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Abstract

Background: Most eukaryotic genes produce different transcripts of multiple isoforms by inclusion or exclusion of
particular exons. The isoforms of a gene often play diverse functional roles, and thus it is necessary to accurately
measure isoform expressions as well as gene expressions. While previous studies have demonstrated the strong
agreement between mRNA sequencing (RNA-seq) and array-based gene and/or isoform quantification platforms
(Microarray gene expression and Exon-array), the more recently developed NanoString platform has not been
systematically evaluated and compared, especially in large-scale studies across different cancer domains.

Results: In this paper, we present a large-scale comparative study among RNA-seq, NanoString, array-based, and
RT-qPCR platforms using 46 cancer cell lines across different cancer types. The goal is to understand and evaluate the
calibers of the platforms for measuring gene and isoform expressions in cancer studies. We first performed NanoString
experiments on 59 cancer cell lines with 404 custom-designed probes for measuring the expressions of 478 isoforms
in 155 genes, and additional RT-qPCR experiments for a subset of the measured isoforms in 13 cell lines. We then
combined the data with the matched RNA-seq, Exon-array, and Microarray data of 46 of the 59 cell lines for the
comparative analysis.

Conclusion: In the comparisons of the platforms for measuring the expressions at both isoform and gene levels, we
found that (1) the agreement on isoform expressions is lower than the agreement on gene expressions across the
four platforms; (2) NanoString and Exon-array are not consistent on isoform quantification even though both
techniques are based on hybridization reactions; (3) RT-qPCR experiments are more consistent with RNA-seq and
Exon-array than NanoString in isoform quantification; (4) different RNA-seq isoform quantification methods show
varying estimation results, and among the methods, Net-RSTQ and eXpress are more consistent across the platforms;
and (5) RNA-seq has the best overall consistency with the other platforms on gene expression quantification.
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Background
In eukaryote genome, a single gene can contain multi-
ple exons and introns, where the exons can be alterna-
tively spliced together in different ways. Recent studies
have estimated that alternative splicing events exist in
more than 95% of multi-exon genes in human and
mouse [1, 2], and the mechanism provides the oppor-
tunity to create protein isoforms of differing functions
from a single gene in a cellular system. Therefore, elu-
cidating gene expression at the isoform resolution could
improve our understanding of molecular mechanisms and
potentially improve molecular signals for cancer pheno-
type predictions [3, 4]. However, accurately quantifying
isoform expression is significantly more challenging than
estimating aggregated gene expressions due to the ambi-
guity in overlapped regions between alternative isoforms
in the same gene [5].
Several high-throughput platforms have been developed

during the last decades for transcriptome studies, includ-
ing mRNA sequencing (RNA-seq), array-based technolo-
gies (Microarray and Exon-arrays), quantitative reverse
transcription polymerase chain reaction (RT-qPCR), and
the more recently developed NanoString’s nCounter tech-
nology (Fig. 1). Currently RNA-seq is the most com-
monly used platform for measuring the expressions in a
transcriptome. RNA-seq provides more sensitive measur-
ing of gene and isoform expressions, and detects both
known and novel features in a single assay (e.g., tran-
script isoforms, gene fusion, single nucleotide variants)
without requiring prior knowledge compared to array-
based technologies [5–7]. While at a lower-throughput,
RT-qPCR enables the determination of the exact amounts
of amplified DNAs in a sample, which are often consid-
ered as the gold standard to confirm the results of the
studies based on RNA-seq or Microarray. The NanoS-
tring nCounter platform captures and counts individual
mRNA transcripts. Its advantages over the other plat-
forms include direct measurement of mRNA expression
levels without enzymatic reactions, high sensitivity cou-
pled with high multiplex capability, and digital readout
[8, 9]. The strengths and limitations associated with each
platform are described in Table 1. Due to these discrepan-
cies, different platforms can report inconsistent isoform
expressions measured on the RNAs extracted from the
same cell sample.
In this paper, we study the correlations of the expres-

sions estimated by four different platforms including
RNA-seq, NanoString nCounter, Microarray/Exon-array
and RT-qPCR, at isoform and gene levels to better under-
stand the characteristics of the estimations made by each
platform. To assess the correlations across the platforms,
we first performed custom NanoString nCounter experi-
ments on 59 cancer cell lines with 404 custom-designed
probes for measuring the expressions of 478 isoforms in

155 genes. We then combined the nCounter data with the
matched RNA-seq, Exon-array and Microarray data of 46
of the 59 cell lines from Cancer Cell Line Encyclopedia
(CCLE) [10] and Gene Expression Omnibus (GEO) [11] to
perform isoform and gene abundance estimation on raw
expression profiles of the 46 cell lines on all the platforms.
Additional RT-qPCR experiments for a subset of the mea-
sured isoforms in 13 cell lines were also performed for
validations.
Previous studies have demonstrated the agreement

between RNA-seq and array-based platforms for isoform
expression estimation [5] and gene expression estimation
[6, 12, 13]. However, none of the studies has included
large-scale NanoString data at isoform level in the com-
parison, nor did the studies investigate large-scale isoform
profiles across multiple cancer types. Better understand-
ings of the characteristics of the gene and isoform expres-
sion estimations with the four platforms could lead to
better strategies to design experiments for cancer stud-
ies, and integrate different platforms together to more
accurately estimate the mRNA expressions for applica-
tions in disease biomarker detection, cancer outcome
prediction, drug target identification, and drug response
prediction.

Results
Cancer cell line data preparation
The NanoString experiment was conducted on 59 cell
lines, including 12 ovary cell lines, 12 lung cell lines, 11
colon cell lines, 10 breast cell lines, four pancreas cell lines,
two prostate cell lines, two stomach cell lines, and six cell
lines of six other types of tissues as listed in Table S1 in the
supplementary document. A total of 404 probes were cus-
tomized to estimate the isoform expressions of 155 cancer
genes curated from the literature [14] with more reliable
isoform annotations, where each of the 155 genes con-
tains at least two isoforms. As shown in Table S1, 46 out
of the 59 cell lines are also the cancer cells in CCLE. The
raw mRNA-Sequencing (RNA-seq) data and Microarray
expression data (HG-U133 Plus 2.0 Array) of the 46 can-
cer cell lines were downloaded from CCLE and processed
for comparison with the NanoString nCounter data. Addi-
tionally, the raw Microrarray expression data of the same
46 cancer cell lines were downloaded from GEO as the
replicates of the CCLE Microarray data in the analysis.
The raw Exon-array (HuEx.1.0.st.v2) data of 35 of the
59 cancer cell lines were also downloaded from GEO to
compare with the other platforms. Finally, an RT-qPCR
experiment was designed to measure the expressions of
a subset of the genes and isoforms in 13 cell lines to val-
idate the expressions measured on the other platforms.
The complete list of the cell lines used in this study and
the data availability on each platform is available in Table 2
and Table S1.
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Fig. 1 Four platforms. a NanoString nCounter. A capture probe works together with a reporter probe to capture the signal in the target sequences.
Each capture-reporter probe pair is tagged with a distinct color-coded barcode to represent the detection of a single target molecule for direct
digital readout. nCounter Digital Analyzer reports the expression levels of targeted mRNAs. In this example, Probe 1 measures the total expressions
of all the isoforms of the gene; Probe 2 measures the expression of Isoform 1; Probe 3 measures the expression of Isoform 3. bmRNA-sequencing
(RNA-seq). Paired-end sequencing of fragmented cDNAs generated by next-generation sequencing technology are aligned to the reference
genome. The read coverage can be analyzed to infer the mRNA abundance by RNA-seq quantification methods. c Exome Microarray. In the
Microarray experiment, exon-level expressions are estimated based on the hybridization intensity measurements by multiple probes targeting the
putative exonic regions. After normalization, quantification methods are applied to estimate gene and isoform expressions. d Quantitative reverse
transcription PCR (RT-qPCR). In this platform, RNAs are first transcribed into cDNAs by reverse transcriptase from the total RNA. Then the cDNAs are
used as the template for the qPCR reaction. The gene and isoform expression can be estimated based on the amplified DNAs after performing qPCR

Comparison of isoform expression profiles across platforms
Low consistency among the estimated isoform expressions
across the platforms.
The correlations of isoform expressions among differ-
ent platforms are reported in Fig. 2. Each dot in the
boxplot represents the Spearman correlation coefficient
of the 478 isoforms expressions in 155 genes between

two platforms for one cell line. Each boxplot shows the
correlation coefficients measured for all the cell lines
between two compared platforms. Five different isoform
quantification methods (Net-RSTQ [3], Cufflinks [15],
RSEM [16], eXpress [17] and Kallisto [18]) were used
to quantify the isoform expressions for the RNA-seq
data.
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Table 1 Advantages and limitations of each platform

Advantages Limitations

NanoString (1) RNAs are directly measured without amplification or
cloning; (2) Digital readout generates less background noise;
and (3) Allows high dynamic range of expressions.

(1) Only a limited number of probes are available to
measure isoform or gene expression; and (2)
Sophisticated custom probe design is often needed.

RNA-seq (1) No requirement of gene annotations; (2) Capable of
detecting novel splicing isoforms; (3) Allows high dynamic
range of expressions; and (4) Provides transcriptome-wide
expression profiling.

(1) Transcript specific bias/ 3’-end bias; and (2)
Various sampling biases as a result of library
preparation protocols.

Exon-array (1) Provides transcriptome-wide expression profiling; and (2)
Capable of measuring expressions at exons and
exon-junctions.

(1) Limited dynamic range; (2) Requires a higher
amount of molecules in RNA preparation; and (3)
Depends on existing genome annotation.

RT-qPCR (1) High dynamic range of expressions; (2) Less biased results;
and (3) much cheaper in comparison to RNA-seq and
Microarray on a small-scale study.

(1) Only a limited number of transcripts can be
measured; and (2) Custom primer designs are often
needed.

In general, the Spearman correlations of isoform expres-
sions between NanoString and RNA-seq (median Rs =
0.55 ∼ 0.63) are lower than the correlations between
Exon-array and RNA-seq (median Rs = 0.62 ∼ 0.68).
The correlations between the NanoString and Exon-array
are relatively low (median Rs = 0.55). Figure 3 shows
the overall correlation coefficients between two platforms
with isoform quantification method Net-RSTQ for RNA-
Seq. Each dot in the scatter plots represents one isoform
in one cell line. The overall correlation coefficients are
between 0.52 and 0.63 in the three comparisons. In a
similar analysis on gene-level expression later reported in
Figs. 6 and 7, the overall correlations are much higher
(median Rs = 0.68 ∼ 0.82). The observation is consis-
tent with the fact that besides mapping reads to genes,
additional analysis steps are required to resolve the read
assignment to the shared exon region(s) for estimating the
isoform expressions, and thus, compared to gene expres-
sion quantification, the consistency across the platforms
on the estimated isoform expressions is lower.

NanoString and Exon-array are less consistent on isoform
quantification
It is also beneficial to measure the isoform proportions in
each gene rather than the exact isoform expressions. For
example, an investigator might only need to know which
isoform has higher expression than the other isoforms
in the gene. In Fig. 4, the isoform proportions estimated
by NanoString were used as the reference proportions to

evaluate different RNA-seq quantification methods and
quantification based on the Exon-array platform. The dif-
ferences of isoform proportions estimated by NanoString
and the other platforms are measured by Eq. 2 in the
“Methods” section. As shown in Fig. 4, the isoform pro-
portions estimated by Exon-array are less consistent with
the proportions estimated by NanoString, compared to
those estimated by most RNA-seq quantification meth-
ods, even though the hybridization reaction is a key step in
both nCounter and array-based experiments but not RNA
sequencing. This observation in this isoform proportion
comparison also is consistent with the results for isoform
expression comparison in Figs. 2 and 3.

Net-RSTQ and eXpress providemore consistent isoform
quantification with RNA-seq data
In both Figs. 2 and 4, the compared isoform quantification
methods on RNA-seq data show different levels of consis-
tency with the other two platforms. In Fig. 2, the rankings
of median correlations for the five methods are similar
in the comparisons with NanoString and Exon-array plat-
forms, even if the quantification results are not consistent
between NanoString and Exon-array. Specifically, eXpress
[17] and Net-RSTQ [3] are the most consistent methods,
followed by RSEM [16], Kallisto [18] and Cufflinks [15].
Evaluated by the NanoString data and Exon-array data,
eXpress and Net-RSTQ seem to provide more reliable iso-
form quantifications with RNA-seq data compared with
the other methods. Similar results are also observed in

Table 2 Summary of the availability of cell line data in each platform

# of cell lines # of genes # of isoforms Resource Platform

NanoString 59 155 478 nCounter

RNA-seq 46 transcriptome-wide transcriptome-wide CCLE Illumina HiSeq 2000

Microarray gene expression 46 transcriptome-wide transcriptome-wide CCLE and GEO HG-U133 Plus 2.0 Array

Exon-array 35 transcriptome-wide transcriptome-wide GEO Affy HuEx.1.0.st.v2

RT-qPCR 13 4 8
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Fig. 2 Correlations between estimated isoform expressions on two platforms. In the boxplots, each dot represents the correlation coefficient
measured on one compared cell line. Five different isoform quantification methods are used to generate the profiles with RNA-seq data in the
comparison

Fig. 3 Scatter plots of estimated isoform expressions between two different platforms. Each dot represents one isoform in one cell line. The isoform
quantification by Net-RSTQ is applied to the RNA-seq data in the comparison. The overall correlation is also reported for each comparison

Fig. 4 Validation by comparison with NanoString. The boxplots show the differences between NanoString and the other two platforms (RNA-seq
and Exon-array) on isoform proportion estimation. Each dot represents the average isoform proportion difference between NanoString and one
quantification method for RNA-seq, or Exon-array, in one cell line
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the isoform proportion analysis in Fig. 4. Net-RSTQ and
eXpress provide the most consistent estimations of pro-
portions compared with the estimation on the NanoString
data.

RT-qPCR experiments agreemore with the RNA-seq and
exon-array results
Among the genes that NanoString, RNA-seq and
Exon-array report the most different quantification
results for, we selected four genes (ASXL1, LRIG3,
NOTCH2 and SF3B) to perform RT-qPCR experi-
ments in the 13 cell lines with relatively high expres-
sion levels and feasibility of designing isoform-specific
primers.
The isoform proportions estimated by NanoString data,

Exon-array data, and five different methods for RNA-
seq data analysis were compared to the RT-qPCR esti-
mation in the boxplots in Fig. 5 and scatter plots in
Figure S2 in the supplementary document. In general, the
isoform proportions estimated by RNA-seq and Exon-
array show better agreement with RT-qPCR quantifica-
tion thanNanoString. Themedian differences (Eq. 2 in the
“Methods” section) across 13 cell lines are between 0.20
∼0.24 for RNA-seq platform and 0.20 for Exon-array plat-
form, while the median difference is 0.33 in comparison
to NanoString, which is significantly higher than RNA-
seq and Exon-array (p-values < 1e-3 by The Wilcoxon
Rank-Sum Test).

Comparison of gene expression profiles across platforms
RNA-seq is consistent with other platforms on gene
expression quantification.
The scatter plots comparing the gene expressions esti-
mated by four platforms are shown in Fig. 6. RSEM was

applied to RNA-seq quantification and CCLE Microarray
data was used in this comparison. The correlations on the
gene expressions between RNA-seq and the other three
platforms shown in Fig. 6a, d and e are the most consistent
in the comparisons of each pair of platforms (Rs = 0.75 ∼
0.82). The other three paired comparisons on the other
three platforms shown in Fig. 6b, c and f show correlation
coefficients between 0.68 and 0.71. Although Microar-
ray and Exon-array platforms were both array based, the
correlation was the lowest in all the six pairs. The high
consistency between Microarray and RNA-seq platforms
may have benefited from the same experimental condi-
tions and cell materials used in the CCLE project. A more
comprehensive comparison is shown in Fig. 7. Each dot in
the boxplots represents the correlation coefficient of the
expressions of 155 genes in one cell line between two plat-
forms. Even though the gene expressions in the cell lines
were estimated by the same platform in the Microarray
(GEO) and Microarray (CCLE), the correlation is not as
high as expected (Figure S6 in the supplementary docu-
ment). In Fig. 7, Cufflinks and RSEM yield similar con-
sistent gene expressions with the other platforms in the
RNA-seq data.

NanoString, RNA-seq and Exon-array detect lowly expressed
genes with less consistency
Similar to the observations in previous studies[7], the
results in Fig. 6 also show that Microarray platforms
are not sensitive enough to detect lowly expressed genes
due to the background noise from cross-hybridization.
There is a clear pattern that in the range of lowly
expressed genes estimated by NanoString and RNA-
seq data, Microarray gene expressions are all at the
lowest end with very small differences. Exon-array

Fig. 5 Validation with RT-qPCR results. The boxplots show the differences in the estimation of isoform proportions between RT-qPCR and the other
platforms. Each dot represents the average isoform proportion differences between RT-qPCR and another platform or one quantification method
on RNA-seq data in one cell line
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Fig. 6 Scatter plots of gene expressions measured on two platforms. Each dot represents one gene in one cell line. RSEM is applied for RNA-seq
quantification and the CCLE Microarray gene expression data are used in the comparison. The overall correlation is also reported for each comparison

Fig. 7 Correlation between gene expressions measured on two platforms. The box plots show the results of different cancer cell lines with each dot
representing the correlation coefficient for one cell line. Two different RNA-seq quantification methods and two different versions of Microarray
gene expression datasets (CCLE and GEO) are compared
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assigns many probes to the exons in a gene and thus,
is slightly more sensitive than the Microarray that only
measures gene expressions.
The pairwise comparison of lowly expressed genes

across the platforms in Fig. 8 also indicates that the
detected expressions of the low-abundance genes are less
consistent across NanoString, RNA-seq, Exon-array, and
Microarray. Some of the genes were very rarely expressed
in one platform, but highly expressed in the other plat-
form(s). Across the four platforms, Exon-array has the
least agreement with the other three platforms.

Fold change and differential expression analysis
The fold-change was calculated based on breast cancer
cell lines versus all the other cell lines. The correlations
of fold-change between platforms are reported in Fig. 9.
Compared to the gene-expression correlations in Fig. 6,
the agreement in fold changes is lower. Among all the
six pairwise comparisons, RNA-seq and Microarray show
the highest consistency on the fold-change analysis in
Fig. 9d. The “x-shape” in Fig. 9d shows that the up/down
regulated genes detected by RNA-seq and Microarray
platforms are consistent. However, in all the other plots

Fig. 8 Scatter plots of the lowly expressed genes measured on two platforms. Each dot represents one gene in one cell line. RSEM is applied for
RNA-seq quantification and the CCLE Microarray gene expression data is used in the comparison
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Fig. 9 Scatter plots of fold-changes in gene expressions (breast cancer cell line versus another cell line) between two platforms. Each dot represents
the fold-change of one gene between each breast cancer cell line and one cell line of the other cancers. RSEM is applied for RNA-seq quantification
and the CCLE Microarray gene expression data is used in the comparison

in Fig. 9, there are always some genes show opposite reg-
ulations in the two compared platforms. In general, there
is an agreement between the correlation in gene expres-
sions in Fig. 6 and the correlation in fold changes in
Fig. 9.
In the differential gene expression analysis, ANOVAwas

applied to detect the top differentially expressed genes
across six tissue types (ovary, lung, colon, breast pan-
creas, and prostate) on the gene expressions estimated by
NanoString, RNA-seq and Microarray. The top-10 genes
identified from each platform are reported in Table 3
and Figure S3-S5 in the supplementary document. Only

MYB is identified by all three platforms. MYB and EWSR1
are the only common genes detected by both NanoS-
tring and Microarray. Six out of the top-10 genes identi-
fied from RNA-seq were also detected either by NanoS-
tring or Microarray. The complete lists of the differen-
tially expressed genes identified from three platforms are
reported in Table S2 in the supplementary document.

Discussion
During the last decade, mRNA sequencing has gradually
taken over transcriptome-wide gene expression profil-
ing from array-based technologies. NanoString nCounter
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Table 3 The top-10 differentially expressed genes

NanoString RNA-seq Microarray

Gene name p-value Gene name p-value Gene name p-value

MYB** 7.176e-06 LIFR* 3.813e-05 MYB** 1.132e-05

LIFR* 1.667e-04 MYB** 6.103e-05 PRDM16 2.846e-03

ATRX 8.292e-04 PRF1 1.359e-04 SLC34A2 3.766e-03

SMARCA4 3.455e-03 SLC34A2* 5.697e-04 EML4* 4.375e-03

KLK2 8.929e-03 ZNF331 8.192e-04 HNRNPA2B1 4.783e-03

ETV4* 0.01022 WWTR1 2.557e-04 SYK 5.649e-03

EWSR1* 0.01138 EML4* 3.915e-03 EWSR1* 5.877e-03

MSI2 0.01167 ETV4* 7.149e-03 BCL6* 8.001e-03

SRSF2 0.01218 TFG 8.614e-03 NONO 8.039e-03

TCF3 0.01561 BCL6* 9.211e-03 GPC3 8.258e-03

**The genes identified by three platforms. *The genes identified by two platforms

platform promises to yield less biased and more scalable
experimental results compared to RT-qPCR for targeted
(customized) expression profiling. Many researchers and
medical practitioners choose one platform over another
without knowing the expected differences in the out-
comes of the technologies. In this study, we evaluated
four different platforms on both isoform and gene expres-
sion profiling for a large number of cancer cell lines. The
experiments showed relatively high agreement among the
platforms on gene expression profiling (Fig. 6), while iso-
form expressions estimated by the platforms were less
consistent (Fig. 2). Collectively, the results suggest isoform
quantification is still a more challenging problem than
gene expression profiling. Both the experimental plat-
form and the isoform quantification method play a critical
role for reliable estimation of isoform expressions. Poten-
tially, integration of the isoform expression data collected
across the platformsmay improve the reliability of isoform
expression estimation.
A major challenge of evaluating isoform expression

quantification techniques is the lack of large-scale bench-
mark data with ground-truth isoform expression lev-
els. RT-qPCR is usually considered as the gold-standard
for validating the results from the analysis of RNA-seq
and array-based data [5, 13]. While in our experiments,
NanoString platform did not showmore consistent results
with array-based techniques and RT-qPCR compared
with RNA-seq (Figs. 2, 3, 4, 5, 6, 7, 8 and 9), the dis-
crepancy might be inherent between NanoString and the
other three platforms—nCounter technology does not
rely on amplification and reverse transcription as RNA-
Seq, RT-qPCR and Microarray technologies do. RNA is
commonly converted tomore stable complementary DNA
(cDNA) by reverse transcription for PCR amplification.
It is desirable that the resulting cDNA population repre-
sents the original RNA population. However, both reverse

transcription and PCR amplification introduce biases
based on the base-compositions of gene transcripts in
the quantification of the transcripts. The high error rate
of reverse transcription can also impact data quality.
In addition, the current technologies require that the
cDNA molecules represent only fragments of the RNAs
in an appropriate size for sequencing or hybridization
to Microarray. The fragmentation sites are often non-
random as a result of sequence-dependent features such
as GC-content, epigenomic modifications and DNA con-
formational energy. Though the bias can be traced back
to specifics of the preparation protocols, it is not pos-
sible to predict fragment distribution directly from a
protocol in different technologies. Therefore, it is not
clear if NanoString is indeed less reliable than RNA-
seq. In principle, the NanoString nCounter technique
holds several advantages over RT-qPCR and RNA-seq,
such as directly measuring RNAs without amplification
or cloning, no enzymatic steps required, high level of
sensitivity since both the probes and the target are in
solution rather than being bound to a surface, and dig-
ital readout. The current limit of nCounter is to mea-
sure up to 800 probes in one experiment, which is far
from sufficient for transcriptome-wide profiling. More-
over, the capture and reporter probes can only be designed
to identify known isoforms, and thus NanoString tech-
nology is not capable of detecting novel transcripts. In
addition, it is not guaranteed that the isoforms in one
gene can be completely distinguished by probe design,
and therefore, isoform quantification is only feasible
to a subset of the genes. For this reason, this study
only focuses on 478 transcripts in 155 cancer genes, and
the designed probes cannot distinguish every transcript
in these genes. Due to this limitation, the conclusions
in this study are made only based on this subset of
genes.
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Conclusions
This study made several additional useful observations.
First, Net-RSTQ and eXpress tend to produce more
consistent isoform quantification on the RNA-seq data
than the other compared isoform quantification meth-
ods. Different from the other methods, Net-RSTQ is a
network-based approach that directly incorporates addi-
tional information from protein domain-domain interac-
tions to overcome the limitations of short-read alignments
for transcript quantification, since the protein products of
highly co-expressed transcripts are more likely to inter-
act with each other by protein domain-domain bind-
ing [3]. The eXpress model applies additional normal-
ization strategies by jointly estimating parameters for
the fragment-length distribution, sequencing errors and
sequencing biases to improve the isoform expression esti-
mation [17]. Second, NanoString and RNA-seq are more
sensitive to lowly expressed genes than the array-based
platforms, but the profiling by the two platforms are
still not consistent with each other in the low-expression
range. Third, the agreement among the platforms on fold-
change analysis is moderate, which is lower than the
agreement on gene expression analysis, suggesting that
fold-change normalization against another sample will
decrease the agreement across platforms. Fourth, the top
differentially expressed genes across different tissue types
identified by RNA-seq agree with the detection by one or
both of the other platforms, while the other two platforms
have less agreement. Fifth, the gene expression profiling
results by the Microarray (GEO), in which the data were
combined from the datasets generated by different labs in
different studies, show lower agreement with the profiling
by the other platforms than the profiling by Microarray
(CCLE), in which the samples were generated in the same
study (Fig. 7). This might be explained by the techni-
cal and experimental biases among the Microarray (GEO)
samples prepared and sequenced by different laborato-
ries. Further normalization to remove the biases might
improve the consistency with the other platforms.

Methods
NanoString probe design and nCounter experiments
We designed an experiment for measuring the isoform
expressions of 155 multi-isoform cancer genes in 59 cell
lines. The complete list of the 59 cell lines and their cat-
alogue numbers are available in Table S1. Among the 155
genes, 79 genes contain two isoforms, 37 genes contain
three isoforms, 18 genes contain four isoforms, and 21
genes contain more than four isoforms. We customized
404 capture-reporter probes to capture the 478 isoform
expressions in the genes based on the RefSeq hg19 anno-
tation (RefSeq release 66). In addition, 14 spike-in probes
for quality control and 10 probes for measuring 10 house
keeping genes for normalization of the data are also
introduced. Each probe is 100 bps long, designed to cap-
ture a target sequence in one or multiple isoforms. For
each gene, the probes were designed to distinguish the
expressions of all known isoforms in the gene. In most
of the genes, especially those with more than two iso-
forms, one of the probes was designed to measure the
overall gene expression. We showed one real example in
Fig. 10: four probes were designed tomeasure the four iso-
form expressions in gene FLI1. Probe max measures the
expression of gene level. Probes 1, 2, and 3 measure the
isoform expression of NM_001271012, NM_001167681,
and NM_001271010, respectively. The expression level of
isoform NM_002017 can be calculated by taking the gene
expression minus the total expression of the other three
isoforms. Two technical replicates of each cell line were
measured. The log(x+1) normalized probe signals for all
404 probes from two technical replicates are shown in
Figure S1. The plot shows that the nCounter experiments
are highly reproducible: a linear fit to the log transformed
data results in a correlation coefficient of 0.9867. The
dataset is deposited to GEO (GSE133226).

NanoString gene and isoform abundance estimation
The geometric mean of the ten house keeping genes
(TAF5L, HPS6, DNTTIP2, GNRHR, ZNF407, KCNK7,

Fig. 10 Probe design of gene FLI1. There are four isoforms in gene FLI1 and four probes were designed to distinguish the expressions of the
isoforms. Probemaxmeasures the expression for the gene, and the other three probes were designed to quantify three individual isoforms

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133226
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KIAA1539, RBM12, DGCR14, and KHDRBS1) was
applied to normalize the NanoString signal in each cell
line. Then, the expressions of isoforms in one gene can
be estimated by minimizing the differences between the
assessed and observed intensities for all probes in the
gene as:

min
x

||y − Ax||2F
s.t. xi ≥ 0,

(1)

where vector y represents the probe intensities. A is a m-
by-n indicator matrix with values 0 or 1, where m is the
total number of probes, and n is the total number of iso-
forms in the gene. If probe j covers the exon region of
isoform i in the gene, then A(j,i) = 1, otherwise A(j,i) = 0.
Vector x represents the isoform expressions to learn. After
the isoform expression vector x is learned, the total gene
expression can be derived by accumulating the isoform
expressions. Finally, the gene and isoform expressions are
all normalized by log(x+1).

RNA-seq gene and isoform abundance estimation
The RNA-seq paired-end reads were aligned and quan-
tified using hg19 reference genome with STAR [19] with
default parameters. RNA-seq gene abundances were esti-
mated using Cufflinks [15] and RSEM [16] and the iso-
form abundances were estimated using Net-RSTQ [3],
Cufflinks, RSEM, eXpress [17], and Kallisto [18] with Ref-
Seq annotation [20]. The Fragments Per Kilobase Million
(FPKM) values were reported by Cufflinks and Tran-
scripts Per Million (TPM) values were reported by RSEM,
eXpress, Net-RSTQ, and Kallisto for each isoform (tran-
script) as the expression value. The gene-level expressions
were estimated by summing all the isoform abundances
in the gene. To account for the large dynamic range of
abundances, the expressions are finally normalized by
log(FPKM+1) or log(TPM+1).

Exon-array gene and isoform abundance estimation
Gene and isoform expressions were generated from the
raw Exon-array data (.CEL files) of the 35 cancer cell
lines, using Multi-Mapping Bayesian Gene eXpression
(MMBGX) [21]. Isoforms and genes were quantified using
the Ensembl hg19 reference annotation (Ensembl release
70). The method disaggregates the signal between alter-
native transcripts of a gene to estimate the expression
of each individual isoform. To compare Exon-array with
other platforms, we only used the genes with the same
annotations in both Ensembl and RefSeq annotations.

Microarray gene abundance estimation
We collected two independent Microarray gene expres-
sion datasets for the same 46 cancer cell lines from the

CCLE1 and GEO2 websites. The raw CEL files were nor-
malized by Robust Multichip Average (RMA) [22]. After
merging probes by gene symbols according to the RefSeq
reference annotation, gene expressions derived from the
22,283 probes are included in this study.

RT-qPCR experiment design
The RT-qPCR experiment was designed to measure the
isoform proportion of four multi-isoform genes (ASXL1,
LRIG3, NOTCH2 and SF3B) in 13 cell lines. The four
genes were selected from the genes with themost different
quantification results reported by NanoString, RNA-seq
and Exon-array platforms, and based on the availability
of the primers to distinguish the isoforms in the genes
in the RT-qPCR experiments. The 13 human cell lines
were selected based on the availability of cell culture in
our labs.
In the experiments, RNAs from the cells were isolated

by the Trizol method, according to the manufacturer’s
protocol (Thermo Fisher Scientific3). Reverse transcrip-
tion reaction using Oligo-d(T) priming and superscript
III was carried out according to the manufacturer’s
protocol. (Thermo Fisher Scientific4). The SYBR Green
(Bio-Rad) was used to detect and quantify PCR products
in real-time reactions. The comparative Ct method was
used for data analyses, and we normalized the Ct values
to the amount of total RNAs. The primer sequences used
to measure the expression for each transcript are the
following:
hASXL1 iso1,2 for TAAACTGCCTGGCCGAATCA
hASXL1 iso1 (NM_001164603.1) rev TAAGAT-
GAAGGGGCCTGGTG
hASXL1 iso2 (NM_015338.5) rev CTGTAGCTGGATG-
GCGAGAC
hLRIG3 iso1,2 rev CTCATGGAACTTGCCTTGATGA
hLRIG3 iso1 (NM_001136051.2) for TTGTTCTCC-
CTCTGCTTGCT
hLRIG3 iso2 (NM_153377.4) for CGTCTTCCCGAGC-
CACTC
hNOTHC2 iso1,2 for ACCTTGTGAACCATTTCAA
GTGC
hNOTHC2 iso1 (NM_024408.3) rev GGCACAGTCAT-
CAATGTTCTCT
hNOTHC2 iso2 (NM_001200001.1) rev GACAATGCC-
CTGGATGGAAAA
hSF3B iso1,2 for GGCGGACCATGATAATTTCCC
hSF3B iso1 (NM_012433.3) rev TTAGGATCAGGGG
TTTTCCCTC

1https://portals.broadinstitute.org/ccle
2https://www.ncbi.nlm.nih.gov/geo/
3https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.
pdf
4https://assets.thermofisher.com/TFS-Assets/LSG/manuals/
superscriptIII_man.pdf

https://portals.broadinstitute.org/ccle
https://www.ncbi.nlm.nih.gov/geo/
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/superscriptIII_man.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/superscriptIII_man.pdf
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hSF3B iso2 (NM_001005526.2) rev TCAGCAGTTCT-
GACTTCAAGC.

Cell culture: Human cancer cell lines were obtained
from the American Type Culture Collection (ATCC;
www.atcc.org) and cultured according to standard mam-
malian tissue culture protocols and sterile technique:
MCF7 (www.atcc.org/Products/All/HTB-22.aspx#culture
method)
AGC (www.atcc.org/products/all/CRL-1739.aspx#culture
method)
MDA-MB-231 (www.atcc.org/products/all/HTB-26.aspx#
culturemethod)
T-47D (www.atcc.org/products/all/HTB-133.aspx#culture
method)
HCT-15 (www.atcc.org/products/all/CCL-225.aspx#
culturemethod)
Hep G2 (www.atcc.org/products/all/HB-8065.aspx#
culturemethod)
HCT 116 (www.atcc.org/products/all/CCL-247.aspx#
culturemethod)
HT-29 (www.atcc.org/products/all/HTB-38.aspx#culture
method)
HT-1080 (www.atcc.org/products/all/CCL-121.aspx#
culturemethod)
PC-3 (www.atcc.org/products/all/CRL-1435.aspx#culture
method)
DU 145 (www.atcc.org/products/all/HTB-81.aspx#culture
method)
A549 (www.atcc.org/products/all/CCL-185.aspx#culture
method)
BT-549 (www.atcc.org/products/all/HTB-122.aspx#
culturemethod).

Compare isoform quantification consistency
The differences of isoform proportions estimated by two
platforms are measured by the following formula:

d =
∑n

i=1

∑mi
j=1 |paij−pbij|

mi

n
, (2)

where i is the index of the n genes in the cell line, j is the
index of the mi isoforms in the gene i in the cell line, a
and b denote two different platforms, and paij denotes the
proportion of the jth isoform in the gene i in the platform
a. For each gene i,

∑mi
j=1 p

a
ij = 1.

Correlation, fold-change and differential expression
analysis
Cell line by cell line correlations of the isoform and gene
expressions between two platforms were evaluated by
the Spearman correlation coefficient. The lowly expressed
genes were defined as the bottom one-third genes by
expression in each platform. The intersection of the lowly

expressed gene lists from two platforms were used for
comparison.
The fold-change between the cell lines in one tissue

type and all the other cell lines was calculated to com-
pare the power of detecting the differentially expressed
genes among the different platforms. RSEM for RNA-seq
were used to derive the gene expressions for the differ-
ential expression analysis. The top differentially expressed
genes were detected by ANalysis Of VAriance (ANOVA)
[23] across different tissue types.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12864-020-6643-8.

Additional file 1: Figures S1-S6 and Table S1-S2.
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