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Abstract

Background: Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with high content
of oil and protein. To better understand the maturation process of J. curcas seeds and to improve its agronomic
performance, a two-step approach was performed in six different maturation stages of seeds: 1) generation of the
entire transcriptome of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional
expression levels using a custom Agilent 8x60K oligonucleotide microarray.

Results: A total of 793,875 high-quality reads were assembled into 19,382 unique full-length contigs, of which 13,507
could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9111 probes (out of 57,842
probes), which were differentially expressed between the six maturation stages. The expression results were validated
for 75 selected transcripts based on expression levels, predicted function, pathway, and length.

Result from cluster analyses showed that transcripts associated with fatty acid, flavonoid, and phenylpropanoid
biosynthesis were over-represented in the early stages, while those of lipid storage were over-represented in the
late stages. Expression analyses of different maturation stages of J. curcas seed showed that most changes in
transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways
during seed maturation in J. curcas occurs in late stages. The co-expression results showed that the hubs (CB5-D,
CDR1, TT8, DFR, HVA22) with the highest number of edges, associated with fatty acid and flavonoid biosynthesis,
are showing a decrease in their expression during seed maturation. Furthermore, seed development and hormone
pathways are significantly well connected.

Conclusion: The obtained results revealed differentially expressed sequences (DESs) regulating important pathways
related to seed maturation, which could contribute to the understanding of the complex regulatory network during
seed maturation with the focus on lipid, flavonoid and phenylpropanoid biosynthesis. This study provides detailed
information on transcriptional changes during J. curcas seed maturation and provides a starting point for a genomic
survey of seed quality traits. The results highlighted specific genes and processes relevant to the molecular
mechanisms involved in Jatropha seed maturation. These data can also be utilized regarding other Fuphorbiaceae
species.
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Background

Environmental protection and proper land use are some
of the main concerns of mankind. Significant emission
levels of carbon dioxide (CO,) and other greenhouse gases
into the atmosphere as a consequence of burning petrol-
eum products for various human activities and its impact
on global climate is quite obvious [1]. Actions to mitigate,
reduce the effects of climate change (https://www.apha.
org/topics-and-issues/climate-change) offer an excellent
opportunity to provide innovative methods in order to
control air pollution and greenhouse gas emission. There-
fore, fuel derived from organic materials (e.g. biofuel
crops) receive more attention in the process of shifting
from crude fossil oil to more sustainable resources [2].
However, using food crops as first generation biofuels
caused the food prices to increase globally, which culmi-
nated in a worldwide food crisis. Therefore, methods of
biofuel production had progressed from first to second
generation, and this novel approach utilizes only non-food
crops. Among the second generation biofuels, J. curcas is
a promising arable crop, which is frequently mentioned as
the best option for marginal quality soils. This plant can
be successfully cultivated on soils with low nutrient levels
and low water reserves, even in areas that are considered
unsuitable for agricultural production.

J. curcas naturally grows in tropical and subtropical cli-
mates [3] between sea level and 1800 m of altitude, and is
well adapted to semi-arid, arid conditions and regions
with an annual rainfall ranging between 250 and 3000 mm
[4]. J. curcas is a rapidly growing tree that can be propa-
gated easily, and can be used as a multi-purpose plant for
biodiesel supply, medicinal uses, veterinary purposes and
livestock feed [5, 6]. The oil quality obtained from the
Jatropha crop is very similar to the values of conventional
diesel fuel and can be used without any modification in
diesel engines currently in operation [7].

J. curcas seed contains non-edible oils, which are trad-
itionally used for soap production and medicinal uses
[8]. In addition, its solvents are used due to its thera-
peutic characteristics by people suffering from various
skin diseases and sensitivity to regular soap [9]. All traits
mentioned above make J. curcas one of the best candi-
date as a profitable biofuel crop species for restoring
wastelands and improving employment chances and
subsistence in rural areas [10, 11]. Additionally, the J.
curcas seed cake, which is a waste by-product of the bio-
diesel trans-esterification process, can be used for the
production of various supplies such as organic fertilizer,
high-quality paper, energy pellets, soap, cosmetics,
toothpaste, embalming fluid, pipe joint cement and
cough medicine [12].

J. curcas seed kernels are rich in oil (54-58%) and pro-
tein (20-28%) compared to the shell, and several efforts
were made to make use of cake or kernel meal that
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remains after oil extraction [6]. Furthermore, it contains
a variety of phenolic, flavonoid and diterpenic com-
pounds showing notable anti-oxidant, anti-microbial,
and anti-inflammatory activities [5]. However, its toxins
and anti-nutritional compounds render the seed cake
and oil unsuitable for use as animal feed and human
consumption [13]. Therefore, efforts are required to in-
crease oil yield and composition by improving the ability
of the plant to produce favorable fruits/seeds with suit-
able compounds.

Breeding efforts of this biofuel crop will be accelerated
by the in-depth knowledge of seed transcripts of /. curcas
for obtaining functional genomics information to discover
genes that encode enzymes involved in the biosynthesis of
oil and toxin precursors and to describe their relevant
metabolic pathways [14—16]. Therefore, it is necessary to
establish a reliable method to characterize the temporal
shifts in gene expression being in the background of the
biochemical and metabolic processes which take place
during seed maturation. Furthermore, such data could
help to identify, characterize and — if necessary — modify
the possible transcripts of interest. In Jatropha, transcrip-
tome studies generated data describing seed development
and seed germination from manually pollinated plants,
with the emphasis on differentially expressed genes related
to lipid biosynthesis and toxic compounds [14-18]. In
addition, whole genome sequencing was applied to iden-
tify protein-encoding genes, which could help in improv-
ing the traits of interest (e.g. oil composition) of J. curcas
[19-24]. Considering that Jatropha flowering and fruit-
bearing are practically continuous, the simultaneous pres-
ence of mature and immature fruit on the same plant pro-
vides a unique opportunity to collect seeds in different
stages of maturation of this open-pollinated plant. There-
fore, to obtain an overview of transcripts associated with
all the seed maturation stages that are potentially involved
in seed maturation under the same environmental condi-
tion, we performed the following analyses: 1) generation
of the entire transcriptome of six stages of J. curcas seed
maturation using 454-Roche sequencing from pooled
samples; 2) comparison of transcriptome expression in
seeds of six stages of seed maturation using custom Agi-
lent 8x60K oligonucleotide gene expression microarrays.

Results

Whole seed transcriptome sequencing

To cover the entire J. curcas seed transcriptome, total
RNA was extracted from six stages of seed maturation,
and equal amounts of total RNA from each sample were
pooled together. From this pool, mRNA was isolated
and reverse transcribed into cDNA. Normalized cDNA
libraries were generated and sequenced using the GS
FLX Titanium. Sequencing of cDNA libraries yielded a
total of 793,875 high quality (HQ) reads with an average
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read length of 358 nucleotides and 262,096,927 total
number of bases (SRX4559398).

After trimming and cleaning, a total of 603,459 HQ
reads were assembled into 19,841 contigs (unique tran-
scripts) containing 13,171,840 bases. Out of them, 48,
978 reads were identified as singletons. The size of con-
tigs ranged from 100 to 4088 bases, with 1035 bases as
N50 contig size. All contigs can be accessed at http://
short.boku.ac.at/jatropha_contigs. After removing all
contaminant sequences, 19,382 unique contigs have
been retained. Assembled contigs over 200 bp have been
deposited at DDBJ/EMBL/GenBank under the accession
GIKDO00000000. The version described in this paper is
the first version, GIKD01000000.

In addition, the data were compared with the Jatropha
genomic sequences of Kazusa DNA Research Institute
(JAT_r4.5, ftp://ftp.kazusa.or.jp/pub/Jatropha/) [25, 26]
and Chinese Academy of Sciences (JatCur_1.0, ftp://ftp.
ncbinih.gov/ genomes/Jatropha_curcas/) [27, 28] (Table
S1). In total 84,6% (16,397 contigs), 3.9% (753 contigs),
1.8% (351 contigs) showed sequence similarity to both,
only to JAT r4.5 or only to JatCur_1.0 databases, re-
spectively. However, 9.7% (1881 contigs) were found
additionally in the current study. These transcripts are
most probably new genes, non-jatropha or non-plant
genes, or possibly sequencing artefacts. To assess the
quality of the assembled transcripts, the library was
compared to the reference transcriptome of JatCur 1.0
available from NCBI. The seed specific de novo RNA li-
brary of this study represented about 44.1% of the 35,
788 reference RNA coding sequences with an average
blast High Scoring Pairs (HSP) coverage of 93% (S.D.
16.3%), suggesting a low amount of potential chimeric
contigs.

To further assess the extent of represented transcripts
in the seed transcriptome, contigs of core eudicot genes
were identified using BUSCO. Of the total 2326 core
eudicot gene groups, 547 (23.5%) were found in a
complete form in our dataset (528 of which were single
copy representations suggesting low redundancy in the
library). Two hundred sixty fragmented groups were also
identified, while 1519 core genes were missing from our
dataset. Selected core transcripts were also subject of a
phylogenetic analysis, showing that the transcripts are
most closely related to ] curcas, Hevea brasiliensis,
Manihot esculenta and Ricinus communis, all belonging
to the Euphorbiaceae family (Figure S1).

Functional annotation of whole transcript sequencing
data

All 19,382 unique contigs were analyzed by Blast2GO
[29] and aligned using BLASTX [30]. Search in the
NCBI non-redundant nucleotide database using an E-
value threshold of 1e-6 identified 14,753 unique contigs.
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Approximately 3% (553 contigs) of the transcripts
showed top BLAST hits with uncharacterized/predicted
proteins, and 24% (4629 contigs) had no significant simi-
larity to any sequence in the public dataset. The average
length of annotated and unannotated contigs was 800
and 400 bp, respectively.

GO terms classification identified 13,507 Jatropha
unique transcripts received at least one GO annotation
(Table S2). The highest percentage of GO terms was
found in the category BP, containing 2409 GO terms,
followed by 1841 in MF and 510 in CC (Table S2, Figure
S2). The most abundant GO terms in the BP category
were genes involved in oxidation-reduction processes
(5.1%), DNA-templated regulation of transcription
(3.1%) and response to cadmium (2.4%). Within MF, the
largest content of functionally assigned ESTs were re-
lated to ATP binding (6.5%), zinc ion binding (5%) and
DNA binding (3.6%). In CC, the most representative cat-
egories were nucleus (14.2%), plasma membrane (9.1%)
and chloroplast (7.4%).

Out of the 13,507 sequences annotated with GO
terms, 4313 contigs were assigned with 5593 EC num-
bers representing 1008 unique enzymes, 799 of which
are assigned to one or more KEGG pathways (Table S3).
Additionally, of the 19,382 contigs, 37.6% were also an-
notated based on homology to sequences in the InterPro
database (Table S3).

Moreover, 968 different contigs were identified be-
longing to 20 transporter classes (Table S3). Of them
223 and 236 contigs belong to the transporter classes 2A
(porters) and 3A (p-p-bond-hydrolysis- driven trans-
porters), respectively.

Protein domain characteristics for Resistance Gene
Analogs (RGAs) have been identified in 85 contigs, with
70 carrying a kinase domain, 35 of which also harbored
an additional serine/threonine (Ser-Thr) site. RGAs that
contain Ser-Thr domain can phosphorylate serine and
threonine residues, which are involved in plant develop-
ment, signaling and defense [31]. However, some RGAs
like the Pto gene from tomato encode only Ser-Thr pro-
tein kinase. Four contigs with a nucleotide-binding site
(NBS-ARC) domain and eight contigs with a leucine-
rich repeat (LRR) domain were found. Both domains are
abundantly present in plants and have an ATPase activ-
ity [32].

In addition, 600 contigs could be identified as Tran-
scription factors (TFs), belonging to 52 different TF clas-
ses (Table S3). The most abundant TF families were
MYB-related, MYB, bZIP, AP2, ERF and RAV, repre-
sented by 66, 54, 49, 49, 49 and 46 contigs, respectively.

Annotated sequences were mapped to KEGG pathways
showed 2591 contigs located on 143 pathways (Fig. 1,
Table S4). Using the KEGG classifications allowed us to
identify that the most highly represented pathways were
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Fig. 1 Venn diagram summarizing the functional annotation process of whole seed transcriptome sequence data. Enzyme codes originate from
the Blast2Go annotation, while Interpro hits are resulting from InterProScan (With Interpro hit). Enzyme codes have been checked for mapping on
the pathways of the KEGG (With Enzyme codes mapped). Results of the manual annotation for transporters, TFs and RGAs in all classes are also indicated

OR Interpro hit

R @2 SeqUenceg

%
< 1,002 S
105 transporter L.
780 14 TF 2
99 transp. Qo
15TF  600) S€quen,, e
47RGA b sy, [=3
2 (1]
% [}
S
1,120 &
4 ransp. (1 480 3
15rGA / 73transporter | 8
3TF &
7]
af's
y Qab

purine metabolism (315 contigs), followed by starch and
sucrose metabolism (226), pyrimidine metabolism (154)
and phenylalanine metabolism (138). Further, glycolysis
(129), pyruvate metabolism (111), flavonoid biosynthesis
(111), glycerolipid metabolism (103) and phenylpropa-
noid biosynthesis (96) were also found in the top 20
highly represented pathways.

Genome-wide variation in transcript expression during
seed maturation

An 8x60k oligonucleotide microarray containing 57,842
unique probes was produced from 19,841 transcriptome
contigs. In total 31,875 specific probes and 2604 cross-
hybridizing probes (Xhyb) in sense direction, as well as
21,680 specific probes and 1683 Xhyb in antisense direc-
tion were designed.

The microarray data were normalized; differential expres-
sion patterns were identified, classified, and categorized by
their possible molecular function and involvement in meta-
bolic pathways. Principle components analysis (PCA) on
transcript expression (abundance) of 57,842 probes showed a
clear separation of the six different maturation stages along
the first principle component (PC1); which explained 53% of
total variation, and was associated mostly with variation in
transcript expression over the maturation stages, where
expression from stage IV and V were closer to each other
(Figure S3). Significant changes in transcript expression

(abundance) were observed in the early and late stages, sug-
gesting a higher physiological differentiation in these stages.
In addition, biological replicates of each stage clustered to-
gether, suggesting a minimal variation between replicates.

To identify changes in gene expression patterns during
seed maturation linear models were calculated and re-
vealed large changes in gene expression over the six
stages of seed maturation. A total of 9111 probes (16%
of the total probes) from 7299 contigs (38% of the total
contigs) were differentially expressed with a P-value <le-
8 (Table S5 and Figure S4).

The cluster analysis showed that gene different expres-
sion patterns could be classified into ten different clusters
(1-10) (Fig. 2, 3) of co-expressed genes. Up-regulated
transcripts, whose expression was increased during seed
maturation, are displayed in clusters 2, 4, 8, 9 and 10
(group A), while down-regulated transcripts were dis-
played in clusters 1, 3, 5, 6 and 7 (group B).

Besides, we annotated manually the identified differen-
tially expressed sequences (DESs) and patterns with re-
spect to their specific function. Based on the Transporter
Classification Database, 431 differentially expressed tran-
script (699 probes) were assigned to 92 transporter sub-
families, 16 subclasses and 7 classes, distributed among all
clusters, representing the intense activities during the mat-
uration process, which requires transport of metabolites
within the cell and between different parts of the seed.
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Fig. 2 Cluster analysis of DESs based on their expression patterns across seed maturation stages. The analysis was performed using normalized
and filtered data according to their expression profiles between seed maturation stages. Normal mixture modelling for model-based clustering
(expectation-maximization) was performed with P-value <1e-8

The highest number (184) of transcripts related to trans-
port activities were identified in class 2 (Electrochemical
potential-driven transporters), followed by class 3 (Pri-
mary active transporters) with 179 transcripts. Thirteen
ranscripts were classified to be transporter subfamily
1.A.33, which is related to heat shock protein (Hsp) 70
(Table S5). Furthermore, different kinds of sugar trans-
porters (2.A.1) and ATP/ADP transmembrane transport
(2.A.29) represent the role of transporters to provide ne-
cessary energy metabolism during seed maturation.
Among 24 transcripts that were classified as ABC trans-
porters (3.A.1), subfamilies A, C, E, F, G and I were identi-
fied (Table S5).

In addition, 47 families of TFs showed differential expres-
sion between the six seed maturation stages, involving all ex-
pression pattern clusters (Table S5). The highest number of
transcripts related to TFs were found in cluster 1, followed
by cluster 6, while the least number of TFs were found in
cluster 3. The most abundant TF families were identified as
AP2/ERF-RAV. Furthermore, we explored the co-expression
patterns using partial correlation networks. We identified
two intermodular hubs with around 40 edges and a broad
range of nodes displaying between 15 and 10 edges (Fig. 4a-

b). The CB5-D hub showed the highest number of edges
followed by unannotated contig02686, CDR1 (aspartic pro-
teinase), unannotated contig00566, TT8 (Transparent Testa
8), unannotated contigl9762, and HVA22 (Fig. 4a-b).
HVA22J, connected CB5-D (cytochrome B5 isoform D), to
CDR1, Dihydroflavonol reductase (DFR) and TT8 (Fig. 4a-b).

To focus on processes expected to be involved in seed
storage and seed developments as well as hormone path-
way, the GO terms from BP category were extracted.
The co-expression results showed a high degree of con-
nectivity between seed development and hormone path-
ways, while seed storage is less connected to the other
two pathways (Fig. 4c).

In addition, based on pairwise comparison between
seed maturation stages, the highest number of differen-
tially expression transcripts related to 889 and 272 con-
tigs (1122 and 1673 probes), which were found between
stages V and VI (Table S6).

GO enrichment analyses of DESs

GO enrichment analyses in BP categories for each clus-
ter indicated that the most significantly over- and
under-represented DESs were found in cluster 6 (Top 15
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Fig. 3 Global gene expression heat map and cluster analysis of the DESs during seed development. Cluster analysis on y-axis represents similar
expression patterns among the expressed sequences, while cluster analysis on the x-axis indicates the relatedness of DESs profiles among the

different seed maturation stages and the biological replications. The log, of relative gene expression levels represented by the heat map on the
left. Clusters of DESs according to Fig. 2, are represented on the right. Seed development stages and their biological replication are clustered at

GO terms and detailed information for each cluster are
shown in Fig. 5, Figure S5, Table S7 and Table S8).
Besides, visualization of enriched GO terms related to
BP category showed that the GOs related to fatty acid
metabolism (e.g. unsaturated fatty acid, linoleic acid),
lipid storage, dormancy process,

aromatic  acid

transports, monoterpenoid metabolism, and UDP-
glucose metabolism were significantly over-represented
in cluster group A, with higher DES level during late
stage of seed maturation. Furthermore, Raffinose family
oligosaccharides (RFOs), which are associated with late

maturation in Arabidopsis, Brassica napus and Medicago
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Fig. 4 Co-expression networks based on partial correlations. a A network of the 300 most significant edges between contigs differentially expressed

during seed development stages. Node colouring represents cluster membership (see also Fig. S3). b Histogram representation the top 20 of contigs
differentially expressed (x-axis) with the highest number of edges (y-axis). Two major hubs could be identified with ~ 40 edges and a broad range of
nodes display between 10 and 15 edges. ¢ Co-expression networks based on GOs of biological processes related to seed storage, seed development,
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trunculata [33-35] and transcripts related to biosyn-  processing, and gene expression were under-represented
thesis of serine and glycine, Embryo sac development, in different clusters (6 and 9). They represent a different
RNA modification, methylation, maintenance of seed pattern of gene expression during seed maturation, indi-
dormancy, protein folding and RNA modification were cating the involvement of two different groups of genes.
over-represented in this group.
In contrast, GOs related to phenylpropanoid and flavon- ~ KEGG enrichment analysis of DESs
oid metabolism and biosynthesis, as well as cell wall To further understand the biological function of DESs
modification and carbohydrate metabolism in cluster during seed maturation, enriched KEGG pathways with
group B, were significantly enriched with high expression = P-value < 0.05 in the set of DESs was assessed (Table S8
levels during the early stage of seed maturation (Figure and S9, Figure S4 and S6).
S4). Transcripts involved in hormone transporters,
signaling, ATP hydrolysis coupled protein transport and  Pathway enrichment in DESs related to lipid metabolism
purine ribonuclease metabolism were significantly over- In the plant, pathways contributing to lipid biosynthesis
represented in this group. can be divided into three steps and cell compartments;
GOs involved in glucan and beta-glucan biosynthesis  a) fatty acid biosynthesis in the plastids, b) triacylglycerol
playing a key role in regulating seed coat-imposed dor- (TAG) biosynthesis in the endoplasmic reticulum (ER),
mancy [36] were over-represented in two clusters (3 and and c¢) oil body formation in the cytoplasm [37].
8, respectively). Also, GOs involved in translation, RNA  Altogether, 97 contigs and 55 enzymes distributed
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under-represented and magenta bars over-represented GO terms. The x-axis indicates the statistical significance of the enrichment

among 13 pathways were enriched as being involved in
these steps (Figure S7).

In the first step, we could identify DESs related to 3-
oxoacyl-ACP reductase (KAR, EC:1.1.1.100), containing
various DESs (five contigs in clusters 1 and 8). In
addition, Beta-ketoacyl-ACP synthase I (KASI, EC:
2.3.1.41, two contigs in clusters 5 and 8) with DESs were
identified showing different regulation patterns. The
elongation from 16 : 0-ACP or 18 : 1-ACP [38] occurs
in the plastid and is catalyzed by acyl-ACP desaturase
(AAD, EC:1.14.19.2), which was represented in current
study by four DESs (in clusters 5 and 8). Additionally,
we identified Oleoyl-ACP hydrolase (OAH, EC:3.1.2.14,

two contigs in clusters 1 and 5), removing acyl group
from ACP, and Acyl-CoA synthetase (EC:6.2.1.3, two
contigs in cluster 8) engaged in glycerophospholipid me-
tabolism and fatty acid elongation.

We also identified key enzymes involved in triacylglycerol
(TAQ) production such as phospholipid: diacylglycerol acyl-
transferase (PDAT1, EC:2.3.1.158, two contigs in cluster 8),
lysophosphatidic acid acyltransferase (LPAAT, EC:2.3.1.51,
five contigs in clusters 2 and 4), and PA phosphatase (PAP,
EC:3.1.34, one contig in cluster 2). Two DESs in cluster 10,
encoding diacylglycerol O-acyltransferase (DGAT, EC:
2.3.1.20), and two DESs corresponding phospholipid diacyl-
glycerol acyltransferase (PDAT, EC:2.3.1.158) in cluster 8
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were identified. Furthermore, triacylglycerol lipase (EC:
3.1.1.3, six contigs in clusters 4 and 8), which modifies TGA
into fatty acids was identified. All DESs involved in TAG
production process were classified in clusters 2, 4 and 8,
showing their expressions increase during seed maturation.

Contigs encoding enzymes like diacylglycerol kinase
(ATP, EC:2.7.1.107, two contigs in cluster 4), aldehyde
dehydrogenase (NAD+, EC:1.2.1.3, three contigs in clus-
ters 2, 4 and 8) and glycerate 3-kinase (EC:2.7.1.31, two
contigs in cluster 2), were found in cluster 2, 4 and 8,
showing an increase during the last stage of J curcas
seed maturation. As expected, the synthesis of fatty acids
requires a high amount of energy during seed matur-
ation, which results in increased expression of enzymes
related to photosynthesis as an energy supply [39].

Furthermore, two important enzymes involved in alpha-
linolenic acid metabolism and biosynthesis of unsaturated
fatty acids were identified in cluster 1: acyl-CoA oxidase (EC:
1.3.3.6, one contig) and enoyl-CoA hydratase/3-hydroxyacyl-
CoA dehydrogenase (EC:4.2.1.17, two contigs).

Pathway enrichment in DESs related to phenylpropanoid
biosynthesis

Among the significantly enriched pathways, the phenyl-
propanoid biosynthesis pathway contained 30 over-
represented contigs and 11 enzymes located in clusters
3, 5 and 8 (Figure S8). In this pathway, we identified two
over-expressed transcripts (contig05064, and con-
tig05269) related to phenylalanine/tyrosine ammonia-
lyase (PTAL, EC:4.3.1.25), the expression of which de-
creases during seed maturation as shown in clusters 3
and 5. Furthermore, one transcript corresponding to
trans-cinnamate 4-monooxygenase (C4H, EC:1.14.13.11,
one contig in cluster 5) was identified, which converts
cinnamic acid to P-coumaric acid. Finally, P-coumaric
acid can be conjugated by 4-coumarate: CoA ligase
(4CL, EC: 6.2.1.12) and enriched to coenzyme A to form
p-coumaroyl-CoA, which is the precursor for the synthe-
sis of flavonoids, stilbenes, and other phenylpropanoids
[40]. For this enzyme we also identified five transcripts,
enriched in clusters 3 and 5.

Caffeoyl-CoA O-methyltransferase (CCoA-OMT; EC:
2.1.1.104) with four transcripts was over-represented in
clusters 3, 5, and 8. Finally, 11 transcripts in clusters 3
and 5 for peroxidase (EC:1.11.1.7) were significantly
enriched and over-represented.

Pathway enrichment in DESs of flavonoid biosynthesis-
related pathways

After oil extraction, the Jatropha seed cake contains high
amounts of polyphenols and pigments as a result of fla-
vonoid biosynthesis. In this study, 42 DESs were anno-
tated and enriched in clusters 1, 3 and 5. They encoded
16 enzymes involved in flavonoid, flavone and flavonol
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biosynthesis and isoflavonoid biosynthesis (Figure S9).
Two differentially expressed transcripts (cluster 1) were
identified as 6'-deoxychalcone synthase (EC:2.3.1.170)
and three transcripts (clusters 3 and 5) as naringenin-
chalcone synthase (CHS, EC:2.3.1.74), an important en-
zyme catalyzing the conversion of cinnamoyl-CoA to
pinocembrin chalcone. One transcript was annotated for
chalcone isomers (CHI, EC:5.5.1.6, cluster 3) that cata-
lyzes the conversion of pinocembrin chalcone to pino-
cembrin, a substrate for galangin synthesis [41]. Four
transcripts were identified as flavanone 3-dioxygenase or
naringenin 3-dioxygenase (F3H, EC:1.14.11.9, in cluster
5), which is involved in highly conserved pathways in
plants to convert naringenin into dihydrokaempferol. It
is an important intermediate product, that can be con-
verted to kaempferol by flavonol synthase (EC:
1.14.11.23), identified in the current study with 10 differ-
entially expressed transcripts (in clusters 1, 3 and 5).
The presence of different expression patterns (from dif-
ferent clusters) of one enzyme could be explained by the
existence of different isoenzymes and possibly by the
interaction with other genes involved in flavonoid bio-
synthesis at multiple loci [42].

Validation of microarray data using qRT-PCR

A total of 70 contigs from the DESs represented tran-
scripts in seeds, and three housekeeping genes were se-
lected (Table S10 and Table S11) and used for
independent validation using a 48.48 chip (Fluidigm) to
confirm that the changes in expressions as indicated by
microarray data were authentic and reliable. Candidates
for qPCR were chosen based on expression levels, known
function, clusters and length of contigs. Additionally,
some contigs of unknown function were selected. The
corresponding primers are listed in Table S10.

The expression patterns obtained by qRT-PCR correlate
strongly to moderately with data from the microarray ana-
lyses (about half of the contigs correlate with the microarray
data at a Pearson correlation < - 0.8), thus confirming the re-
liability of the chosen approach (Figure S10).

Discussion

The understanding of transcriptional variation during
different seed maturation stages is of utmost importance
for breeding strategies in J. curcas; especially for low
anti-nutritional, high-quality oil, and bioactive compo-
nent levels, which could make the crop suitable for bio-
diesel, animal feed and pharmaceutical use. In this study,
genome-wide transcriptome analysis was used to identify
the global gene expression pattern of J. curcas seeds at
six different developmental stages, collected at the same
time point on one plant. Even though J. curcas is an im-
portant oil crop, this is the first study of profiling
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genome-wide transcript expression during seed matur-
ation of an open-pollinated plant.

The sequencing of the whole seed transcriptome of J. cur-
cas revealed 19,382 unique contigs, of which 14,753 contigs
were aligned through Blast search; however, 4,629 contigs
could not be annotated since they did not have any BLAST
hits. The high number of unannotated transcripts might be
an indication of potential limitations in transcriptome assem-
bly and annotation. The unannotated sequences could in-
clude both novel transcripts and technical artifacts from the
sequencing technology (library preparation and/or sequen-
cing machine). Additionally, the applied BLAST parameters
are optimized for complex full-length RNA sequences, which
does not favor BLAST searches of short (150-200 bp) se-
quences of low complexity. Furthermore, the comparison of
contigs with different Jatropha genome sequences [19-22]
revealed additional 1881 contigs in the transcript data set of
the current study.

On the other hand, use of whole seed transcripts of dif-
ferent maturation stages allows us to design a robust and
high coverage microarray platform (in /. curcas) to compare
a constant large number of genes for the expression
evaluation of different genotypes, organs, and tissues.
Although RNA-Seq has some superior benefits for quanti-
tative transcriptomics, microarray is still a common method
of choice, since in compared to RNA-seq, microarray is
cost effective, fast and provides concordant results. Besides,
bioinformatics and statistics practices for microarrays are
well established and straightforward in comparison to
RNA-seq data, which is more complex [43].

The examination of genome-wide variation in tran-
scripts at selected seed developmental points could allow
us to identify DESs with the high number of edges that
might be associated with lipid and flavonoid biosynthesis
as well as unknown functions. It was also noteworthy to
find that all DESs with high number of connectivity
belong to cluster group B showing a decrease in their
expression during seed maturation. The co-expression
patterns showed that the CB5-D hub has the highest
number of edges, followed by unannotated contig02686
(Fig. 4a-b). The CB5, a cytochrome B5 isoforms, and
small tail-anchored membrane proteins play an essential
role in many cellular processes, including lipid biosyn-
thesis. It is well known that CB5-D in different morpho-
types of Brassica rapa provide electrons for various
enzymes located in the endoplasmic reticulum (ER), in-
cluding fatty acid desaturase (FAD), FAD-like proteins,
and are also physiologically important for p450 protein
family [44—48]. Hwang et al. [45], combined in vivo and
in vitro assays to show that CB5-D are targeted exclu-
sively to mitochondrial outer membranes, while the
other isoforms of CB5 (A, B, and C) are targeted to the
ER. In addition, our result showed a direct connection
between CB5-D from cluster 5 and CDR1 from cluster 3
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(Fig. 4a). Although proteins with hydrolase activity like
CDR1 do not imply the production of seed oil, overex-
pression of microsomal DGAT1 — a key enzyme of triac-
ylglycerol production — resulted in differential regulation
of CDR1 expression in transgenic and untransformed
control in Brassica [49]. Furthermore, CDR1 and CB5-
D, show the highest expression in the early stage of seed
maturation, suggesting their indirect roles in fatty acid
biosynthesis in the early stages.

Besides, the contig02686 (unannotated) from cluster 6
also contains a high number of edges, which may be
connected to some hypothetical proteins. There is a
need for functional analysis of this contig, which might
support important biological cell functions and could
potentially serve as targets for further studies.

Along with the hub with the high number of edges,
TT8 from cluster 6 has an essential role in the regula-
tion of flavonoid biosynthesis and the formation of seed
coat colour. However, Chen et al. [50] reported that
TT8 also affect FA biosynthesis in seeds of Arabidopsis
maternally, which also inhibits FA accumulation by
down-regulating of the expression of a carboxylase bio-
tin carboxylase subunit (CAC2), beta-ketoacyl-acp syn-
thetase II (KASII), mosaic deathl (MOD1), fatty acid
biosynthesis2 (FAB2), acyl-acp thioesterase (FatA), fatty
acid elongationl (FAE1), FAD2 and FAD3, all playing an
important role in FA biosynthesis during seed maturation.
The TTS8 also represses the expression of leafy cotyledonl
(LEC1), LEC2, FUSCA3 (FUS3), and cytidine diphosphate
diacylglycerol synthase2 (CDS2), which are critical to
embryonic development [50]. On the other hand, TT8
influences DFR expression, which commits phenolics to
proanthocyanidins synthesis responsible for seed coat and
quality germplasm of canola [51]. In Arabidopsis,
At4g09820 (TT8) encodes a protein, which is important in
the expression of DFR, while DFR can give rise to flavo-
noids [52], representing their important role in flavonoid
pathways. The high connectivity and similar expression pat-
terns on both annotated transcripts in the current study
might suggest the same functions and roles in J. curcas.

Eventually, HVA22-like protein - a stress-inducible
gene [53] from cluster 3, playing a role as a hub connec-
tion among DFR, TT8, and CDR1, represents its effect
on fatty acid and flavonoid biosynthesis pathways in /.
curcas. HVA22 is identified to be an ER- and Golgi-
localized protein and is able to regulate gibberellin-
mediated vacuolation negatively [53].

Considering the intense metabolic activity during seed
maturation, which requires the regulation of target genes
and the exchange of metabolites and proteins between
different locations in seed and within the cell, it is im-
portant to identify transcripts related to transport ma-
chinery and TF. Among the differentially expressed
transcripts that were classified as a transporter,
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subfamily 1.A.33 were related to Hsps, which perform di-
verse biological functions in collaboration with chap-
erons either in stress or non-stress conditions. In the
absence of heat stress, Hsp genes are accumulated dur-
ing the late stage of seed maturation [54]. Several plant
cytosolic Hsp70 were identified during development,
maturation, and germination of seeds of pea and Arabi-
dopsis [55, 56]. In this study, three transcripts were iden-
tified as homologues to Arabidopsis BiP1 of plant Hsp70
family. These genes appeared to be highly expressed in
the early stage of seed maturation (cluster 6), which is in
concordance with previous results, where BiPs (BiP-I
and BiP-2) showed higher expression during the early
stage of seed development, which decreased toward the
end of seed maturation. These are related to the BiP
roles in rapid cell expansion, accumulation of seed stor-
age protein, and seed maturation [56-58].

In the group of ABC transporters (3.A.1) which are in-
volved in plant development, nutrition, stress response
and phytohormones and primary metabolites transports
[59], one transcript showed homology to AtABCG14
(cluster 5 and 10), described to be involved in transloca-
tion of cytokinins between the root and the shoots in
Arabidopsis [60, 61]. This transcript could be essential
for long-distance communication between root-shoot-
fruit as well. It was also reported that the tgdI (trigalac-
tosyldiacylglycerol) mutants showed a decrease in ER-
derived plastid lipids, and accumulation of oligogalacto-
glycerolipids (TGDG) and TAG in leaf tissues [62],
showing that TGD1/ AtABCI14 encodes a membrane-
spanning protein [59].

We also identified one ABCG reporter transcript in
cluster 10 homologous to Arabidopsis AtABCG25, re-
ported to act as a carrier to export ABA from the vascu-
lar tissues, where it is mainly produced [63]. In addition,
one homolog of AtABCD1 found in cluster 4 and cluster
9 facilitated the transport of lipidic metabolites in Arabi-
dopsis [64]. Moreover, transcripts associated with trans-
porters AtABCC2 and AtABCI17 expressed in cluster 7
and 9, respectively, were reported to be involved in
transport of toxic compounds in Arabidopsis. AtABCC2
is tolerant to metals and act as chlorophyll catabolic
transporter, while AtABCI17 is expressed in roots and is
highly sensitive to Aluminium [59]. It is clear that plant
ABC transporters play an important role for survival of
plant and seed maturation; however, many questions re-
main to be answered since only a few of the plant ABC
transporters were functionally analyzed (22 out of 130 in
Arabidopsis) [59, 64].

Transcripts related to TFs are distributed among all
clusters with different expression patterns. Among TFs
related to seed oil accumulation, we could identify differ-
entially expressed transcripts that showed homology to
Arabidopsis AP2 type TFs, WRI1 and HD-ZIP type,
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GLABRA2 (Table S5). The WRI1 has been studied ex-
tensively in the regulation of the transcription levels of
genes in lipid biosynthesis pathways in the Arabidopsis,
rapeseed, maize, potato, Siberian apricot kernel, and
Jatropha seeds [24, 65-69]. It was reported that over-
expression of JcWRII not only increased the lipid
content but also the seeds mass. In addition, over-
expressing JcWRI1 in Jatropha seeds increased oleic acid
(C18:1) level compared to linoleic acid (C18:2), which
also increased the expression level of enzymes related to
oleic acid production such as BCCP2, KASI, KASIII,
FATA, ACP1, and DGAT1 [24]. In the current study,
WRI1 and KASI of cluster 5 presented similar expres-
sion patterns and were highly expressed in the early
stage of seed maturation. This could indicate that the
function of both genes closely correlates with fatty acid
biosynthesis in the early stage of seed maturation. This
is also in agreement with the previous report in Arabi-
dopsis which found that WRI1 targeted many genes
from FA synthesis [70].

Furthermore, GLABRA2 (GL2), a member of the HD-
ZIP family, identified in cluster 3, exhibited a down-
regulated expression pattern during seed development,
which is in contrast with the expression pattern of iden-
tified enzymes related to lipid biosynthesis pathway,
where their expression increased with development of
the seed. Based on previous studies, GL2 was a negative
regulator of seed oil content [71], which is in agreement
with the current data.

Since the major goal of seed oil crop research is focused
on oil quality and quantity, it is necessary to understand
the processes involved in seed metabolism [5]. On the
other hand, phenolic compounds, which are produced
under optimal and suboptimal conditions, could influence
and improve seed development, germination, metabolism,
and biomass accumulation [72]. Furthermore, Synthesis of
phenols involved in several pathways, such as flavonoid
and phenylpropanoid biosynthesis pathways, could help
the plant to cope with different stress conditions [73].
Therefore, focusing on DESs related to enzymes involved
in lipid, flavonoid, and phenylpropanoid biosynthesis
pathways is of great interest.

In the current study, most of the enzymes involved in
lipid biosynthesis in J. curcas were identified based on
the annotation of the seed transcripts. Among key en-
zymes involved in fatty acid concentration in the plastid,
KASI was identified with two quite different expression
patterns during seed maturation stages, suggesting their
functional differentiation during seed maturation. How-
ever, Jiang et al. [15] and Xu et al. [74] found that the
expression of the KASI gene increased during seed mat-
uration in J. curcas. On the other hand, among key en-
zymes involved in TAG synthesis, LPAT, DGAT, and
PDAT were identified in our dataset, showing that they
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were upregulated during seed maturation, indicating
their essential roles in the synthesis of TAG. These
genes were also represented by a different number of
transcripts, expression level, and pattern, showing that
they contain various isoforms with different functions.

A previous study reported five genes for the LPAT in
the Arabidopsis genome and demonstrated different ex-
pression patterns and functions. Three of them (LPAT]I,
LPAT?2, and LPATS3) are essential to normal plant devel-
opment, where over-expression of LPAT2 improved ac-
cumulation of TAG in seeds [75].

It is also well known that DGAT, a key enzyme to the
synthesis of TAG, could improve the oil content in Ara-
bidopsis, Brassica napus, soybean, and maize seeds [76,
77], and therefore, this step has received the most atten-
tion to increasing amount of TAG [77].

In plants, DGATs encode by two genes (DGAT1 and
DGAT?2), which were also identified in Jatropha [5, 14].
However, genetic studies with mutants showed that the
disruption of the DGAT1 gene reduces 70-80% of oil
content in Arabidopsis seeds. Besides, the function of
DGAT?2 is unclear in the Arabidopsis mutant [77, 78].
The expression patterns of the two DGAT were also
studied in developing seeds of soybean, Euphorbia,
castor bean, and Jatropha [74, 79]. It was reported that
in Jatropha, DGAT2 mainly expressed in leaf and poorly
expressed in developing seeds. In contrast, the castor
bean showed the expression of DGAT?2 at a higher level
compared to DGAT1 in developing seeds [77].

PDAT has various isoforms, but PDAT1 showed to
have an important role in seed TAG content in Arabi-
dopsis [80]. Using various RNAi silencing of PDATI and
DGATI showed that both genes have an overlapping
role in the synthesis of TAG in oil-seed plants. However,
their expression was reported to be different in various
plants. For instance, in sesame PDAT showed higher
expression compared to DGAT, while in castor bean the
DGAT showed a higher expression level compared to
PDAT [14, 81, 82]. In Jatropha, PDAT showed lower ex-
pression compare to DGAT1, as reported by Xu et al
[74]. However, Ha et al. [14] described a higher expres-
sion of PDAT compared to DGAT. In the current study,
PDAT and DGAT showed the highest expression in the
last stage of seed maturation. However, the expression
of PDAT starts to increase from the middle stages of
seed maturation, while considering DGAT, the expres-
sion starts to increase in the late stages (Table S5, Figure
S4), indicating that DGAT has more important role in
later stages compared to PDAT.

The transcripts involved in the expression of the triac-
ylglycerol and FA desaturation biosynthesis processes in-
creased during middle to late stages of seed maturation,
something previously reported in Brassica rapa [83],
which is also in agreement with the current results. This
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could be explained by the rise of storage lipid produc-
tion, which is also confirmed by previous research stud-
ies [17, 18, 84—86].

In this study, we also identified the expression pattern
of various key enzymes involved in phenolic compounds
during seed maturation of J. curcas. It is noteworthy to
point out that, in many cases, they are present in mul-
tiple copies with different expression patterns. For in-
stance, previous reports showed that 4CL genes contain
four isoforms which differ in terms of localization and
activity in Arabidopsis. In Arabidopsis, the 4CL3 has
shown to be expressed in a broad range of cell types,
and is mainly co-expressed with flavonoid biosynthesis
pathways, while 4CL1, 4CL2, and 4CL4 are associated
with lignin biosynthesis genes [79, 87, 88]. The results
are in agreement with our data, where 4CL were identi-
fied with 5 DESs.

The flavonoid biosynthesis pathway is well conserved
among plants [89]. Considering that the expression level
of most transcripts related to flavonoid biosynthesis was
more than two times down-regulated in the last stage
compared to early stages in all three clusters (1, 3, 5)
(Fig. 2), it is suggested that the genes involved in flavon-
oid biosynthesis may be essential during the early stages
of seed development [42]. Six DEGs involved in flavon-
oid biosynthesis pathways were significantly enriched in
male and female flower buds of J. curcas, and all of them
were up-regulated in male vs. female flowers. The ex-
pression pattern of major flavonoid biosynthesis genes
was also down-regulated during seed development in
Arabidopsis thaliana [90]. However, the expression of
each of these contigs did not follow a similar pattern
during later stages, and even three contigs of the enzyme
flavonoid 3’, 5'-hydroxylase (EC: 1.14.13.88), present in
two different clusters (1 and 3) that may indicate the
presence of different isoenzymes and functions. There-
fore, since flavonoids are involved in protective function
[91], it is important to understand the functional role of
these transcripts.

Conclusions
Different approaches were used to identify sets of genes
with various transcript abundance during seed matur-
ation. First, to obtain an overview of the variation in
seed maturation stages, PCA was carried out using all
transcripts present in the microarray (Fig. S3). The first
principle component (PCl: 53% explained variation)
analysis captured mostly temporal variation in transcript
abundance, which is supported by previous studies in
Brassica rapa [83], and Arabidopsis thaliana [92, 93],
where seed developmental stages are the major source of
transcriptional and metabolic variation.

Second, the center of our attention was directed to
transcripts related to Jatropha seed maturation to
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correlate co-expression patterns within pathways and to
anticipate putative regulatory elements of the metabo-
lisms of interest (Fig. 4). The co-expression analysis
showed that the CB5-D had the highest number of
edges, connected directly to CDR1. The co-expression
result showed a high degree of connectivity between
seed development and hormone pathways, while seed
storage is less well connected to the other two pathways.

Third, a subset of probes with variation in transcript
abundance patterns between maturation was selected for
further analyses. This subset of genes was present in dif-
ferent clusters, which were enriched in various metabolic
pathways such as fatty acid biosynthesis, flavonoid bio-
synthesis, glucan metabolic biosynthesis, seed matur-
ation and dormancy, sucrose and hormone metabolic
processes.

Fourth, pairwise transcript expression analyses of dif-
ferent maturation stages of J. curcas seeds showed that
most changes in transcript abundance occurred between
stages V and VI with brown and black epicarp, respect-
ively (Table S6), suggesting that the timing of metabolic
pathways during seed maturation in J. curcas is in late
stages. The expression results were validated for 75 pu-
tative transcripts.

Finally, cluster analyses were used to discover particular
seed maturation-dependent patterns of gene expression.
Transcripts related to fatty acid, flavonoid, and phenylpro-
panoid biosynthesis were over-represented in the early
stage, while lipid storage in the late stage. Generally, the
expression of the most over-represented transcripts de-
creases in the last stage of seed maturation.

Methods

Plant material

Seeds of a selected /. curcas plant in Kamisse, Ethiopia,
were collected at six maturation stages (I-VI) and char-
acterized according to the color of epicarp and endocarp
[green-white (I), green-brown (II), green-black (III),
yellow-black (IV), brown-black (V), dry-black (VI)] [94]
at the same time. Three biological replicates were used
for each sample, immediately frozen in liquid nitrogen
and stored at — 80 °C.

Total RNA extraction

Total RNA was extracted from six stages of seed matur-
ation of J. curcas using plant RNA purification reagents
(Invitrogen) according to the supplier’s instructions. The
quality and concentration of total RNAs were deter-
mined using NanoVue Spectrophotometer (GE Health-
care Life Sciences) and gel electrophoresis. All RNA
samples showing A260/280 ratios between 2.0 and 2.15
were selected and analyzed for RNA integrity using an
Agilent 2100 Bioanalyzer (Agilent Technologies). RNA
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samples with an integrity number above 7.0 were used
for further analyses.

cDNA synthesis for sequencing

Equal amounts of extracted RNA from different seed mat-
uration stages were pooled and used for cDNA library
construction. To purify mRNA from 5 pg total RNA, the
mRNA-Only Eukaryotic mRNA Isolation Kit (Epicentre)
was used by applying exonuclease digestion followed by
LiCl precipitation. One ug mRNA was used for the syn-
thesis of the first-strand ¢cDNA by the Mint-Universal
c¢DNA Synthesis Kit (Evrogen). The Trimmer Kit (Evro-
gen) was used for normalization reaction using 800 ng
amplified cDNA, which was re-amplified by 18 cycles.

Size selection and cloning of cDNA

Two pg of normalized cDNA were digested by ten units of
the Sfil restriction enzyme (New England Biolabs) for 2 h at
48 °C. Fragments (> 800 bp) isolated from an LMP agarose
gel were purified using the MinElute Gel Extraction Kit
(Qiagen). The Fast Ligation Kit (New England Biolabs) was
used for ligation of 200 ng purified cDNA fragments to 100
ng Sfil using dephosphorylated pDNR-lib Vector (Clontech).
The product was desalted by ethanol precipitation and re-
dissolved in 10 pl water. Of this, 1.5 pl was used to transform
NEB10b competent cells (New England Biolabs). To verify
the success of normalization, 96 clones were randomly se-
lected and sequenced.

cDNA library preparation and sequencing using Roche
454 FLX

One million clones were plated on LB-Cm agar plates,
collected and stored in glycerol stocks at — 70 °C. Half
of the cells were inoculated to a 300 ml Terrific Broth/
Cm culture and were grown for 5h at 30°C. One
hundred Units Sfil digested 200 pg of purified plasmid
DNA (Qiagen) for 2 h at 48 °C. LMP-Agarose/MinElute
Gel Extraction Kit was used to purify inserts, which
were ligated to high-molecular-weight DNA using a Sfi-
linker.

The library for the Roche 454 FLX sequencing was
generated according to the manufacturer’s protocols
(Roche/454 Life Sciences). The concatenated inserts
were sheared to fragments ranging from 400 to 900 bp.
The two 454 A and B adaptors were ligated to the ends
of the emulsion PCR and sequencing. The library was
sequenced on one picotiter-plate of the GS FLX using
the Roche/454 Titanium chemistry.

Assembly of the sequence reads to transcripts

At first, the reads were screened for the Sfi-linker used
for concatenation and linker sequences were removed.
The Roche/454 Newbler software (454 Life Sciences
Corporation, Software Release 2.3) at default setting was
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used to assemble clean reads to individual transcripts.
All unique sequences with an average length of > 100 bp
were used for oligonucleotide microarray design.

The seed transcriptome has been assessed using the
BUSCO 4.0.2 [95] software package by identifying core
eudicot genes (eudicots_odb10) in the dataset. Twenty-
three of the identified core genes have been selected and
aligned to homologous sequences from jatropha curcas,
Hevea brasiliensis, Manihot esculenta, Ricinus commu-
nis, Populus trichocarpa and Vitis vinifera using clustalw
[96]. Phylogenetic analysis has been carried out using
Beast v. 2.6 [97].

GO annotation of whole seed transcripts

Blast2GO was used to obtain the GO information. The
initial blast search was carried out using BLASTX (max-
imum e-value of le-6, gap open penalty 11, gap exten-
sion penalty 1). Maximum 20 blast hits were retained
per contig, blast hits have been submitted to the blas-
t2go annotation database for further analysis. Further-
more, the functional annotation was used to refine
annotation, and specific GO terms were labeled with
their putative Biological Process (BP), Molecular Func-
tion (MF), and Cellular Component (CC). Furthermore,
GO IDs were used to assign enzyme commission (EC)
numbers and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathways [98] to contigs.

Manual annotation of specific functions

The obtained sequences were annotated using the pipe-
line version of Blast2Go v2.5.0 [29]. Additional informa-
tion was added to the annotation database from an
InterProScan v5RC6 analysis of the sequences [99]. For
protein-based similarity search, a protein sequence data-
base of the reads was set up. Amino acid sequences for
each read were defined as the most extended open read-
ing frame of the sequence.

Specific homology searches were carried out for three
distinct molecular functions of special interest: transcrip-
tion factors, transporters and resistance gene analogues.

To identify transcription factors, DNA binding domain
alignments were obtained from the Plant Transcription
Factor (TF) Database [100]. Hidden Markov Models
(HMMs) were built based on the alignment, and se-
quence reads were searched for these DNA binding do-
main models using HMMER3 [101].

Transporters were predicted based on sequence hom-
ology search using BLAST [102] against sequence entries
for the Transporter Classification (TC) Database [103].
Sequence hits with an E-value lower than 1e-100 were
considered as transporters of the respective class.

Reference R-gene sequences (112 genes) were acquired
from the plant resistance genes (PRG) database [104] and
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InterPro (IPR) domains were identified for the reference
sequences with InterProScan. To predict resistance gene
analogue (RGA) sequences, Blast2GO and InterProScan
annotation tables were filtered for these IPR domains
Further genes or functions of interest were analyzed
using text-based searches (curcins, storage proteins) in the
Blast2Go/InterProScan annotation or based on the en-
zyme codes also included in a Blast2Go annotation table.

Microarray oligonucleotide probe design

The probes were designed (Genotypic Technology LTD.)
for an 8 x 60 K oligonucleotide gene expression micro-
array (Agilent Technologies) using all unique sequence
of whole seed transcript (contigs) from the transcrip-
tome of different maturation stages, using the Agilent’s
eArray software (https://earray.chem.agilent.com/earray/
). The probes were designed in sense and antisense dir-
ection with an average probe spacing of 250 bp (500 bp
sense + 500 bp antisense). A set of unique sequences was
established as a database, and the probes were designed
by tiling the contig sequences against the database.
Probes specific to each transcript were selected for
cross-hybridization when showing a hit with at least 30
bp and>84% identity. Best probes were considered
those showing single hits in the BLAST results.

Probe labeling, hybridization, and detection

RNA labeling, hybridization onto Agilent 8x60K oligo-
nucleotide microarrays as well as scanning and raw data
analysis was carried out according to the One-Color
Microarray-Based Gene Expression Analysis Protocol pro-
vided by Agilent Technologies. Total RNA (200 ng) from
each sample was used to synthesize cyanine-3 labeled
cRNA using the QuickAmp Labeling kit, one Color and
RNA Spike-In kit one Color (Agilent Technologies). The
cyanine labeled cRNA was transcribed and purified by a
T7 polymerase and RNeasy mini kits (Qiagen), respect-
ively. Samples labeled with Cy3 (825 ng) were hybridized
for 17h at 65°C and 10rpm in the hybridization oven
using the Gene Expression Hybridization kit (Agilent
Technologies). The arrays were washed according to sup-
plier’s instructions and scanned on an Agilent G2505C
scanner at 3 um resolution. Data were acquired using
Agilent Feature Extraction software version 10.5.1.1. The
microarrays were hybridized with probes of six stages of
seeds maturation, each with three to four biological
replicates.

Microarray data analyses

The R statistical (http://www.R-project.org) and Biocon-
ductor software [105] were used to perform the pre-
processing analyses of Agilent 8x60K oligonucleotide gene
expression microarrays data. Fluorescence signal inten-
sities from each spot were quantified. Background
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correction was performed using Agilent spatial detrending
background estimate, followed by averaging of replicate
spots, log,-transformation, KNN (K nearest neighbor) im-
putation of missing values and quantile normalization.
The linear modeling functions of the LIMMA package
were used for inference statistics [106]. Statistical signifi-
cance was determined by t-statistic for seeds and corre-
sponding P-values. Genes with Benjamini-Hochberg false
discovery rate (FDR) corrected P-value <1le-8 were consid-
ered as significantly differentially expressed in different
stages of seed maturation and leaf samples. Clustering was
performed using normalized and filtered data. The differ-
entially expressed sequences (DESs) were clustered ac-
cording to their expression patterns across seed
maturation stages. Normal mixture modeling for model-
based clustering (expectation-maximization) was per-
formed with P-value <1e-8 [107]. The obtained microarray
data in this study were stored in the Gene Expression
Omnibus (GEO) (GSE109931).

GO set enrichment analyses

Gene set enrichment analyses were carried out accord-
ing to the GO/KEGG terms using the Bioconductor
GOstats package [25]. Since Jatropha is not a supported
model organism, the complete GO/KEGG categories for
the differentially expressed genes were identified, using
the Blast2GO annotation file of the whole seed tran-
scriptome. After building the gene-set collection, the
corresponding parameter object was created followed by
hyper-geometric testing. The differentially expressed
genes of different maturation stages of seeds or clusters
were analyzed for both over- and under-representation
of GO terms, where KEGG and each GO category (BP,
CC, and MF) were analyzed separately.

Results of the GOstats analyses were plotted as flipped
bar charts displaying each identified term using the
negative logl0 P-value for the top 15 terms. Both over-
and under-represented GO terms were combined in one
graph, showing the P-value of the over-represented term
on the right side and the under-represented term on the
left side. In addition, heatmaps were created using the
negative logl10 P-value.

Co-expression network analysis

Co-expression networks based on partial correlations were
calculated using the DESs with a P-value <1e-8 (f-statistics
of the model) as described above [26, 27]. Co-expression
network was constructed from the 300 most significant
edges. Nodes were colored according to the cluster mem-
bership from cluster analyses of DESs, and the number of
connections for the top 20 nodes with the highest number
of connections to other nodes was constructed as bar
plots.
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Further, the genes that were expected to be involved
in seed development, seed storage, and hormone cross-
talking were extracted by searching the available GO an-
notations of each contig. A partial correlation network
was constructed, and a network of the top 50 most sig-
nificant edges was extracted.

Quantitative real-time (qRT)-PCR using BioMark

Primers for selected contigs from the microarray and
housekeeping genes were designed using Primer3 soft-
ware [28]. cDNA synthesis was performed on a total of
48 samples, including 42 test samples, four standard
control samples, and two nuclease-free water (negative
control) samples. For standard control, a reference sam-
ple was prepared, consisting of an equivalent pool of all
test samples. In each 20 pl reaction 100 ng of total RNA
per test sample as well as 800, 200, 50 and 12.5 ng of ref-
erence RNA sample (as standard control) and only water
in the two negative control samples were reverse tran-
scribed, using the SuperScript III First-Strand Synthesis
System Kit (Invitrogen) according to the manufacturer’s
protocol. The RT reactions were diluted 1:3, and 1.25 pl
of each dilution was applied to 4 different 5pul pre-
amplification reactions, each containing 1x Qiagen PCR
buffer, 0.8 mM of dNTPs, 0.25 pl of DMSO, 0.15 Unit of
HotStarTaq DNA polymerase (Qiagen) and a pool of 48
different primer pairs (200 nM each). Cycling conditions
for pre-amplification were 15 min at 95°C and 14 cycles
of 40s at 95°C, 40s at 60 °C and 80 s at 72 °C. The cycle
ended with a final step of 7min at 72°C. After pre-
amplification, products were diluted 1:5 in nuclease-free
water. QPCR amplification was performed using the Bio-
Mark system (Fluidigm) and 48.48 Dynamic Arrays. For
each qPCR run 6 pl sample mix were prepared, consist-
ing of 1x Qiagen PCR Buffer (including 1.5 mM MgCl,),
0.4 mM MgCl,, 0.96 mM dNTPs, 0.3 ul DMSO, 1x Eva-
Green Binding dye, 0.18 units HotStarTaq Polymerase
(QIAGEN HotStarTaq™ PCR), 0.004 ul ROX, 1x DNA
binding dye (Fluidigm) and 1.5 pl of pre-amplified and 1:
5 diluted samples. In parallel, six pl of assay mix were
prepared, including three pl of 2x Assay Loading reagent
(Fluidigm), 0.3 pl nuclease free water and 2.7 ul of 200
nM primer pair pool used for pre-amplification of test
samples. 48.48 Dynamic Arrays were primed, sample
mix as well as assay mix were loaded with the integrated
fluidic circuit (IFC) controller MX (Fluidigm) and qPCR
was performed using the BioMark system (Fluidigm)
according to the manufacturer’s instructions. Cycling
conditions were 15 min at 95 °C and 40 cycles of 40s at
95°C, 40s at 60°C and 80s at 72°C. A final step of 7
min at 72°C ended the cycle. Ct values were calculated
using the Fluidigm Real-Time PCR Analysis Software
4.1.2. Similar to microarray data analyses, qPCR data
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were normalized using quantile normalization, and lin-
ear models were calculated using the LIMMA package.
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Additional file 2: Figure S2. GO annotation classification of whole
seed transcript sequencing data. Results are summarized for three main
GO categories (BP, MF, and CC). The x-axis indicates the most abundant
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Additional file 4: Figure S4. The expression profiles of each microarray
probe during seed developmental stages. The x-axis represents different
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Additional file 9: Figure S9. Overview of significantly enriched and
over-represented flavonoid, flavone and flavonol biosynthesis and isofla-
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clusters. Figures generated by the pathview package to paint the gene of
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Additional file 10: Figure S10. Correlation between microarray and
gRT-PCR of some DESs during seed development. The y-axis represented
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Additional file 11: Table S1. Sequence comparison between obtained
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Transporter Classification Databases.

Additional file 14: Table S4 Mapping of the identified enzymes and

their corresponding contigs to KEGG pathways.

Page 16 of 19

Additional file 15: Table S5. Relative transcript expression value (log,)
of all DESs (with a cut-off of P-value <1e-8) in each developmental stages
and related clusters.
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expression values (log,) between different maturation stages (with a cut-
off of P-value <1e-8).

Additional file 17: Table S7. The number of over- and under-
represented GO terms of each category (BP, MF and CC), and related con-
tigs in each cluster.

Additional file 18: Table S8. GO and KEGG enrichment analysis of
significantly over- and under-represented GO terms of each category (BP,
MF, and CC) and KEGG pathways for each cluster.
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