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Background: The increasing number of transcriptomic datasets has allowed for meta-analyses, which can be
valuable due to their increased statistical power. However, meta-analyses can be confounded by so-called “batch
effects,” where technical variation across different batches of RNA-seq experiments can clearly produce spurious
signals of differential expression and reduce our power to detect true differences. While batch effects can
sometimes be accounted for, albeit with caveats, a better strategy is to understand their sources to better avoid
them. In this study, we examined the effects of RNA isolation method as a possible source of batch effects in RNA-

Results: Based on the different chemistries of “classic” hot phenol extraction of RNA compared to common
commercial RNA isolation kits, we hypothesized that specific mRNAs may be preferentially extracted depending
upon method, which could masquerade as differential expression in downstream RNA-seq analyses. We tested this
hypothesis using the Saccharomyces cerevisiae heat shock response as a well-validated environmental response.
Comparing technical replicates that only differed in RNA isolation method, we found over one thousand transcripts
that appeared “differentially” expressed when comparing hot phenol extraction with the two kits. Strikingly,
transcripts with higher abundance in the phenol-extracted samples were enriched for membrane proteins,
suggesting that indeed the chemistry of hot phenol extraction better solubilizes those species of mRNA.

Conclusions: Within a self-contained experimental batch (e.g. control versus treatment), the method of RNA
isolation had little effect on the ability to identify differentially expressed transcripts. However, we suggest that
researchers performing meta-analyses across different experimental batches strongly consider the RNA isolation
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Background

The decreasing cost of massively parallel sequencing has
led to an explosion of transcriptomic datasets. This large
number of datasets has allowed for meta-analyses, which
can be valuable due to their increase in statistical power.
However, researchers performing meta-analyses on
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transcriptomic datasets need to be cautious in their use
and aware of so-called “batch effects,” where technical
differences between experimental batches can clearly
produce spurious signals of differential expression and
reduce our power to detect true differences.

In some cases the sources of batch effects are known
and can be avoided. Some well-known batch effects in-
clude sequencing lane effects, library construction proto-
col, and RNA quality [1-3]. Other sources of batch
effects clearly exist but remain unknown. While batch
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effects can sometimes be accounted for, this comes with
some major caveats. If the batch effect completely
confounds the experimental design, for example with
different sequencing lanes being used for controls and
treatments, statistically accounting for the batch effect
will remove any “real” signal [4]. Even in the case where
the batch effect is not a complete confounder, account-
ing for batch can reduce our power to detect true bio-
logical signal [5]. Thus, a better understanding of the
sources of batch effects can help us to avoid them.

In this study, we examined the effects of RNA isolation
method as a possible source of batch effects in RNA-seq
design. It is well known that the RNA distribution within
cells is not uniform. Newly synthesized pre-mRNAs are
processed in the nucleus before being exported. Once
exported, mRNAs are frequently trafficked to specific
subcellular sites as a mechanism for spatially controlling
protein synthesis. Indeed, perhaps the most widespread
example of mRNA localization is that used for spatial
control of protein synthesis, where mRNAs encoding se-
creted and membrane proteins are translated at the ER
membrane allowing for proper protein localization and
folding [6].

Despite the widespread acknowledgement that mRNAs
are differentially localized within the cell, there has been
a paucity of studies examining whether “common” RNA
extraction methods are equivalent in their abilities to ex-
tract differentially localized RNA species, and whether
the method of RNA isolation affects our ability to detect
differentially expressed transcripts. Sultan and colleagues
compared two RNA isolation methods (Qiagen RNeasy
kit and guanidinium-phenol (TRIzol) extraction) and
two library selection schemes (poly-A enrichment and
rRNA depletion) on downstream transcript abundance
estimates, and found that rRNA depletion was particu-
larly sensitive to the RNA extraction method [2]. How-
ever, their comparisons were done using only two
biological replicates, and they only examined transcript
abundance across technical replicates and not whether
the method of extraction affects the ability to detect dif-
ferential expression in the types of sample comparisons
that biologists frequently care about (e.g. wild-type ver-
sus mutant or treatment versus control).

Thus, we sought to systematically examine whether
three common RNA isolation methods led to differences
in transcript abundance and/or our ability to detect dif-
ferential expression between two experimental condi-
tions in the form of the Saccharomyces cerevisiae heat
shock response. The different RNA isolation methods
were the classic “hot acid phenol” method, and the two
most commonly-used types of kits [7]—a silica-based
column kit (Qiagen RNeasy Kit) and a guanidinium-
phenol (TRIzol)-based kit (Zymo Research Direct-zol),
hereafter referred to as the Phenol, RNeasy, and Direct-
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zol methods. Based on the combined chemistries of so-
dium dodecyl sulfate (SDS) and phenol on cellular mem-
branes [8, 9], we hypothesized that the Phenol method
would better solubilize membrane-associated mRNAs.
To test this hypothesis, and whether the choice of RNA
isolation method had downstream effects on our ability to
detect differentially expression transcripts, we collected
four biological replicates of the model yeast Saccharomy-
ces cerevisiae before and after a 20-min heat shock. Im-
portantly, each biological sample was split into three
identical technical replicates that differed only in their
mode of RNA isolation. This allowed us to systematically
test whether the RNA isolation method affects relative
transcript abundance between technical replicates, and
whether that matters for differential expression analysis.

Our analysis found a striking number of transcripts
(nearly 1/3 of the genome) that appeared “differentially”
expressed when comparing the Phenol method to either
Kit method, and a small number of differences when
comparing the Kit methods to each other. Transcripts
over-represented by Phenol extraction compared to ei-
ther Kit were enriched for membrane proteins, suggest-
ing that indeed the combination of SDS plus phenol
better extracts those species of mRNA. Importantly,
there were virtually no differences when comparing dif-
ferential expression for the heat shock response within
samples where RNA was isolated via same method.
Based on these results, we strongly recommend that
meta-analyses be performed on groups of experiments
with common RNA isolation methods.

Results

Experimental setup

To test whether RNA extraction methods impact between-
sample comparisons and the power to identify differentially
expressed genes, we used the well-characterized yeast heat
shock response as an environmental perturbation. We col-
lected four biological replicates for comparison. For each
biological replicate, three “technical replicate” samples were
collected to understand the impact of RNA extraction
method. The only difference was that each technical repli-
cate had their RNA extracted by one of three methods:
classic hot acid phenol (Phenol Method), a silica-based col-
umn kit (RNeasy Method) and a guanidinium-phenol (TRI-
zol)-based kit (Direct-zol Method) (Fig. 1). RNA isolated
via the Phenol method was subsequently “cleaned” with a
Qiagen RNeasy Kit using the optional on-column DNase
treatment, thus controlling for both DNase treatment and
potential differential binding of different RNA species to
the column. To minimize against batch effects other than
RNA extraction method, all RNA-seq libraries were con-
structed on the same day using an automated robotic plat-
form, and all libraries were multiplexed and sequenced on
a single lane of an Illumina HiSeq4000 instrument.
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Fig. 1 Schematic of the experimental design. Yeast cells were grown
to mid-exponential phase at 30 °C, unstressed control samples were
collected, and then cells were shifted to a 37 °C heat shock with
samples collected after 20 min. For both unstressed and stressed cells,
we collected three identical samples (technical replicates), and RNA
was isolated using either hot acid phenol extraction, a Qiagen RNeasy
Kit, or a Zymo Research Direct-zol RNA Miniprep Kit. Libraries were
constructed in a single batch using a liquid handling robot, and then
were pooled and sequenced on a single Illumina HiSeq4000 lane
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Differences in relative transcript abundance between
phenol-extracted RNA and kit-extracted RNA

All of the RNA isolation methods yielded generally high
quality RNA, as defined by a RIN of 9.0 or above, though
the phenol extracted RNA averaged significantly higher
RIN values than those isolated from the Direct-zol kit
(9.96 vs. 9.33; P= 2 x 10~ %, t-test) or the RNeasy kit (9.96
vs. 9.79; P= 0.01, t-test) (Supplementary Table 1). The
percentage of total mapped reads was similar across sam-
ples, with slight (though significant) differences (Supple-
mentary Table 2). There were larger differences in the
percentage of uniquely mapped reads across RNA isola-
tion methods (Supplementary Table 2). These differences
did not correlate with RNA integrity, as the Direct-zol
samples had the lowest RIN values and highest uniquely
and total mapped reads. Overall, we feel that both the
RNA quality and read mapping would not raise any red
flags in laboratories performing RNA-seq on either their
own samples, or conducting a meta-analysis, though those
values can be used a factor to be controlled for in differen-
tial expression analysis [3].
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We were particular interested in whether differences
in the RNA isolation method could masquerade as “dif-
ferential” expression due to differences in transcript
quantification. We first performed principal component
analysis (PCA) (Fig. 2). Not surprisingly, a substantial
proportion of the variance (50.5%) was explained by
treatment (unstressed versus heat shock). The second
principal component corresponded to RNA isolation
method and explained 26.9% of the variation. Samples
with RNA isolated by the two different kit methods clus-
tered together, with the Phenol-isolated samples forming
a separate cluster. It could seem counterintuitive that
Direct-zol and Phenol methods would be so dissimilar,
considering that both methods use phenol. However, the
Direct-zol method uses a milder detergent than SDS
(sarkosyl), is performed at room temperatures instead of
65 °C, and samples are exposed to phenol for 10 min in-
stead of 45 min. We speculate that these differences with
the Phenol method result in both silica-column-based
kits behaving similarly (see Discussion and conclusions).

To visualize differences in transcript abundance across
RNA isolation methods, we performed hierarchical clus-
tering on the TPMs of the unstressed samples (Fig. 3a).
Hierarchical clustering of the samples largely recapitu-
lated the patterns of PCA—again, the Phenol-isolated
samples formed a discreet cluster distinct from the two
kits. The RNeasy- and Direct-zol-isolated samples also
had far fewer visible differences. To quantify these differ-
ences, we used edgeR to identify transcripts with signifi-
cantly differential abundance in pairwise comparisons of
each RNA isolation method (FDR < 0.01, see Methods).
Pairwise comparisons of the Phenol method with each
Kit method identified a large number of transcripts with
differential abundance: 2430 transcripts (Phenol vs.
RNeasy) and 2512 transcripts (Phenol vs. Direct-zol),
which we validated with qPCR for representative tran-
scripts with differential abundance (Supplementary
Fig. 1). Of those transcripts with differential abundance
in both comparisons, 1917 overlapped, which was highly
significant (P =1 x 10~ 520 Fisher’s exact test) (Fig. 3c¢).
In contrast, only 230 transcripts had differential abun-
dance when comparing the kits to each other, suggesting
only slight differences.

To better visualize these differences, we performed
hierarchical clustering on all 3127 transcripts with sig-
nificantly differential abundance (FDR<0.01) in any
pairwise comparison of RNA isolation method (Fig. 3b).
We found striking functional gene ontology (GO) en-
richments for transcripts with higher or lower abun-
dance in the phenol-extracted samples compared to
both kits. Transcripts with higher abundance in phenol-
extracted RNA in comparison to both kits were strongly
enriched for transmembrane transport (P <4 x 10~ ),
establishment of localization (P <9 x10~°%), lipid
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Fig. 2 Principal component analysis (PCA) strongly implicates RNA isolation method as a batch effect. PCA on TPMs for each sample (see
Methods) shows clear separation on both treatment (PC1) and RNA isolation method (PC2). Kit samples were more similar to each other than
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metabolism (P <1x10™%), and cell wall organization
(P <1x10™'®). Looking more closely at the cellular
component GO enrichments, transcripts with higher
abundance in the phenol samples were strongly enriched
for those encoding intrinsic membrane proteins (P <4 x
107 '°1), as well as proteins localized to the endoplasmic
reticulum (P <6 x 10~ %), cell periphery (P <3 x 10~ 80y,
and the vacuole (P <3 x 10™%%). In contrast, mRNAs with
lower relative abundance in the phenol samples were
enriched for nuclear in localization (P <3 x 10~ %), and in-
cluded those encoding functions related to nucleic acid me-
tabolism (P <1 x 10”2%), RNA metabolism (P <6 x 10~ 25),
chromosome organization (P < 4 x 10~ "), and gene expres-
sion (P <8 x 10~ 7). Notably, the transcripts that appeared
“repressed” in the Phenol samples compared to both Kits
also had significantly lower expression relative to the
genomic average (60.7 TPMs vs. 170.3 TPMs; P < 3 x 10~ %,
t-test). We hypothesize that lowly expressed transcripts
are more sensitive to appearing spuriously “repressed”
(see Discussion and conclusions).

Properties of transcripts with spurious differential
expression

That Phenol-isolated samples have higher transcript
abundance for mRNAs encoding membrane proteins fits
with the hypothesis that the Phenol method better solu-
bilizes that species of mRNA. Another possibility is that
differences in transcript degradation rates are respon-
sible for the spurious patterns of differential expression.
Because GC content and transcript length correlate with
in vivo mRNA degradation rates [3], we examined those
relationships in our data. Transcripts with significantly
higher or lower abundance in Phenol-extracted samples
compared to each Kit method had significantly higher
GC content and gene length (Supplementary Fig. 2). We

also examined the relationship between differential
abundance and direct estimates of in vivo transcript sta-
bility (half-lives) from Neymotin and colleagues [10]. We
did find a significant difference in the Phenol vs. Direct-
zol comparison, but not for the Phenol vs. RNeasy com-
parison. To determine how much of the variation was
explained by GC content, gene length, and transcript
half-life, we performed linear regression of those param-
eters on the average fold changes for phenol-extracted
samples vs. the kits. Both GC content and transcript
length showed weak to moderate correlation (r =0.06—
0.32) with log, fold changes, depending upon the com-
parison group, while estimated in vivo half-life weakly
correlated with log, fold changes in either comparison
(Supplementary Tables 3 and 4). Because differences in
GC content and length are associated with differences in
transcript degradation rates in vitro [3], we repeated the
edgeR analysis using RIN as a factor. We expected that
because the RIN values for the Direct-zol samples were
all lower than the others, using RIN as a covariate would
eliminate most of the signal for differential expression.
This turned out to be correct—we identified 788 “differ-
entially” expressed genes in the Phenol vs. Direct-zol
comparison compared to 2513 when RIN was not in-
cluded as a factor. Because the RNeasy-isolated samples
had relatively high RIN values relative to the Direct-zol-
isolated samples, the vast majority of transcripts with
differential expression were retained as significant when
accounting for RIN in the edgeR QL model (2362 /
2430). With RIN as a covariate, we repeated the analyses
looking at relationships between “differential” expression
and GC content, gene length, and in vivo transcript sta-
bility (Supplementary Fig. 3 and Supplementary Ta-
bles 3). The correlations between log, fold changes and
GC content or in vivo transcript stability were essentially
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Fig. 3 Phenol preferentially extracts mRNAs that encode for membrane proteins. a Hierarchical clustering of unstressed samples (P = Phenol, R =
RNeasy, D = Direct-zol). Clustering on relative transcript abundance (TPMs) reveals differences depending upon RNA isolation method, while
clustering on sample identity shows that the Phenol method diverges from both Kits. Red indicates higher than average transcript abundance
within a sample, and blue indicates lower than average transcript abundance. b Hierarchical clustering of 3127 transcripts with significantly
differential abundance (FDR < 0.01) in any pairwise comparisons between each RNA isolation method. Brown indicates higher expression than the
comparison group (e.g. Phenol in the P v. R column) and violet indicates lower expression than the comparison group (e.g. RNeasy in the P v. R
column). Enriched Gene Ontology (GO) categories (Bonferroni-corrected P < 0.01) are shown on the right. Complete GO enrichments for each
cluster can be found in Supplementary File 3. ¢ Overlap between transcripts with significantly differential abundance (FDR < 0.01) in the Phenol v.

Phenol v. Direct-zol
(2,512)

eliminated for the Phenol vs. Direct-zol comparison,
while the correlation with length was slightly reduced.
Thus, it is possible that some subset of spurious differ-
ential expression is due to differences in RNA degrad-
ation rates. However, the surviving differentially
expressed transcripts with higher expression in the
Phenol-isolated samples relative to the Direct-zol iso-
lated samples were still strongly enriched for those en-
coding intrinsic membrane proteins (P< 3x 10~ '%),
Moreover, because of the substantial overlap between
genes called as differentially expressed in the Phenol vs.
RNeasy and Phenol vs. Direct-zol comparisons, we
hypothesize that the differing chemistries in the

extraction are responsible for the batch effect, and not
RNA degradation (see Discussion and conclusions).

Differences in RNA isolation method have little effect on

the ability to detect differential expression with a batch

The striking differences in transcript abundance depend-
ing on RNA isolation could conceivably affect the ability
to detect differential expression. To test this, we exam-
ined our ability to detect differential expression in cells
shifted from 30 °C to 37 °C for 20 min—the classic yeast
heat shock response. We identified ~ 3800 differentially
expressed transcripts for all three RNA isolation
methods, with substantial overlap for all three (Fig. 4).
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Fig. 4 The method of RNA extraction has little effect on differential
expression analysis. Hierarchical clustering of median-centered log,-
fold TPM changes for 4232 transcripts that were differentially
expressed in response to heat (FDR < 0.01) in at least one set of
samples (P = phenol, R =RNeasy, D = Direct-zol). The left portion of
the heat map displays gene expression changes during heat shock
across the four biological replicates, with red indicating genes
induced by heat shock, and blue indicating genes repressed by heat
shock. The right portion shows differences in abundance in pairwise
comparisons between each RNA isolation method, with brown
indicating higher expression than the comparison group, and violet
indicating lower expression than the comparison group. The Venn
Diagram depicts overlap between differentially expressed genes in
the Phenol, RNeasy, and Direct-zol isolated samples

Hierarchical clustering yielded no clear pattern among
differentially expressed transcripts that were missed in
sample set over another (Fig. 4). We also detected zero
transcripts that had significant fold change differences in
their heat shock response in any pairwise comparison
between RNA isolation methods (Supplementary File 2).
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One possibility is that the transcripts encoding the
processes most affected by differences in the extraction
methods (i.e. membrane-associated proteins) are lowly
represented during the heat shock response, and thus
the method of RNA isolation could affect differential
expression under different conditions. To test this, we
examined whether genes with the GO component term
of “membrane” were less likely to be differentially
expressed during heat shock. Genes encoding membrane
proteins comprise 28.7% of the yeast genome, which
turned out to be statistically equivalent (via TOST, see
Methods) to their proportion within the heat shock re-
sponse (284, 28.7, and 28.3% for RNAs extracted by
Phenol, RNeasy, and Direct-zol, respectively). Thus, we
hypothesize that at sufficient sequencing depth, the abil-
ity to detect differential expression is robust to the mod-
est differences in transcript counts caused by differences
in RNA isolation method.

Discussion and conclusions

In this study, we tested whether differences in RNA iso-
lation method affect relative transcript abundance be-
tween samples, and whether the RNA isolation method
impacts our ability to detect differential expression. Our
results suggest that differences in RNA isolation method
can substantially affect relative transcript abundance,
and we saw thousands of differences in transcript abun-
dance when comparing hot acid phenol extraction with
an RNeasy or Direct-zol kit. It is well established that
mRNAs encoding membrane and secreted proteins are
anchored to the membrane during translation [11]. That
transcripts with higher abundance in the Phenol-isolated
samples are strongly enriched for encoding membrane
proteins suggests the Phenol method better solubilizes
those mRNAs. Because relatively more membrane-
associated mRNAs are being extracted, there must be
relatively less abundance of other mRNAs. Thus, we see
decreased abundance of certain nuclear transcripts,
which were already more lowly expressed, and thus
likely more sensitive to appearing “repressed.”

We disfavor the alternative hypothesis that we are cap-
turing differences in transcript degradation rates for a
number of reasons. First, while we do see differences in
RIN values across the different RNA isolation methods,
the differences are relatively small, and our RIN values
are all much higher than the points where other studies
identified them as confounding RNA-seq analysis [3, 12].
Second, it is likely that any degradation that is occurring
in our samples is happening in vitro during RNA isola-
tion, and Opitz and colleagues have found that in vitro
RNA degradation rates are likely relatively equal across
transcripts and thus have little effect on differential ex-
pression analysis [13]. And while RNA degradation rates
in vivo are strongly biased and can lead to spurious
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functional enrichments in downstream analysis, we
found little relationship between estimated mRNA half-
lives from [10] and fold-changes in comparisons between
kits. Only one of the Phenol vs. Kit comparisons showed
a significant difference in half-lives, but the correlation
was still rather poor (* =0.02). And while transcripts
with higher relative abundance in the phenol-extracted
samples versus the kits had higher GC content and gene
length, which both correlate with higher in vivo degrad-
ation rates [3], the correlation between those parameters
and fold-change differences was not strong (Supplemen-
tary Table 3). Notably, GC content and gene length are
not random, and membrane proteins tend to be longer
and have higher GC content than average [14, 15]. Fi-
nally, if RNA degradation is responsible, it is somewhat
hard to reconcile that we see similar patterns of “differ-
ential” expression when comparing the Phenol vs.
Direct-zol or RNeasy kits, even though the RNeasy kits
have quite a bit higher RIN values.

Regardless of the cause of these differences between
hot-phenol extracted samples and kits, it clear that this
can represent a large source of batch-effect variation be-
tween samples whose RNA has been isolated via differ-
ent methods. Within an individual lab, we are largely
agnostic. The method of RNA isolation had little effect
on the ability to identify differentially expressed tran-
scripts in our heat shock test case. Thus, experiments
within a single lab are unlikely to be affected by the
choice of RNA isolation method as long as the same
method is used throughout an experiment. For meta-
analyses however, we recommend that researchers avoid

comparing experiments where the RNA isolation
methods differ.
Methods

Yeast growth and sampling procedures

All experiments were performed using yeast strain
BY4741 (S288c background; MATa his3A1 leu2A0
met15A0 ura3A0), obtained from Open Biosystems. To
compare RNA isolation methods, we collected three
identical 10-ml ‘technical’ replicates for each biological
replicate (4 biological replicates in total). Cells were
grown >8 generations in 100-ml synthetic complete
medium (SC) [16] at 30°C with orbital shaking (270
rpm) to mid-exponential phase (ODggy of 0.3-0.6), and
10-ml samples were removed representing the un-
stressed control. For heat shock treatment, one volume
of 55°C medium was added to the remaining culture,
immediately bringing the final temperature to 37 °C, and
the culture was incubated at 37 °C for another 20 min
before removing 10-ml samples. Both unstressed and
heat shocked cells were collected by centrifugation at
1500 x g for 3 min, and cell pellets were flash frozen in
liquid nitrogen and stored at — 80 °C until processing.
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RNA isolation methods

Hot phenol isolation

Cells were lysed and RNA was isolated using a standard
hot phenol method as described [17], and a detailed proto-
col can be found on the protocols.io repository under DOI
dx.doi.org/10.17504/protocols.io.inwcdfe. Briefly, 1 volume
of acid saturated phenol and 1 volume of lysis buffer (10
mM Tris-HCl pH7.4, 10mM EDTA, 0.5% SDS) were
added to frozen cell pellets, vortexed, and then placed in a
65 °C preheated Multi-Therm incubated vortexer (Bench-
mark Scientific) at 1500 rpm for 45 min. Samples were cen-
trifuged for 10min at 4°C at maximum speed in a
microcentrifuge, extracted once more with phenol, once
with chloroform, and then precipitated overnight at —
20 °C with 0.1 volumes of sodium acetate (pH 5.2) and 2.5
volumes of 100% ethanol. Precipitated RNA was washed
once with 70% ethanol and then resuspended in TE (10
mM Tris-HCl pH 8.0, 1 mM EDTA). The phenol extracted
RNA was then ‘cleaned’ using an RNeasy Miniprep Kit
with optional on-column DNase treatment according to
the manufacturer’s instructions.

RNA isolation with two different Miniprep kits

RNA was extracted using two different kits: the Qiagen
RNeasy Mini Kit (Cat. 74,104) and the Zymo Research
Direct-zol RNA Miniprep Kit (Cat. R2050). Cell concen-
trations were all below the maximum recommendation
of 5x 107 cells from both manufacturers (ranging from
2.5 x 107—4.5 x 107 cells). For both kits, we mechanically
lysed cells with a Beadbeater-24 (3500 oscillations/mi-
nute, 45s on ice between cycles). Mechanical lysis was
performed in 2-ml screw-capped tubes containing an
equal volume (600 pl) of lysis buffer (RLT for RNeasy or
TRI reagent for Direct-zol) and acid-washed glass beads
(425-600 pum, Sigma-Aldrich).

RNA was then purified according to each manufac-
turer’s protocol for yeast, including the optional on-
column DNase digestion. For all samples, RNA was
quantitated using a Qubit RNA HS Assay kit and Qubit
fluorometer according to the manufacturer’s instruc-
tions. The RNA integrity number (RIN) for each sample
was measured using an Agilent 2200 TapeStation. RNA
concentrations and RIN values for each sample can be
found in Supplementary Table 1.

RNA sequencing and analysis

RNA-seq libraries were prepared from polyA-enriched
RNA using the KAPA Biosystems mRNA HyperPrep Kit
(KK8581) and KAPA Single-Indexed Adapter Set A + B
(KK8700), according to manufacturer’s instructions. We
started with 500 ng total RNA, fragmentation time (6
min) was optimized to generate 200-300-nt RNA frag-
ments, and the libraries were amplified with 9 cycles of
PCR. All libraries were constructed in a single batch
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through an automated Eppendorf epMotion 5075 liquid
handling robot, and a detailed a protocol can be found
on protocols.io under DOI dx.doi.org/10.17504/proto-
cols.io.uueewte. cDNA libraries were sequenced on a
HiSeq4000 at the University of Chicago Genomics Facil-
ity, generating single-end 50-bp reads.

Reads were trimmed of low-quality reads and adapter
sequence (KAPA v1 indices) using Trimmomatic (version
0.32) [18], with the following commands: ILLUMINA-
CLIP:Kapa_indices.fa:2:30:10 LEADING:3 TRAILING:3
MAXINFO:40:0.4 MINLEN:40. Reads were mapped to the
S288c genome (version Scer3), using STAR (version
020201) [19]. Mapping statistics can be found in Supple-
mentary Table 2. Transcripts per million (TPM) and ex-
pected counts for each gene were calculated using RSEM
(version 1.3.1) [20]. The RSEM output can be found in
Additional File 2.

Differential expression analysis was conducted using
the Bioconductor package edgeR (version 3.22.3) using
the quasi-likelihood (QL) framework. For the QL model,
sample type (i.e. Phenol unstressed, Phenol heat shock,
RNeasy unstressed ...) and biological replicate were used
as factors. To account for differences in RIN across sam-
ples, we also performed a separate analysis that included
sample type, replicate, and RIN as factors in the model.
To control for differences in sequencing depth across
samples, the edgeR function thincounts was used to ran-
domly subsample counts across all samples to be equal
to the sample with the lowest number of total counts (8,
678,188). Only genes with at least 1 count per million
(CPM) in at least one condition were included for TMM
normalization and differential expression analysis. All
RNA-seq data are available through the National Insti-
tutes of Health Gene Expression Omnibus (GEO) data-
base under accession no. GSE135430, and the edgeR
outputs can be found in Additional File 3.

Principal component analysis (PCA) was performed
using ClustVis [21] on In-transformed TPM values for
all transcripts included in the differential expression ana-
lysis, using unit variance scaling and singular value de-
composition. Hierarchical clustering was performed with
Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/
cluster/software.htm) using uncentered Pearson correl-
ation and centroid linkage as the metric [22]. RNA-seq
samples were weighted using a cutoff value of 0.4 and an
exponent value of 1. Functional enrichments of gene
ontology (GO) categories were performed using GO-
TermFinder (https://go.princeton.edu/cgi-bin/GOTerm-
Finder) [23], with Bonferroni-corrected P-values < 0.01
taken as significant. Complete lists of enriched categories
can be found in Additional File 4. Equivalency testing on
proportions of gene sets was performed using two one-
sided tests (TOST) through the TOSTER R package
(version 0.3.4) [24], using an alpha level of 0.05, and
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equivalency bounds of +/-0.029 (10% of the background
proportion).

Quantitative PCR

Six genes with either significantly higher (LAS17, SEDI,
PRY3) or lower (JNM1, EAF7, RRP36) abundance in the
Phenol vs. Kit RNA-seq data were validated by real-time
quantitative (q) PCR using the Maxima SYBR-qPCR Mas-
ter Mix (Thermo Fisher Scientific) and a Bio-Rad CFX96
Touch Real-Time PCR Detection System as described
[25]. Briefly, cDNA was synthesized from the same RNA
samples used for RNA-seq using 10 pg total RNA, 3 ug an-
chored oligo-dT (T20VN), and SuperScript III (Thermo
Fisher Scientific) according to the manufacturer’s instruc-
tions. One ng of cDNA was used as template, and qPCR
was performed using the following thermal cycling param-
eters: 95 °C for 3 min, 40 cycles 95 °C for 155, 55°C for 1
min for 40 cycles, followed by a melt curve analysis to val-
idate the presence of only a single amplicon. Cq values
were determined using regression analysis, with baseline
subtraction via curve fit. Relative abundance between sam-
ples was determined using the AACt method [26], by nor-
malizing to ERV2S as control gene whose expression is
unaffected by various stresses [27]. A detailed protocol is
available on protocols.io under DOI dx.doi.org/10.17504/
protocols.io.bbgpijvn.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6673-2.

Additional file 1: Figure S1. gPCR validation of representative
differentially abundant transcripts. Figure S2. Properties of transcripts
with differential abundance depending upon RNA isolation method.
Figure S3. Properties of transcripts with differential abundance when
RIN is included as a factor. Table S1. RNA concentrations and integrity
(RIN) values. Table S2. Summary of mapping statistics. Table S3.
Correlation coefficient (r) for log, fold changes versus each factor.
Table 4. Log, fold-abundance changes versus each factor.

Additional file 2. RSEM Output.
Additional file 3. EdgeR Output.
Additional file 4. GO enrichments for clusters in Fig. 3.
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