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Abstract

fungal speciation.

improved disease control strategies.

Background: The filamentous fungus Fusarium graminearum causes devastating crop diseases and produces
harmful mycotoxins worldwide. Understanding the complex F. graminearum transcriptional regulatory networks
(TRNs) is vital for effective disease management. Reconstructing F. graminearum dynamic TRNs, an NP (non-
deterministic polynomial) -hard problem, remains unsolved using commonly adopted reductionist or co-expression
based approaches. Multi-omic data such as fungal genomic, transcriptomic data and phenomic data are vital to but
so far have been largely isolated and untapped for unraveling phenotype-specific TRNs.

Results: Here for the first time, we harmnessed these resources to infer global TRNs for F. graminearum using a Bayesian
network based algorithm called “Module Networks”. The inferred TRNs contain 49 regulatory modules that show condition-
specific gene regulation. Through a thorough validation based on prior biological knowledge including functional
annotations and TF binding site enrichment, our network prediction displayed high accuracy and concordance with existing
knowledge. One regulatory module was partially validated using network perturbations caused by Tri6 and Tri10 gene
disruptions, as well as using Tri6 Chip-seq data. We then developed a novel computational method to calculate the
associations between modules and phenotypes, and identified major module groups regulating different phenotypes. As a
result, we identified TRN subnetworks responsible for f. graminearum virulence, sexual reproduction and mycotoxin
production, pinpointing phenotype-associated modules and key regulators. Finally, we found a clear compartmentalization
of TRN modules in core and lineage-specific genomic regions in F. graminearum, reflecting the evolution of the TRNs in

Conclusions: This system-level reconstruction of filamentous fungal TRNs provides novel insights into the intricate networks
of gene regulation that underlie key processes in F. graminearum pathobiology and offers promise for the development of
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Background

Agricultural plants worldwide commonly suffer from devas-
tating diseases caused by pathogenic fungi [1], threatening
food safety and human survival amid increasing global cli-
mate change. Fusarium head blight (FHB) caused by
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Fusarium graminearum (Fg) is a serious disease of cereal
crops, reducing yield and polluting the grains with myco-
toxins such as deoxynivalenol (DON) and zearalenone (ZEA)
[2]. FHB pathogenesis is tightly controlled by host and patho-
gen gene regulatory networks (GRNs). For example, genes
involved in Fg growth, infection and secondary metabolism
are subject to fine regulation [3]. Numerous studies have
demonstrated that the expression of Fg genes related to
pathogenesis, such as those encoding effectors [4] and cell
wall-degrading enzymes [5], is induced in planta but
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suppressed in vitro. Similarly, host genes involved in defense
and immune response are induced during pathogen invasion
[6]. Understanding GRNs is fundamental in solving medical
and agricultural problems [7] caused by microbial infections.
GRNs can inform disease control approaches by permitting
the specific targeting of key pathogen regulators, as reported
in recent studies [8]. However, GRNs involved in FHB and
mycotoxin production remain poorly understood.

Genes and gene regulators such as signaling proteins
and transcription factors (TFs) are interconnected in
GRNs. Many studies have attempted to dissect GRNs
using a reductionist approach by analyzing the gene ex-
pression profiles of Fg mutants [9-11]. Though concep-
tually valid, this approach is time-consuming and
unrealistic as a method of decoding the highly complex
GRNs of eukaryotic cells. Alternatively, protein inter-
action networks have been inferred using protein do-
main homology. For instance, Zhao et al. constructed Fg
protein-protein interaction (FPPI) networks using pro-
tein domains that are conserved in Fg and Saccharomy-
ces cerevisiae (Sc) [12]. Despite its usefulness in finding
potentially interacting proteins, this approach infers a
network based solely on protein sequence features and
therefore lacks functional support. A more feasible ap-
proach is to use genome-wide expression data to deduce
regulatory networks. For example, Kim et al. predicted
gene co-expression networks involved in virulence of F.
verticillioides using RNA-Seq data from the FSRI mutant
[13]. In addition, Liu et al. constructed a co-expression
network based on gene expression data and the FPPI data-
base, identifying several hub pathogenicity genes and sub-
networks [14]. These approaches have indeed produced
valuable insights into Fg co-expression gene modules.
However, co-expression does not necessarily indicate a
true regulatory relationship. Recently, Lysenko et al. used
gene expression data combined with data on protein inter-
actions and sequence similarity to study the networks im-
portant for virulence [15]. While integrating multiple
sources of evidence is an improvement, it still relies on
co-expression evidence and does not prove actual regula-
tory relationships. Furthermore, because the study focused
on small gene sets that have an impact on virulence, a sys-
temic view of regulatory networks is lacking.

Regulatory relationships are typically inferred from
large genome datasets using computational methods
built on mathematical models [16]. Boolean networks,
Bayesian networks, and Mutual Information have already
proven to be powerful models for inferring regulatory
networks [17-19]. Bayesian networks are probabilistic
models that are ideal for studying regulatory relationships
using noisy data such as gene expression profiles [17].
Therefore, these models have been frequently adopted in
various GRN-inference algorithms. Previously, from a large
collection of transcriptomic data, we reconstructed a global

Page 2 of 14

GRN for Fg using the machine-learning method MinReg
[20] based on a Bayesian network model, successfully pre-
dicting 120 top regulators for 13,300 Fg genes [21]. Despite
the progress it represents, this first Fg GRN has obvious
limitations. First, it mainly focuses on master regulators
that control general rather than fungal-specific biological
processes. Second, it is essentially static and offers little
insight into how the networks adapt to various changes in
endogenous and environmental stimuli. Without such
knowledge, it is difficult to predict how gene regulation of
diverse and specific biological processes operates and to
find the bona fide regulators in the system.

TFs regulate gene transcription via binding to the pro-
moter regions of target genes. Transcriptional regulatory
networks (TRNs) are GRNs in which regulators are TFs.
Elucidation of TRNs is a vital step in mapping global
GRNs. Here, for the first time, we reconstructed global
TRNs for Fg by applying a module network learning al-
gorithm [22] to a large collection of transcriptomic data
and integrating a phenomic database of Fg TFs that were
reported previously [23]. The integration of phenomics
and transcriptomics data in this study allows us to iden-
tify 49 module networks that are directly involved in the
cellular processes that underlie key phenotypes in Fg,
yielding the novel and crucial knowledge that “regulator
X regulates target genes Y under condition Z”. Valid-
ation of the networks demonstrates the high accuracy of
the inference. Association mining of the predicted mod-
ule networks reveals links between gene modules and
fungal phenotypes. The condition-specific TRNs signifi-
cantly improve the resolution of the Fg transcriptional
circuits controlling virulence, sexual reproduction and
mycotoxin production, laying a vital foundation for the de-
velopment of novel regimes to minimize FHB occurrence
and mycotoxin contamination. The Fg module network
(FuNet) is available for public query and downloading
(https://xjtu-funet-source.github.io/FuNet/FuNet.html).

Methods

Fungal transcriptomic and TF phenomic data

The Fg transcriptome data were downloaded from
PLEXdb (www.plexdb.org) and from the Filamentous
Fungal Gene Expression database (http://bioinfo.town-
send.yale.edu/) (Additional file 1). The data and the
normalization procedure have been described previously
[21]. The phenome data for Fg TFs were obtained from
literature [23] (Additional file 2). The expression data
and a candidate regulator list of 170 TFs showing
phenotypic changes in disruption mutants were used as
the input data for module network inference.

Module Networks algorithm implementation
Modularized TRNs were inferred using a Bayesian net-
work model based probabilistic method called “Module
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Networks” [22] implemented in a GUI (graphic user
interface) software Genomica (https://genomica.weiz-
mann.ac.il/). The input data of Module Networks in-
clude a pre-defined list of candidate regulator gene IDs
and an array of expression data containing the fold
change values of genes (rows) under specific experimen-
tal conditions (columns). From the input data, Module
Networks determined both the partitioning of genes to
modules and the regulation program for each module in
an iterative manner, under the assumption that expres-
sion levels of regulators are proxies of their activities, i.e.
activating or suppressing target gene expression. For
each iteration, the procedure searched for a regulation
program for each module and then reassigned each gene
to the module whose program best predicted its behav-
ior. These two steps were iterated until convergence was
reached using the expectation maximization (EM) algo-
rithm, thereby returning the predicted regulatory mod-
ules containing a set of regulators and target genes. Each
module was represented as a decision tree that specified
the conditions under which target genes were regulated
by a particular regulator and whether the regulation was
positive or negative [22]. Basically, for each module a de-
cision tree consists two basic building blocks: decision
nodes and leaf nodes. Each decision node corresponds
to one of the regulatory inputs and a query on its value.
Each decision node has two sub nodes: the right node is
chosen when the answer to the query is true; the left
node is chosen when it is false. For a given array, one be-
gins at the root node and continues down the tree in a
path according to the answers to the queries in that
array. The search was repeated three times, and the
same modules and regulation programs were returned.

Validation of Fg module networks

The predicted modules were first validated based on the
consistency between regulator phenotypes and target
gene expression. Based on three major phenotypes of Fg,
each module was evaluated for consistency between the
regulator phenotype and the experimental conditions
using the following three validation points: 1) sexual
reproduction; 2) virulence; and 3) mycotoxin production.
To quantify the consistency of the evaluation, we devel-
oped a scoring function (named Score,,) for each valid-
ation point; this function was defined as

Score,, = M./N.

N, represents the total number of conditions included
in this study, and Mc represents the number of condi-
tions under which the regulator phenotype was matched
with a corresponding condition directly related to the

phenotype.
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The regulatory modules were also validated based on
conservation of Fg and S. cerevisiae TF binding site
(TEBS). First, the 500-bp sequence upstream of tran-
scription initiation of the Fg genes of each module was
extracted, and the MEME algorithm [24] was used to
search for conserved sequence motifs. The top five
enriched motifs (ranked by E-value) were considered the
candidate TFBS of each regulatory module. Each
enriched TFBS was then compared to the YEASTRACT
database of S. cerevisiae using Tomtom [24] to find the
conserved TFBS in budding yeast. The top conserved
yeast motif for each Fg TFEBS was then selected. With
the existing knowledge of yeast TF-TFBS associations,
the conserved yeast motifs identified through Tomtom
identified corresponding TFs, which were denoted as
“motif-deduced TFs” (MTFs). Second, to examine how
many of these TFBS are potentially recognized by con-
served TFs in Fg and S. cerevisiae, a BLASTp search was
conducted in which the Fg regulators in each module
were searched against the S. cerevisiaze genome to find
regulator orthologs (E-value <le-5); these were defined
as “orthologous TFs” (OTFs). The OTFs were over-
lapped with MTFs to find conserved TFs that also po-
tentially bind to conserved TEBS enriched in Fg
regulatory modules. Based on the two separate analyses,
a score was assigned to quantify the motif validation per-
formance of each module:

Scoremonr = Mo/N.

M, represents the number of motifs that showed con-
servation based on the above analysis, and N, represents
the total number of enriched motifs per module.

Lastly, we validated each module by finding
consistency between the functional annotations enriched
in the module genes and the annotations associated with
the enriched TFBS (deduced from YEASTRACT). First,
GO enrichment was performed on the target genes from
each module using MIPS Funcat [25] with the Fg gen-
ome as a reference. We then assigned functional annota-
tions to each module by selecting the most highly
enriched GO terms for each module. The annotations of
the conserved enriched TFBS from each module were
retrieved from YEASTRACT and compared to the GO
terms enriched in the module genes. Following this ana-
lysis, we scored the module annotations matched with
motif annotations as either 0 (no match) or 1 (match).
We combined the scores from the above five validation
points to obtain a total score; based on this score, the
module was categorized as a high-confidence (>0.6),
moderate-confidence (0.4~0.6) or low-confidence mod-
ule (<0.4). Modules with fewer than two validation
points were not validated.
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Calculation of the module-phenotype association index
We developed an in-house computational method to ac-
curately quantify the association between modules and
phenotypes. We calculated a score called the association
index (AI) for each module-phenotype association using
multiple variables. The first variable (W;) was the
weight of the regulators derived from the number of
conditions affected by the regulators specified by the
regulation tree (Additional file 3). The number of experi-
ments affected by each regulator in each module was
used to obtain W, (the weight of each regulator in each
module; i =2, 3, 4..49 for modules M02, M03, M04...
M49 and r=1, 2, 3..R for regulator 1, regulator 2, regu-
lator 3...regulator R) according to the ratio of the num-
ber of experiments affected by the regulator. N,
indicates the number of conditions affected by the r-th
regulator in the i-¢4 module. W;, (0~1) was calculated as
follows:

r=R
Wi =Niy/> Ni (1)
r=1

We then computed AI for each module-phenotype
combination. Using the variable X;,, which could take a
value of 0, 1 or — 1, we could represent the influence of
any regulator on a specific phenotype; the values 0, 1
and - 1 indicated that the corresponding r-th regulator
in the i-th module has no effect on, enhances or reduces,
respectively, the j-th phenotype (Additional file 4). We
calculated the AI (P;) by multiplying the influence of
regulator r on a phenotype j, denoted as X,; by the
weight of the corresponding regulator W, and finally
summing the product of all the regulators (R) in the
module.

r=R
Py = Z | Xirj | « Wi, (2)

r=1

Association mining

We created a correlation matrix of all modules based on
phenotype associations. First, we filtered out minor asso-
ciations (Al <0.3) to capture major module-phenotype
associations. The Pearson correlation coefficient (PCC)
of each pair of modules was calculated and used to cre-
ate a PCC matrix using the association indexes of the
modules across phenotypes. Hierarchical clustering was
used to find module clusters that are likely to contribute
to similar phenotypes. Each cluster was subjected to de-
tailed downstream examination.

Network compartmentalization analysis
We identified 9700 orthologous genes as core genes con-
served among the three Fusarium sister species Fg, F.
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verticillioides and F. oxysporum [26]. In total, 3600 Fg
genes lacking orthologous sequences in the sister species
were loosely defined as Fg lineage-specific (LS) genes.
We compared the observed ratio of LS and core genes
in each predicted regulatory module to the expected ra-
tio for the Fg genome (FungiDB version: release 41)
using two-tailed Fisher’s exact test to determine whether
there is an enrichment of LS or core genes. A threshold
p-value <0.05 was applied to determine whether the
module was enriched (either LS or core) or not (mix).

Network visualization

Cytoscape (version 3.6.1) [27] and Gephi (version 0.9.2)
[28] were used for network visualizations. For building
weight-based networks, modules and regulators are pre-
sented as nodes, and the weight of the regulator (W;,) in
each module was used as the connection value for the
edges. For phenotype-module networks, association in-
dexes were used as the connection value of the edges.

Network availability

The module networks of F. graminearum are available
for download and query at https://xjtu-funet-source.
github.io/FuNet/FuNet.html. The relevant resources of
this research can be obtained from https://github.com/
xjtu-funet-source/funet.

Results

Fusarium graminearum module network inference

To infer condition-specific TRNs in Fg, we applied the
Module Networks algorithm [22] to a public dataset of
Fg transcriptomic profiles spanning 67 different experi-
mental conditions, including sexual reproduction and
plant infection (Additional file 1). In addition, we used a
set of candidate regulators consisting of 170 TFs that
were previously functionally associated with key fungal
phenotypes available in FgTFPD (Fg TF phenotype data-
base) (Additional file 2) [23]. Combined expression data
and phenotype-associated candidate regulators were
used as input data for the Module Networks algorithm
to reconstruct TRNs in Fg (Additional file 5). Searching
iteratively, the algorithm discovered 49 Fg gene regula-
tory modules, 48 of which had predicted regulators
(Fig. 1la; Additional file 5; Additional file 6 and Add-
itional file 7).

Each of the 48 modules is a regulatory program com-
posed of various regulators, target genes and the expres-
sion profiles of target genes as a function of the
expression level of the regulators. The regulatory pro-
gram is presented in a decision-tree structure that de-
fines the behavior of each regulator and the conditions
under which the regulation takes place (Additional file 8).
Overall, we predicted 117 regulators for 48 modules in
Fg. The average numbers of target genes and regulators
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F. graminearum Network Modules (1 — 49)
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Fig. 1 Overview of the module networks predicted for Fusarium graminearum. a. Overview of inferred F. graminearum regulatory modules. The
columns in the heatmap represent F. graminearum genes, and the rows represent the experimental conditions in the gene expression data.
Modules are delimited by vertical yellow lines. Red and blue represent gene activation and suppression, respectively. b. Distribution of the
number of target genes represented in a histogram. Y axis represents the frequency (count) of modules in which the number of target genes fall
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for each module are 268 and 7, respectively, with stand-
ard deviations of 212.43 and 1.24, respectively (Fig. 1b
and c). The regulator-module association network (Fig.
1d) showed that 42 regulators were associated with only
one module and that 75 regulators were associated with
two or more modules. The most significantly enriched
(lowest p-value) GO terms associated the inferred 48
gene modules are various (Additional file 7) including
primary metabolism (18 modules), transcription (2 mod-
ules), ribosomes and protein synthesis (4 modules), cel-
lular transport activities (6 modules), secondary
metabolism (2 modules), virulence and defense (1 mod-
ule), cell communications (3 modules) and unknown

functions (13 modules). Five regulators including two
ASPES proteins FGSG_04220 (13) and FGSG_10384 (7),
a C2H protein FGSG_07052 (7), an HMG protein
FGSG_01366 (8) and a Zn,Cs DNA binding protein
FGSG_08626 (7) function as hub regulators associated
with the greatest number of modules (Fig. 1d). Unsur-
prisingly, these regulators are highly pleiotropic, espe-
cially the ASPES proteins FGSG_04220 and FGSG_
10384, whose deletion mutants are defective in the ma-
jority of phenotypes assayed (Additional file 2) [23]. Both
APSES proteins are key regulators of fungal develop-
ment including mating, growth and virulence [9, 29].
FGSG_04220 is a homolog of S. cerevisiae SW16 protein
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[29], while FGSG_10384 is a homolog of Aspergillus
nidulans StuA protein [9]. FGSG_07052 regulates asex-
ual and sexual reproduction, virulence [23] (Additional
file 2). FGSG_01366 [30] and FGSG_08626 encode a
HMG-box protein and Zn,Cg protein respectively, are
both involved in the normal development of perithecia
and ascospores, therefore playing as a major regulator of
sexual reproduction [23] (Additional file 2).

Validation using prior knowledge proves the high
credibility of Fg module networks

Following the network inference, we assessed its reliabil-
ity based on its consistency with prior knowledge. We
scored each module by evaluating its performance based
on multiple pieces of evidence, including regulator phe-
notypes, experimental conditions, gene annotations and
cis-regulatory elements (Methods). A module was
considered high-confidence, moderate-confidence or
low-confidence depending on the validation score
(Additional file 9). After discarding 16 modules for
which there was little evidence, we identified 14 high-
confidence, 13 moderate-confidence and 6 low-
confidence modules. Overall, the high- and moderate-
confidence modules account for 81.8% of the evaluable
modules (Additional file 9), showing that our network
inference has achieved a high degree of credibility. The
following are examples of validation results that indicate
the high credibility of our predicted modules.

High concordance between regulator phenotypes and
condition-specific gene regulation

Transcriptional regulators and their target genes are
usually involved in the same biological processes. Based
on this general premise, we validated all predicted mod-
ules by evaluating the concordance between the pheno-
types associated with the top regulators in each module
and our predicted condition-specific regulation using
TE-phenotype associations and expression data associ-
ated with the experimental conditions. Since our pre-
dicted regulatory programs specify the regulators and
the conditions under which the regulation occurs, the
inferred relationship is accurate if a regulator associated
with a phenotype and its target genes are both activated
or suppressed under the experimental conditions that
result in the phenotype. For simplicity and clarity, we fo-
cused our validation on the three largest groups of ex-
perimental conditions included in our data: sexual
reproduction, plant infection and secondary metabolism
(Additional file 1); these groups correspond to the sexual
reproduction, virulence and mycotoxin (DON and ZEA)
production phenotypes in FgTFPD, respectively. We
found that in 45 of 48 modules with predicted regulators
(Additional file 9), the top regulator has an effect on one
or more of the phenotypes associated with sexual
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reproduction, virulence (plant infection) or mycotoxin
production (secondary metabolism). In 34 of the 45
modules, the top regulator activates or suppresses the target
genes under experimental conditions related to specific
phenotypes (Additional file 9). Three specific examples,
each concerning a phenotype, are provided below.

Firstly, in 76% of the modules whose top regulators
are associated with sexual reproduction, regulation of
the module genes by the top regulator was found under
at least one sexual reproduction condition; for over 50%
of the modules, the regulation occurred under half of
the corresponding conditions (Additional file 9). For ex-
ample, the top regulator of M30 (FGSG_06356) is essen-
tial for sexual reproduction. Our prediction showed that
this TF and M30 genes were highly expressed under all
sexual reproduction conditions. Secondly, in 57% of
modules whose top regulators are associated with viru-
lence, regulation of the module genes by the top regula-
tor was found under at least one plant infection
condition, and in nearly 30% of these modules, regula-
tion occurred under half of the plant infection condi-
tions (Additional file 9). For example, the top regulator
of M16 (FGSG_07928) is essential for virulence, and our
prediction showed that FGSG_07928 and the M16 genes
were highly expressed under 62.5% of plant infection
conditions. Thirdly, in 70% of the modules whose top
regulators are associated with mycotoxin (DON or ZEA)
production, regulation of module genes by the top regu-
lator was found under 50% or more of the conditions
that lead to mycotoxin induction (Additional file 9). For
example, the top regulator for M46 (FGSG_03538) is es-
sential for DON production, and our prediction showed
that FGSG_03538 and the M46 genes were highly
expressed under all mycotoxin induction conditions. In
summary, 24 of the 32 predicted top regulators (75%)
for 34 of the 48 predicted modules (70%) showed high
concordance between the regulator phenotype and
condition-specific gene regulation.

Most predicted regulatory modules have functionally
conserved TF binding sites

TFs regulate genes via binding to upstream cis-
regulatory gene regions. Co-expressed genes (e.g., genes
in the same regulatory module) typically share TF bind-
ing sites (TFBS) that are recognized by one or more TFs.
Therefore, we validated the predicted Fg network mod-
ules by finding enriched TFBS in each module. Using
the MEME algorithm, we first identified the top five
enriched motifs (E-value <0.05) within 500 bp upstream
of the coding sequences for all Fg genes within a module
(Additional file 9). Overall, 47 of 49 modules (96%) have
significantly enriched motifs, and 34 (70%) have at least
three enriched motifs (E-value < 0.05). We then com-
pared these significantly enriched motifs with the
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budding yeast S. cerevisiae (Sc) TFBS database YEAS-
TRACT using Tomtom to functionally annotate these Fg
motifs using conserved Sc motifs (Fig. 2; Add-
itional file 10). To determine whether the enriched mo-
tifs were consistent with the biological functions of each
module, we identified the most significantly enriched
GO terms for each regulatory module (Fig. 2; Add-
itional file 11) and compared the GO terms with the
functional annotations of the significantly enriched Fg
motifs. We found that the functional annotations of 27
of the 49 modules (55%) matched in the enriched TFBS
and GO enrichment (Fig. 2; Additional file 12). For ex-
ample, we found a functional match between M46 target
genes and one of their enriched TFBS (YrmlIp) (Fig. 2);
both are related to detoxification and multidrug resist-
ance. This is consistent with the fact that M46 was
highly associated with the mycotoxin production pheno-
type, as shown in later sections.

Secondly, to examine whether the functional conserva-
tion in TFBS was achieved through the conservation of
regulator genes, a BLASTp search was conducted in
which predicted Fg regulators were searched against the
Sc genome to identify orthologous regulators (E-value <
le-5). We then compared these yeast regulator orthologs
with the Sc¢ TFs derived from the Sc TFBS homologous

Page 7 of 14

to the enriched Fg TFBS. By overlapping the regulators
identified in the two separate analyses, 10 different regu-
lators regulating 36 modules (Additional file 13) were
found, suggesting that not only did the predicted Fg reg-
ulators in 70% of the modules have conserved Sc homo-
logs but also that conserved TEBS are likely associated
with these fungal TF homologs. For example, motif en-
richment shows that modules M06, M24, and M38 were
enriched in a common TFBS (AzfIp) that is likely bound
by YMRO19W in Sc. One of the predicted regulators of
module FGSG_08028 was orthologous to YMR019W (E-
value = 1.46e-7). Another example is M39; this module is
enriched in TFBS (Ace2p), which is likely bound by
YLR131C in Sc. Interestingly, one of the predicted regula-
tors of module FGSG_01341 is orthologous to YLR131C
(E-value = 3.34e-17). The YEASTRACT database showed
that this conserved TFBS and TF are involved in the bio-
genesis of cellular components, and this was captured by
the GO enrichment for Fg module genes.

Predicted regulatory modules captured the best-known TRN
model in Fg

The best-understood model of a transcriptional regula-
tion network in Fg is that of the trichothecene biosyn-
thesis gene cluster, known as the Tri-cluster. Previous
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gene functional studies identified two TFs, Tri6 (FGSG_
03536) and Tril0 (FGSG_03538), that reside within the
cluster and regulate the expression of the entire cluster
[31]. Deletion of Tri6 or Tril0 in Fg abolished fungal
production of trichothecene mycotoxins such as DON
and its derivatives [32, 33]. Remarkably, our network in-
ference yielded a 44-gene module (M46) capturing the
majority (9 of 12) of the Tri-cluster genes and accurately
predicted Tri6 and Tril0 as the top two regulators of
this module (Fig. 3a). To validate this module, we over-
lapped the module gene list (Additional file 6) with pre-
viously published lists of the genes that are down-
regulated in ATri6 and ATri10 mutants (fold change >2)
[31] as well as with lists of Tri6-binding genes identified
by ChIP-Seq [34] and found that 34, 22 and 11.3% of
our module genes were included in the ATri6 and
ATril0 down-regulated genes and Tri6 ChIP-seq targets,
respectively (Fig. 3b). Most of the overlapped genes were
Tri-cluster genes. Furthermore, GO enrichment showed
that this module was enriched in terms such as “second-
ary metabolism”, “detoxification involving cytochrome
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P450”, “sesquiterpenes metabolism”, “isoprenoid metabol-
ism”, and others (Fig. 3c), consistent with the idea that this
module regulates both primary and secondary metabolism
as well as self-protection by Tri10 and Tri6 [33]. Notably,
our prediction specified that the target genes were acti-
vated by Tri10 and Tri6 during wheat and barley head in-
fection, wheat coleoptile and crown rot infection, and
toxin-inducing conditions but suppressed during sexual
reproduction. In addition, M46 captured the full eight-
gene cluster (FGSG_08077 ~ FGSG_08084) for the bio-
synthesis of the Fusarium mycotoxin butenolide, which is
toxic to animals [35]. We predicted that this gene cluster
is regulated by Tri6 and Tri10, providing further evidence
that the two TFs might be global regulators of secondary
metabolism including trichothecene production, as previ-
ously reported [31, 34].

Computational method revealing module-phenotype
association networks

To understand which modules are responsible for regulat-
ing key phenotypes in Fg, we developed a computational
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framework and used it to calculate an association index
(AI) between each module and each phenotype (Fig. 4a;
Additional file 14) using digitalized regulator phenotypes
(Additional file 4) weighted by regulator hierarchical posi-
tions on the decision tree (Additional file 3) and the frac-
tion of phenotype-matching conditions being regulated
(Methods). We found that the module-phenotype associ-
ation was quite complex in that the majority of modules
were associated with multiple phenotypes. Under a thresh-
old of Al > 0.3, we removed minor associations and clari-
fied the primary associations between modules and
different phenotypes and built module-phenotype
association networks (Fig. 4b). We found that sexual
reproduction (49), mycelial growth (33), mycotoxin pro-
duction (31) and virulence (30) were associated with the
largest numbers of modules.

Regulatory modules typically work as groups to con-
trol cellular functions. Therefore, we investigated the re-
lationships among different modules with respect to
their contribution to phenotypes. We measured the cor-
relation among all modules by calculating the pairwise
Pearson correlation coefficients (PCC) and then per-
formed hierarchical clustering of the modules based on
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their PCCs. The analysis identified five major clusters of
gene modules; each cluster showed a distinctive pattern
of association with phenotypes (Fig. 4c). Cluster I in-
cluded four modules (M34, M39, M30 and M48) in
which sexual reproduction and mycotoxin production are
major phenotypes as well as modules M34 and M39,
which are mildly linked to mycelial growth and/or viru-
lence. Cluster II contained 12 modules (M23, M44, M06,
M40, M38, M33, M03, M15, M10, M18, M07 and M11)
that are all linked to mycelial growth, sexual reproduction,
mycotoxin production and virulence. Cluster III was com-
posed of 11 modules (M13, M17, M37, M45, M41, M36,
M46, M02, M12, M09, and M35) that are associated with
pigmentation, in addition to other phenotypes. Overall,
the phenotype associations of Clusters I to III were domi-
nated by sexual reproduction and toxin production, and
M30, M48, M36, M46, M12 and M02 were exclusively as-
sociated with these two phenotypes. Cluster IV contained
eight modules (M28, M43, M24, M49, M22, M47, M04,
and MO08) whose phenotype associations were dominated
by sexual reproduction and virulence and two modules
that were exclusively associated with virulence. Cluster V
contained 13 modules (M29, M32, M19, M05, M25, M20,
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M27, M42, M16, M26, M31, M14, and M21) associated
with mycelial growth. However, except for the fact that
M27 and M42 were mostly associated with mycelial
growth and sexual reproduction, no phenotype associa-
tions were dominant.

TRN subnetworks that control key fungal phenotypes
From the association analysis results, we built subnet-
works of Fg controlling virulence, sexual reproduction and
mycotoxin production (Fig. 5). In these subnetworks, the
nodes represent top regulators and modules, and the
edges represent regulatory relationships weighted by the
degree of the regulator’s influence on the module.

Sexual reproduction TRNs

Sexual reproduction is critical for Fg, which produces as-
cospores as the primary inocula in the field. Based on
the association index, we identified 10 modules (M30,
M28, M24, M49, M22, M47, M04, M08, M27 and M42)
that are highly associated with sexual reproduction and
that have an association index of over 50% for all pheno-
type associations (Fig. 4c). The top regulators of the 10
modules were all essential for normal development of
perithecia, and most act as positive regulators. For ex-
ample, FGSG_04480 and FGSG_08890, the two top reg-
ulators of MO8, activated target genes during sexual
development (Additional file 8). Interestingly, FGSG_
08890 is a mating-type locus gene (MAT-1-3) and there-
fore potentially contributes to fungal mating by regulat-
ing sexual reproduction-related gene modules. In
contrast, the two TFs FGSG_06356 and FGSG_ 09308
are negative regulators of sexual reproduction. For ex-
ample, FGSG_06356, which is negatively associated with
sexual development [23], was predicted as a top regula-
tor for M30 and M42. Consistently, our regulation
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program for M30 predicted that FGSG_06356 acts as a
suppressor of M30 genes during sexual development
(Additional file 8). Likewise, FGSG_09308 was predicted
as a suppressor of M22 (Additional file 8), consistent
with its previously reported phenotype. In addition,
some regulators that had connections with many mod-
ules acted as hub regulators in sexual reproduction-
associated networks, including FGSG_04220, FGSG_
00318, FGSG_01366, FGSG_13314, FGSG_07052,
FGSG_08626 and FGSG_10384 (Fig. 5a). Unsurprisingly,
mutants in which these regulators are disrupted display
defective sexual development (Additional file 2).

Virulence TRNs

Fg is a pathogen of wheat and barley. To understand the
transcriptional regulatory circuits in Fg infection, we
built a network of gene modules and the top regulators
associated with virulence using an Al threshold of > 0.3
(Fig. 5b). In total, 30 modules were associated with viru-
lence (Fig. 4c); 5 of these (M06, M24, M49, M47 and
M16) had the highest association with virulence, which
contributed 25 to 45% of their phenotype associations.
Four of the 30 modules, FGSG_04220, FGSG_07052,
FGSG_08028 and FGSG_10384, were hub regulators of
virulence. FGSG_08028, the top regulator for M06, M24
and M49, activated genes of the three modules during
wheat plant infection. The previous report that a disrup-
tion mutant of FGSG_08028 loses pathogenicity but ap-
pears normal with respect to other phenotypes [23] and
our prediction that FGSG_08028 participates only in the
virulence-associated TRN (Fig. 5b) suggest that this TF
might exclusively regulate virulence. Notably, both posi-
tive and negative regulators were found in the virulence
TRNs. For instance, FGSG 13314 and FGSG_00318,
which are essential for pathogenicity, were the top two

15"
‘ 03‘5, 7052 g

/103 ‘!3314 23}135
nwzz 2 g m f l
f 32 “Sphast o

g ofze
01176
oo 0597 i 2‘ \\ ’ e '10517“5"5 0072{ o a7 X y’ﬂ
i oz
/ 2 ll 32— ofiss 43 % sts "
z “ '25 01022
a6

48 i ° l?ﬁm s
*: © 2 \6 —
%832 J otios 4 i 2

o oggs ofiss

15 doaaa

29

35 0876
oards

Sexual development TRN

(a) (b)
o oy oSk
07 =4 s

msv’ ©

05604 oo

/ }D\m_ et o / v o s
o701 14 \ L o o
offamm 14
@ 13746 = 19 07928 04 Im 0422&

% Q
107l
ooz
01665, 35 0061
\ . 4 I Y o5k ‘3 o
@ 135( oggr 13
“‘rm P \ s 45
6356, 08897 % 7Y 1o 46
/ ® 06944 10286 ofsss 10142 39 \ l 06
036260117 0422 ) 3538 1
s N, ot 30 i oamums @ 23 l/\m | -
l’l Ay
\w o651

i A\
& 15
s NN
\ 45 “\ /
ofter
2 g Am o X
) 2083 ha?
) % 40 01327
2
E

16

10179

osesn
/ ’ISX
oisso wo1és
%
oigan
o s
052 \ A
1

2 otids

Virulence TRN

Fig. 5 fusarium graminearum subnetworks involved in the regulation of key phenotypes: sexual reproduction (a), virulence (b), mycotoxin
production (c). In each network, the edges represent the connections between the two nodes, which in turn represent the contributions of
different regulators to the module. The red line represents a positive effect of the regulator on the corresponding phenotype, the green line
represents a negative effect, and the thickness and color depth of the connection indicates the strength of the effect

= orses

afits
ob7io 10384 02814
o7

38
05399

00750 \/ e
02

o930
[T S}

19
3 @
L 4 s \ strong ction
\ o
44

12

22 3 module gulator
o7
AR L~
36

0517 %%

o
Y. oo
41 e —7

Mycotoxin TRN




Guo et al. BMC Genomics (2020) 21:179

regulators positively regulating M47 genes under plant
infection conditions (Additional file 8). Mutants of these
TFs display abnormal development of perithecia and as-
cospores, consistent with their presence in the sexual
reproduction TRN (Fig. 5a). On the other hand, the top
two regulators of M16, FSGG_07928 and FGSG_09019,
negatively regulate M16 gene expression during plant in-
fection. However, disruption mutants of these TFs are
nonpathogenic to wheat. GO enrichment of the M16
genes suggested that the module is highly enriched in
anti-apoptosis processes. Loss of the function of its two
main suppressors might contribute to decreased fungal
apoptosis during infection, which is generally considered
to be beneficial to pathogens during infection [36].

Mycotoxin TRNs

Fg produces toxic secondary metabolites, including
DON and ZEA, that are harmful to livestock and to
humans who consume the mycotoxin-containing maize
products. The regulatory networks involved in fungal
mycotoxin production are still poorly understood. Here,
we found 31 TRN modules that were associated with
mycotoxin production under the Al index threshold of
0.3 (Fig. 5¢); six of these (M02, M12, M36, M46 and
M48) were highly associated with mycotoxins in 55% ~
85% of all phenotypic associations (Fig. 4c). The majority
of the Tri-cluster was captured by another mycotoxin-
associated module, M46. Several regulators, including
FGSG_04220, FGSG_05399, FGSG_00750, FGSG_10517,
FGSG_01173, FGSG_03538 and FGSG_10384, acted as
hub regulators in mycotoxin-associated modules. Not
surprisingly, disruption mutants of these regulators show
abnormal production of DON and ZEA (Additional file
2). Two of them, FGSG_05399 and FGSG_10157, are
negative regulators of DON and ZEA, respectively. In
addition, we predicted FGSG_05399 as the top negative
regulator of M02 in the mycotoxin production and plant
infection stages. Interestingly, GO enrichment suggested
that the M02 genes are highly enriched for isoprenoid
metabolism, which generates the precursors of tricho-
thecenes. Although M02 did not include genes in the
Tri-cluster, it contained a deacetylase gene, FGSG_
03544, that is located near the Tri-cluster and is co-
expressed with Tri-cluster genes [37].

Fg module networks have core and lineage-specific (LS)
compartments

A key question in evolution is how newly acquired genes
or chromosomes integrate with existing or ancestral ge-
nomes in an organism and how the regulatory networks
carried by two distinct compartments, i.e., the ancestral
and the novel genetic materials, are accommodated to
ensure the stability of the newly formed genome and its
regulation during speciation. Previous comparative
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genomic analysis suggested that the Fg genome can be
roughly divided into core and LS [21]. To determine
whether our predicted Fg module networks have a com-
partmentalized organization, we applied Fisher’s exact
test to the genes in each module and identified modules
significantly enriched for core and LS genomic regions.
We found that eight modules (M06, M09, M25, M27,
M34, M38, M46 and M48) showed significant enrich-
ment of genes from LS regions, while 24 modules were
enriched with genes from core regions (Fig. 6). Pheno-
typically, these eight LS modules were primarily associ-
ated with mycotoxin production, virulence and sexual
reproduction (Fig. 5). Interestingly, among the 117 pre-
dicted regulators, only ten were located in LS regions.
However, we found that four of them (FGSG_01327,
FGSG_03536, FGSG_03538, and FGSG_08028) were ex-
clusively associated with LS modules and that six were
associated with other modules. Fisher’'s exact test
showed these ten LS regulators showed a significant bias
of regulator-module association towards core or LS gen-
omic regions (P-value < 0.05). FGSG_03536 (7ri6) and
FGSG_03538 (Tri10) were the top two regulators of the
LS module M46 (Fig. 3a), and FGSG_08028 was the top
regulator of the LS modules M06 and M38. These four
LS regulators, together with their associated LS modules,
might be horizontally acquired and may have contrib-
uted to the speciation of Fg via specifically regulating the
fungal biosynthesis of specific mycotoxins or plant infec-
tions. Lastly, a reciprocal regulation was found for regu-
lators and modules across the LS and core genomes
(Additional file 15), suggesting that there is communica-
tion between core and LS genomic regions and reflecting
the evolutionary signature of regulatory programs in-
volving both vertically and horizontally acquired gene
regulatory elements.

Discussion

GRNs are the heart of every cellular function. Given its
high complexity, the complete reconstruction of GRNs
in multicellular organisms remains a daunting task.
Traditional reductionist approaches and gene co-
expression analysis have failed to solve this challenge in
Fg. Here, we used Module Networks algorithm [22] to
reconstruct Fg TRNs. The module network algorithm,
which is a probabilistic method built on a Bayesian net-
works model, is ideal for dealing with noisy data such as
gene expression profiles. Importantly, its strong per-
formance in predicting dynamic and condition-specific
gene regulation from large transcriptome datasets has
been demonstrated [22]. Furthermore, this TRN infer-
ence used phenotype-associated TFs as candidate regula-
tors, allowing us to pinpoint the TRNs that directly
mediate various fungal phenotypes. In contrast, previous
GRNs were comprehensive but coarse, focusing on the
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master regulatory networks that control generic cellular
functions. Lastly, we used phenomic data from TF
knockout mutants as well as transcriptome data to dis-
cover phenotypically specific regulatory networks.

Given such technical advantages, the TRNs inferred
here present two major improvements compared to pre-
vious GRNS. First, the TRNs predicted in this work im-
proved the network resolution compared to our previous
GRNs which inferred 120 regulators, each regulating 329
genes on average [21]. In comparison, each module in
the new TRNs contains an average of 268 genes and 7
regulators, significantly improving the network reso-
lution. Previous GRNs predicted 44 transcription factors
as regulators, while the TRNSs yielded 117 TFs as regula-
tors, suggesting the new TRNs found more regulators
and therefore increased the resolution of regulatory net-
works involving TFs. Second, the TRNs are dynamic net-
works that specify the conditions under which a particular
regulation occurs, unlike previous static GRNs. For ex-
ample, we found that the TRNSs of this work and previous
GRNs shared eight regulators (Additional file 16). For
these eight regulators, this TRN produced a dynamic net-
work model that specifies the conditions under which a
particular regulation occurs, while in previous static GRNs
no such information existed. Third, we developed a new
computational method for establishing associations be-
tween key fungal phenotypes and predicted network mod-
ules, while previous co-expression networks and GRNs
lack any such association. The module-phenotype

associations suggest that cellular phenotypes are most
often controlled by complex networks of gene modules.
Our association mining analysis also revealed major
groups of modules that contribute primarily to specific
fungal phenotypes, suggesting that biological processes in
fungi are controlled by multiple intertwining gene mod-
ules. Finding the links between regulatory modules and
phenotypes enriches our understanding of how fungal
cells control their activities and, importantly, informs tar-
geted approaches for suppressing specific gene modules
and key regulators for disease control.

The TRN inference in this study significantly improves
our understanding of transcriptional regulation in Fg. In
previous functional studies, many TFs critical for fungal
biology have been characterized. However, little is known
about what target genes they regulate, which networks
they use to regulate cellular functions, and, more import-
antly, when the regulation occurs and how it changes
when the environment is altered. We identified 49 TRN
modules in Fg. Each module represents a regulatory pro-
gram in which a set of TFs regulates a number of target
genes, and the hierarchical organization of these TFs re-
flects their influence on the module. Our biological valida-
tions suggested that our TRN inference achieved overall
high performance and that it successfully associated TFs
and their target genes. Importantly, our inference reveals
the conditional specificity, the direction (positive vs. nega-
tive) and the strength of gene regulation, factors that are
not addressed in previous Fg network studies.



Guo et al. BMC Genomics (2020) 21:179

Fg is a pathogenic fungus that is capable of produ-
cing harmful mycotoxins. Sexual reproduction plays a
vital role in generating inocula for fungal infection.
Therefore, understanding the regulatory networks that
control virulence, sexual reproduction and mycotoxin
production is a priority for research on Fg systems
biology. For the first time, we identified TRN subnet-
works in filamentous fungi that control three Fg phe-
notypes. Unlike studies that have focused on the
contribution of a single gene or a set of co-expressed
genes to phenotypes, we reconstructed TRN subnet-
works that are strongly associated with each pheno-
type. The three subnetworks depicted the dynamic
regulation of gene modules that are highly associated
with each of the phenotypes. This work provides the
best knowledge to date of the transcriptional regula-
tion involved in these processes in Fg and lays an im-
portant foundation for further systems biology studies
in the fungus. We previously reported that there ap-
pears to be a compartmentalization of Fg GRNs in
core and LS genomic regions. The TRNs inferred
here confirmed such compartmentalization but also
provided novel insights into how the regulatory mod-
ules are organized into the core and LS compart-
ments based on our identification of 8 and 24
modules that are significantly enriched in target genes
from the LS and core genome regions, respectively.
The top regulators in four of the eight LS-enriched
modules are located in the LS genome, suggesting
that the regulatory circuits associated with LS mod-
ules were very likely acquired with LS genome regions
but that over time at least part of these acquired cir-
cuits were integrated into the ancestral circuits car-
ried by the fungus.

Conclusions

We reconstructed dynamic TRNs from a large scale
of F. graminearum transcriptomic data using Module
Network algorithm, identifying top regulators, target
genes and the conditions under which the regulation
takes place. The overall accuracy of the network in-
ference was high as demonstrated by validation using
prior knowledge. Association mining revealed regula-
tory modules controlling sexual reproduction, viru-
lence and mycotoxin production, shedding light on
the fungal systems biology. Despite the progress re-
ported here, this network remains an early step to-
ward obtaining a complete understanding of authentic
TRNs and eventually achieving its predictive power.
As high-throughput sequencing technologies rapidly
develop and costs continue to decrease, generation of
additional large-scale genomic data such as RNA-seq
and ChIP-seq will be needed to improve the network
model and realize its predictive power in the future.
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