
BR, Dekker J, Mirny LA. Iterative correction of hi-C data reveals hallmarks of
chromosome organization. Nat Methods. 2012;9:999–1003.

44. Cournac A, Marie-Nelly H, Marbouty M, Koszul R, Mozziconacci J.
Normalization of a chromosomal contact map. BMC Genomics. 2012;13:436.

45. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,
Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the
human genome at kilobase resolution reveals principles of chromatin
looping. Cell. 2014;159:1665–80.

46. Chen PB, Zhu LJ, Hainer SJ, McCannell KN, Fazzio TG. Unbiased chromatin
accessibility profiling by RED-seq uncovers unique features of nucleosome
variants in vivo. BMC Genomics. 2014;15:1104.

47. van Steensel B, Belmont AS. Lamina-associated domains: links with
chromosome architecture, heterochromatin, and gene repression. Cell. 2017;
169:780–91.

48. Nagano T, Varnai C, Schoenfelder S, Javierre BM, Wingett SW, Fraser P.
Comparison of hi-C results using in-solution versus in-nucleus ligation.
Genome Biol. 2015;16:175.

49. Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ,
Barbieri M, de Santiago I, Lavitas LM, Branco MR, et al. Complex multi-
enhancer contacts captured by genome architecture mapping. Nature.
2017;543:519–24.

50. Eagen KP, Hartl TA, Kornberg RD. Stable chromosome condensation
revealed by chromosome conformation capture. Cell. 2015;163:934–46.

51. Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, Berletch JB, Blau CA,
Shendure J, Duan Z, et al. Bipartite structure of the inactive mouse X
chromosome. Genome Biol. 2015;16:152.

Chandradoss et al. BMC Genomics          (2020) 21:175 Page 14 of 15



52. Filion GJ, van Steensel B. Reassessing the abundance of H3K9me2
chromatin domains in embryonic stem cells. Nat Genet. 2010;42:4 author
reply 5-6.

53. Zheng X, Hu J, Yue S, Kristiani L, Kim M, Sauria M, Taylor J, Kim Y, Zheng Y.
Lamins organize the global three-dimensional genome from the nuclear
periphery. Mol Cell. 2018;71:802–15 e807.

54. Ohkawa Y, Mallappa C, Vallaster CS, Imbalzano AN. An improved restriction
enzyme accessibility assay for analyzing changes in chromatin structure in
samples of limited cell number. Methods Mol Biol. 2012;798:531–42.

55. Gargiulo G, Levy S, Bucci G, Romanenghi M, Fornasari L, Beeson KY,
Goldberg SM, Cesaroni M, Ballarini M, Santoro F, et al. NA-Seq: a discovery
tool for the analysis of chromatin structure and dynamics during
differentiation. Dev Cell. 2009;16:466–81.

56. Naumova N, Smith EM, Zhan Y, Dekker J. Analysis of long-range chromatin
interactions using chromosome conformation capture. Methods. 2012;58:
192–203.

57. Belaghzal H, Dekker J, Gibcus JH. Hi-C 2.0: An optimized Hi-C procedure for
high-resolution genome-wide mapping of chromosome conformation.
Methods. 2017;123:56–65.

58. Wang J, Vicente-Garcia C, Seruggia D, Molto E, Fernandez-Minan A, Neto A,
Lee E, Gomez-Skarmeta JL, Montoliu L, Lunyak VV, Jordan IK. MIR
retrotransposon sequences provide insulators to the human genome. Proc
Natl Acad Sci U S A. 2015;112:E4428–37.

59. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K. Global analysis of
the insulator binding protein CTCF in chromatin barrier regions reveals
demarcation of active and repressive domains. Genome Res. 2009;19:24–32.

60. Chereji RV, Eriksson PR, Ocampo J, Prajapati HK, Clark DJ. Accessibility of
promoter DNA is not the primary determinant of chromatin-mediated gene
regulation. Genome Res. 2019;29:1985–95.

61. Allan J, Fraser RM, Owen-Hughes T, Keszenman-Pereyra D. Micrococcal
nuclease does not substantially bias nucleosome mapping. J Mol Biol. 2012;
417:152–64.

62. Chereji RV, Bryson TD, Henikoff S. Quantitative MNase-seq accurately maps
nucleosome occupancy levels. Genome Biol. 2019;20:198.

63. Schwartz U, Nemeth A, Diermeier S, Exler JH, Hansch S, Maldonado R,
Heizinger L, Merkl R, Langst G. Characterizing the nuclease accessibility of
DNA in human cells to map higher order structures of chromatin. Nucleic
Acids Res. 2019;47:1239–54.

64. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH,
de Klein A, Wessels L, de Laat W, van Steensel B. Domain organization of
human chromosomes revealed by mapping of nuclear lamina interactions.
Nature. 2008;453:948–51.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chandradoss et al. BMC Genomics          (2020) 21:175 Page 15 of 15


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Biased visibility in Hi-C data marks condensed and decondensed chromatin domains
	Dynamics of condensed and decondensed domains

	Discussion
	Conclusion
	Methods
	Processing of RED-seq data
	Processing of Hi-C datasets and correction of 1D read counts
	HiCUP processing of hi-C data
	In-house processing of Hi-C data
	Calculation and correction of 1D read counts
	Normalization of atypical systematic biases of Hi-C data

	Analysis of GAM data
	Analysis of MNase-seq data
	Domain calling
	Analysis of constitutive LADs and constitutive inter-LADs
	Analysis of polytene and normal diploid hi-C data of Drosophila
	Allele-specific Hi-C analysis of mouse X-chromosome
	Analysis of histone modification and CTCF chromatin immunoprecipitation (ChIP-seq) datasets
	Analysis of repeat elements
	Distance sorted contact optimization (DiSCO)

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

