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Background: Graph-based reference genomes have become popular as they allow read mapping and follow-up
analyses in settings where the exact haplotypes underlying a high-throughput sequencing experiment are not
precisely known. Two recent papers show that mapping to graph-based reference genomes can improve accuracy as
compared to methods using linear references. Both of these methods index the sequences for most paths up to a
certain length in the graph in order to enable direct mapping of reads containing common variants. However, the
combinatorial explosion of possible paths through nearby variants also leads to a huge search space and an increased
chance of false positive alignments to highly variable regions.

Results: We here assess three prominent graph-based read mappers against a hybrid baseline approach that
combines an initial path determination with a tuned linear read mapping method. We show, using a previously
proposed benchmark, that this simple approach is able to improve overall accuracy of read-mapping to graph-based

Conclusions: Our method is implemented in a tool Two-step Graph Mapper, which is available at https://github.
com/uio-bmi/two_step_graph_mapper along with data and scripts for reproducing the experiments. Our method
highlights characteristics of the current generation of graph-based read mappers and shows potential for
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Background

As more and more genomes are being sequenced, graph-
based reference genomes have become useful for rep-
resenting and analysing the vast amount of genetic
information that is now available [1]. During the last few
years, graph-based reference genomes have been used
in various next-generation sequencing experiments, such
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as in variant calling [2, 3], structural variant genotyping
[4-6] and peak calling [7]. A key step in many such anal-
ysis pipelines is the alignment of raw sequencing reads to
the reference [8]. Recently, two tools for mapping reads to
graph-based reference genomes have been proposed — vg
[3] and a tool created by Seven Bridges [9] (from here
on we refer to this tool as Seven Bridges). Both show
improved mapping accuracy compared to the linear
reference-based method Burrows-Wheeler Aligner MEM
(BWA-MEM) [10]. While vg indexes all paths up to a cer-
tain length in the graph — a tedious process that takes
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more than a day for a human whole-genome graph —
Seven Bridges uses a faster approach in which only short
kmers (21 base pair sequences at 7 base pair intervals) are
indexed. This enables indexing of a human whole-genome
graph in only minutes. A third method for mapping reads
to graph-based references is Hisat 2, which uses a Hierar-
chical Graph Full-text index in Minute space (FM) index
[11]. As complex graphs containing many genetic variants
can result in long indexing time as well as poor mapping
accuracy [3], existing graph-based read mappers ignore
the most complex regions in the graph when indexing the
graph. Another strategy for reducing graph complexity is
to limit the number of genetic variants that are included in
the graph in the first place [12]. Some have also proposed
to not use graphs, but instead improve the current linear
reference genome [13].

There currently exists no comparison of the mapping
accuracy of vg, Seven Bridges and Hisat 2. Furthermore,
there exists no study on how these tools perform com-
pared to linear mapping approaches tuned for accuracy
and not speed, or to simpler schemes for graph-based
read mapping. We here present a hybrid graph-mapping
approach and use this as a baseline to highlight strengths
and potential for improvement for the current generation
of graph-based mapping approaches that are able to map
reads to graphs built from a linear reference genome and
a set of genetic variants. We compare vg, Seven Bridges
and Hisat 2 to a tuned linear mapping approach, and to
our two-step approach, and show that graph-based read
mapping can be improved by separating the problem into
rough path estimation and subsequent mapping of each
individual read to this estimated path.

Results

In the following, we assess graph-mappers by looking at
vg, Seven Bridges and Hisat 2. All assessments are done
by following the approach that vg and Seven Bridges
used for evaluating their tools [9]. We simulate single-end
reads with read length 150 bases from the whole genome
of an Ashkenazi Jewish male NA24385, sequenced
by the Genome in a Bottle Consortium [14] (see
“Methods” section). We simulate uniformly across the
genome, and some reads will naturally be simulated from
segments containing non-reference alleles (about 10.6%
of the reads). We refer to these as reads with variants.
Reads that are simulated from segments identical to the
linear reference genome (hg19) will be referred to as reads
without variants. Mapping accuracies are compared using
receiver operating characteristic (ROC) curves parame-
terized by the mapping quality (MAPQ) of all the simu-
lated reads, where each dot in the plot shows the recall
and error rate for reads with at least the corresponding
MAPQ. Scripts and data for generating the figures in this
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section are provided at https://github.com/uio-bmi/two_
step_graph_mapper.

vg outperforms seven bridges and hisat 2 on previously
proposed benchmarks

In Fig. 1, we compare the mapping accuracy of vg, Seven
Bridges and Hisat 2 on 40 million simulated reads, using
two different error rates when simulating the reads — 1%
substitution rate and 0.2% indel rate, as used by vg in [3]
(referred to as high read error rate) and with a lower error
rate of 0.26% substitution rate and 0.01% substitution rate,
which is similar to the error rate used by Seven Bridges in
their evaluation [9]. vg performs better than both Seven
Bridges and Hisat 2 on both error rates. From here on, we
thus focus on vg when discussing capabilities and limita-
tions of the current generation of graph-based mapping
approaches, and use simulated reads with 1% substitution
rate and 0.2% indel rate (as used by vg in their evaluation).

Part of the performance difference between graph-based
and linear methods can be attributed to method tuning

As shown in Fig. 2, vg performs better than BWA-MEM
when BWA-MEM is run with default parameters. How-
ever, BWA-MEM is by default tuned for speed and not
for maximum accuracy. By tuning BWA-MEM and adjust-
ing the MAPQ scores by also running Minimap 2 (see
“Methods” section), BWA-MEM goes from performing
worse than vg on all reads to be performing about as
well as vg while still spending less than half the time of
vg at mapping the same reads (Table 1). From here on,
we use this tuned version of BWA-MEM, referred to as
linear mapper, when comparing graph-based and linear
mapping approaches.

Graph-based mapping results in higher accuracy on reads

with variants, but lower accuracy on reads without variants
As seen in Fig. 3, vg achieves markedly higher accuracy on
reads with variants than the linear mapper. However, as
also noted in [3], the mapping accuracy of vg is lower than
the linear mapper on reads that do not contain variants.
As a result of this, vg ends up not performing better than
the linear mapper when assessed on the full set of reads.

Re-aligning the reads to an estimated linear path through
the graph improves accuracy

We find that using the initial graph alignments to predict a
linear path through the graph, and then re-aligning all the
reads to this linear path using the linear mapper increases
mapping accuracy. This idea is illustrated in Fig. 4, and in
Fig. 5 we show the benchmarking results of this approach
when using vg to do initial graph mapping. As seen in
Fig. 5, this two-step approach performs almost as well as
vg on reads containing variants — except for reads with
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Fig. 1 Comparison of existing graph-based read mappers. Comparison of mapping accuracy on reads mapped by vg, Seven Bridges and Hisat 2 by
ROC-plots parameterized by the MAPQ of reads simulated with high read error rate (substitution rate 1% and indel rate 0.2%) and low read error rate
(substitution rate 0.26% and indel rate 0.01%). Each dot represents a MAPQ cut-off, and numbers next to dots specify the cut-off at a given dot
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Fig. 2 Comparison of vg and tuned linear mapping. Comparison of the mapping accuracies of the linear mapper, vg and untuned BWA-MEM
(running with default parameters)
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Table 1 Run times for the different methods, showing the time spent on processing 576 million reads using 24 computing threads

Linear mapper
- BWA-MEM (tuned)
- Minimap (tuned)
- Merging alignments
Two-step approach
- Initial rough mapping
- Predict path through graph and indexing the path with BWA-MEM

- Running linear mapper on path

- Post-processing alignments (including conversion to linear reference genome coordinates)

vg

12h 51m
7him
4h40m
Th10m
24h50m
6h8m
h21m
12h51m
4h30m
28h52m

Total time is shown in bold text with the time spent for each substep listed below

high MAPQ, where the method performs slightly worse
— and clearly better than vg on reads not containing vari-
ants, resulting in slightly better overall performance on all
reads.

A two-step approach using an initial rough path estimation
is sufficient to improve mapping accuracy

The results from the previous section indicate that the
vg mapping accuracy may be improved (especially for
reads not containing variants) by predicting a path and re-
aligning all the reads to this path using the linear mapper.
We argue that this idea works as long as we are able to
predict an approximate path in the first step. We suggest
that the path-prediction in itself can be achieved by initial
rough graph-mapping, and as an example, we use an ini-
tial rough graph-mapping method where all the reads first
are aligned to the linear reference genome and then sub-
sequently locally fitted to the graph. A proof-of-concept
implementation of this method is provided in the Python
package Rough Graph Mapper (https://github.com/uio-
bmi/rough_graph_mapper).

As seen in Fig. 6, the use of this method in the first step
of the two-step approach leads to better mapping accu-
racy than vg for non-variant reads, and almost as good
accuracy as vg on variant-reads. This two-step approach
benefits from high read depth in order to better estimate
a path through the graph. The experiment shown in Fig. 6
uses on average read depth of 30. The results of the same
experiment run with read depth 15 and 7.5 are shown
in Fig. 7. As seen in Fig. 7, the two-step approach per-
forms worse on reads with variants when the read depth
is lowered.

Table 1 shows the time used by the different meth-
ods, showing that the total time spent by the two-step
approach is less than the time used by vg. Furthermore,
since the approach only relies on an initial rough mapping
that does not rely on a graph index (like the one used by
vg) we argue that this two-step approach is a promising
direction for computationally efficient graph-based read
mapping. Our two-step approach is implemented in a tool
Two-step Graph Mapper, which is available at https://
github.com/uio-bmi/two_step_graph_mapper.
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Fig. 3 Comparison of the existing graph-based mappers and linear mapping. Comparison of the mapping accuracies of vg, Seven Bridges, Hisat 2
and linear mapping
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Fig. 4 lllustration of the two-step approach to mapping reads to a graph-based reference genome. Top: Reads (red) are first roughly mapped to the
graph-based reference genome (nodes represented in blue; edges represented as black arrows). Middle: a path is predicted through the graph
depending on where most of the reads map, (parts of the graph no longer included in transparent color). Bottom: in the second step, reads are

We also investigate the accuracy of variant calling and
genotyping by Graphtyper when using reads mapped
by vg, the linear mapper and the two-step approach.
We do this by mapping short reads sequenced from
the NA24385 individual. We map these reads with
vg, the linear mapper and the two-step approach, and
run Graphtyper on the three sets of alignments (see
“Methods” section). We compare the variants discovered
and genotyped by Graphtyper to a set of high-confidence
variants for NA24385. Table 2 shows the recall and pre-
cision for each method. vg has the highest recall but the

lowest precision, and the linear mapper has the lowest
recall but the highest precision. However, the differences
between the methods are minimal.

Discussion

We observe higher accuracy for vg than Seven Bridges
and Hisat 2 in our comparisons. These three methods all
perform worse than linear mapping on reads not contain-
ing variants, and a tuned version of BWA-MEM achieves
about the same accuracy as vg on the full set of reads.
We are unsure why Hisat 2 performs worse than vg, but
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Fig. 5 Two-step approach using vg.: Mapping accuracy on 32 million simulated reads from chromosome 20, 21 and 22, showing vg, the linear
mapper and a two-step approach using vg alignments to initially predict a path through the graph and then re-aligning the reads to this path using
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Fig. 6 Two-step approach using an initial rough graph mapper. Comparison of mapping accuracies of the two-step approach using an initial rough
graph mapper, vg and linear mapper. The three methods are run on 576 million reads simulated from the whole genome

to our knowledge, Hisat 2 is primarily used for RNA and
not DNA sequencing reads. We hypothesise that Seven
Bridges performs worse than vg because it is using a much
simpler index, containing only a subset of all kmers in
the graph. We further show that a two-step approach of
predicting a path through the graph and mapping to this
path using the linear mapper results in higher accuracy
on all reads, even when using a rough graph-mapper for
the initial prediction of the path. Our two-step approach
achieves almost the same accuracy as vg on reads con-
taining variants and slightly higher accuracy than vg on
reads not containing variants (which contribute to about
90% of the simulated reads). We believe this is because the
method is able to leverage the information from the full
read set mapped in the first step, and also because the use
of a predicted path limits the search space dramatically in
the final mapping.

While our proposed method does not improve read
mapping for reads containing variants — which in many

cases are the most interesting reads — it is able to achieve
about the same accuracy as vg using a simpler approach
and without the lost accuracy on reads not containing
variants. It is worth noting that the difference in accu-
racy between the linear mapper and the graph-based
approaches is small compared to the difference in accu-
racy between the graph-based methods and the tuned
linear approach (BWA-MEM + Minimap 2). This shows
how important tuning can be for mapping accuracy, and
that both tuning and run time should be considered
when comparing read mappers. The small differences
in accuracy between the different methods is further
demonstrated by the small difference in variant detection
accuracy (Table 2).

Read alignment serves as an intermediate step for sev-
eral distinct investigations. The aligned reads may be used
as input for variant callers in order to determine geno-
types or somatic mutations, for peak callers to determine
locations of epigenetic modifications or protein binding to
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Fig. 7 Two-step approach on different read depths. Comparison of the two-step approach on different read depths (7.5x, 15x and 30x) and vg
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Table 2 Precision and recall when running Graphtyper with reads mapped by the different methods

Linear mapper Two-step approach vg
Indels recall 71.30% 7221% 7231%
Indels precision 94.30% 94.30% 94.14%
SNPs recall 94.64% 95.85% 96.21%
SNPs precision 99.35% 99.27% 98.31%

DNA, and for transcriptome analysis methods to quantify
differential gene expression or alternative splicing. The
consequences of different categories of mis-mapped reads
(e.g. reads originating from genomic regions of high or
low variation) may vary between these settings. As future
work, it would be interesting to explore how the mis-
mapping profiles of the different approaches affect the
following analysis step for each such setting.

We have shown one implementation of how reads can
be mapped in the first step of the two-step approach. This
method maps each read to the linear reference genome
first and then locally fits each read to the graph. A vari-
ant of this method that probably would give better results
would be to have the linear mapper report the # best hits
for each read, locally align each of those to the graph, and
pick the alignment with highest graph alignment score. As
future work, we also believe it could be interesting to use
other graph-based mapping methods that sacrifice accu-
racy for speed in the first step in the two-step mapping
approach. An idea for such a method could be a graph-
generalization of minimizer-based mapping methods such
as minimap [15].

The method we use for initial rough path prediction is
fairly simple and naive, but illustrates the point. As future
work, it would be interesting to implement more sophisti-
cated path prediction algorithms, e.g. including haplotype
information or correlations between variants in the graph.
We note that our two-step approach only performs well
when there are sufficient reads for predicting the path
(i.e. high enough coverage), and that accuracy drops with
lower coverage (Fig. 7). With coverage close to 0 we expect
the accuracy to drop down to that of a linear sequence
aligner, since our path prediction algorithm defaults to the
linear reference genome path when there are not enough
reads covering a variant. Our current implementation pre-
dicts only one path through the graph, but in reality, reads
coming from a diploid individual will follow two paths. It
should be trivial to instead estimate two paths in the first
step of our two-step approach, and align reads to both
paths in the final step.

For linear reference genomes, the sole objective of map-
ping is to align reads back to the genomic locations they
originate from. In contrast, mapping against graph-based
reference genomes can serve a dual purpose: estimating
the underlying haplotypes (two paths through the graph)

and correctly placing each read along these haplotype
paths. The driving idea of our two-step approach is to sep-
arate these as two different algorithmic problems. This
allows a rough mapping approach to be used initially for
estimating the haplotype and thus limit the search space
for a subsequent step of placing reads along this path using
any linear mapper. It is important to note that although the
path-estimation in the first step of the two-step approach
implicitly estimates variants present in the graph, the
intention of this step is not to do variant calling — instead
variant calling can be performed as a follow-up step based
on the aligned reads.

Conclusions

We have here proposed a hybrid baseline approach for
graph-based read mapping that combines an initial path
determination with a tuned linear read mapping method.
By comparing three prominent graph-based read mappers
to this novel baseline, we find that part of the accu-
racy gains observed in recent comparisons of graph-based
and linear mappers can be attributed to method tuning.
Nonetheless, when focusing on reads containing variants
(as compared to the linear reference genome), we observe
markedly improved accuracy of the graph-based mapper
vg as compared to mapping to a linear reference using
a tuned version of BWA-MEM. Two other graph-based
mappers, Seven Bridges and Hisat 2, attain markedly
lower mapping accuracy than vg in our benchmarks, and
do not improve on the linear mapper even on the regions
containing variants. By employing vg for initial path deter-
mination in our proposed two-step approach, we improve
on the performance of vg used in isolation. Furthermore,
even when using a quick, rough mapper for the initial step,
our two-step approach performs comparably to the use
of vg in isolation. In addition to serving as a baseline for
highlighting characteristics of the current generation of
graph-based read mappers, we thus believe that our two-
step approach represents a promising alternative direction
for computationally efficient graph-based read mapping.

Methods

Assessment of mapping methods

We compared vg, Seven Bridges and Hisat 2, which to our
knowledge are the main methods for mapping reads to a
graph-based reference genome, when considering graphs
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built from a linear reference genome and a set of genetic
variants. We considered to include running BWA-MEM
on an index created by CHOP [16], which is a tool for
indexing paths through known haplotypes in the graph,
but we were unable to build the CHOP index for a whole
human genome human graph in reasonable run-time. We
also considered to include PanVC [17] in the comparison,
but also this method does not seem to scale to a whole
human genome, for which it takes weeks to run on [17].
All evaluations were run with vg version 1.19.0, BWA-
MEM version 2.0prel, Minimap 2 version 2.13, Seven
Bridges graph aligner bpa-0.9.1.1-3 and Hisat 2.1.0. We
ran vg and Seven Bridges with default parameters and
Hisat 2 with the —no-spliced-alignment option. When
running BWA-MEM, we tuned it and used Minimap in
order to adjust the MAPQ scores returned by BWA-MEM
(see the next section for details).

The benchmark we ran is similar to the one performed
by vg in [3] and the one by Seven Bridges in [9], except
that we only simulated single-end reads. We also follow
the benchmarking setup of vg in terms of defining reads
as correctly mapped when mapped within 150 base pairs
of the true location. In all analyses, we used a graph built
with vg using variants from the 1000 Genomes Project
having allele frequency > 1% (about 14 million variants),
since this graph gave the best results for vg and seems to
be similar to the graph that Seven Bridges used in their
evaluation, which contained 15.8 million variants (mostly
from the 1000 genomes project).

We have created a Docker image with all scripts
and exact software with dependencies necessary for re-
running the benchmarks. This image along with instruc-
tions on how to re-run the analysis are available from the
readme page at https://github.com/uio-bmi/two_step_
graph_mapper.

When comparing variant calling performance using
reads mapped by the different methods, we used publicly
available reads sequenced from the whole genome of the
NA24385 individual, available as a bam file at ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG
002_NA24385_son/NIST_HiSeq_HG002_Homogeneity
-10953946/HG002Run01-11419412/HG002runl_S1.bam.
We converted the BAM-file to fasta format using the
samtools fasta tool and downsampled the fasta to half
the number of reads by choosing every second read.
Variants were called on the whole human genome using
Graphtyper version 2.0 and detected variants were com-
pared against high confidence variant calls from ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HGO002_NA24385_son/NISTv3.3.2/GRCh37/HG002_
GRCh37_GIAB_highconf CG-IIFB-IIGATKHC-Ion-
10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.
vcf.gz using Hap.py version 0.3.10-8. Code for repro-
ducing the variant calling experiment using this data is
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available at https://github.com/uio-bmi/variant_calling_
benchmarks_two_step_mapper.

Tuning BWA-MEM performance

We observe worse performance by BWA-MEM with
default parameters compared to vg, even on reads not
containing variants. This has also been noted in [3] where
vg running on a linear reference genome is shown to
outperform BWA-MEM running on the same reference.
From our experience, a cause of this is that BWA-MEM is
tuned for speed (not only performance), mainly by not try-
ing to align shorter "chains" by default. This makes BWA-
MEM miss a lot of suboptimal alignments (when they
exist), which in turn makes it overestimate the MAPQ
score. Changing the -D parameter of BWA-MEM to a
low number partly solves this, by telling BWA-MEM to
also try to align shorter chains. However, after such tun-
ing, there are still cases where BWA-MEM fails to find
suboptimal alignments. This typically happens when all
the longest chains cover a sequencing error in the read.
We did not find a way of tuning BWA-MEM to consider
shorter chains in such cases, but we found that Minimap
2 (even though it generally performs worse than BWA-
MEM on short reads) in most cases was able to find all
suboptimal alignments and use that to correctly assign
low MAPQ scores when reads were multimapping. Thus,
we chose to also run Minimap 2 on the same reads and
for every read, simply selecting the MAPQ score chosen
by Minimap 2 when Minimap 2 assigned a lower MAPQ
score than BWA-MEM.

We did not tune vg in order to try to improve its map-
ping accuracy, since it seems that vg with default param-
eters is already tuned to perform well, and is slower than
running both tuned BWA-MEM and tuned Minimap 2.

Two-step graph mapping

Step 1: estimating a path through the graph

In order to predict a path through the graph, some ini-
tial graph-alignments are needed. We have proposed a
simple way for performing this initial mapping, which
is explained more in detail in the next section. In this
first step, we use the rough graph alignments to predict
a path through the graph. We do this by greedily travers-
ing the graph by always following the edges with most
reads aligned to them, but requiring a minimum number
of reads on edges diverging from the linear reference path.
We then extract the sequence of this path, and use BWA
(bwa index with default parameters) to index it.

Step 2: aligning the reads

In this step, we simply align all the reads to the indexed
path using the linear mapper (which first maps all the
reads with BWA-MEM and then again maps all the reads
with Minimap 2). In the rare cases where a read maps
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with higher score during the rough initial alignment than
to the predicted path in the second pass, the initial rough
alignment is chosen. The reads mapped with the linear
mapper to the predicted path have coordinates relative
to this path, differing from the linear reference genome
(e.g. hgl9) coordinates. We have implemented a simple
method for translating the coordinates back to linear ref-
erence genome coordinates (similar to vg annotate) that
simply moves the alignments to the graph and finds the
closest position on the linear reference path going through
the graph.

Rough mapping of reads to the graph

First, we map all the reads to the linear reference genome
using BWA-MEM without any tuning. We then move
these reads to their corresponding position in the graph
using the linear reference path through the graph and the
alignment information to that path from the SAM-file.
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