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Abstract

Background: Recent studies have suggested that the gut microbiota is altered in children with juvenile idiopathic
arthritis (JIA). However, age, sex, and body mass index (BMI) were not matched in the previous studies, and the
results are inconsistent. We conducted an age-, sex-, and BMI-matched cross-sectional study to characterize the gut
microbiota in children with JIA, and evaluate its potential in clinical prediction.

Methods: A total of 40 patients with JIA and 42 healthy controls, ranging from 1 to 16 years, were enrolled in this
study. Fecal samples were collected for 16S rDNA sequencing. The data were analyzed using QIIME software and R
packages. Specifically, the random forest model was used to identify biomarkers, and the receiver operating
characteristic curve and the decision curve analysis were used to evaluate model performance.

Results: A total of 39 fecal samples from patients with JIA, and 42 fecal samples from healthy controls were
sequenced successfully. The Chao 1 and Shannon–Wiener index in the JIA group were significantly lower than
those in the control group, and the Bray-Curtis dissimilarity also differed significantly between the two groups. The
relative abundance of 4 genera, Anaerostipes, Dialister, Lachnospira, and Roseburia, decreased significantly in the JIA
group compared to those in the control group. The 4 genera included microbes that produce short-chain fatty
acids (SCFAs) and were negatively correlated with some rheumatic indices. Moreover, 12 genera were identified as
potential biomarkers by using the nested cross-validation function of the random forest. A random forest model
constructed using these genera was able to differentiate the patients with JIA from the healthy controls, and the
area under the receiver operating characteristic curve was 0.7975. The decision curve analysis indicated that the
model had usefulness in clinical practice.
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Conclusions: The gut microbiota in patients with JIA is altered and characterized by a decreased abundance of 4
SCFA-producing genera. The decreases in the 4 genera correlated with more serious clinical indices. Twelve genera
could be used as biomarkers and predictors in clinical practice.

Trial registration: The study is registered online at the Chinese Clinical Trial Registry on 11 May 2018 (registration
number: ChiCTR1800016110).

Keywords: Juvenile idiopathic arthritis, Microbiota, Short-chain fatty acids, Butyrate, Propionate, Biomarker, Machine
learning, Random forest model, Decision curve analysis

Background
Juvenile idiopathic arthritis (JIA) is the most common
rheumatic disease in children and one of the more com-
mon chronic illnesses of childhood [1]. JIA represents a
heterogeneous group of disorders, all of which share the
clinical manifestation of arthritis. The worldwide inci-
dence of JIA ranges from 0.8–22.6/100,000 children per
year, with the prevalence rate ranging from 7 to 401/
100,000 children per year [1–3]. JIA is the most com-
mon cause of joint disability and vision loss, and leads to
a decreased health-related quality of life, impaired social
functioning, and increased medical expenses [4–7].
Although the etiology and pathogenesis of JIA are not

completely understood, immunogenetic susceptibility
and an external trigger are considered as the main risk
factors contributing to JIA [8–10]. Studies on twins have
shown that the concordance rates for JIA among mono-
zygotic twins range from 25 to 40% [11], which suggests
that non-coding factors, including epigenetics, female
sex, and environmental factors, play an important role in
the pathogenesis of JIA. Environmental factors, such as
tobacco exposure, infectious agents, vitamin D defi-
ciency, and the gut microbiota, not only trigger the de-
velopment of rheumatic diseases, but are also involved
in the transition from the preclinical to clinical stage
[12–15]. Accordingly, environmental factors are pivotal
in the development and progression of JIA.
Of the environmental factors, the gut microbiota has

been implicated in the pathogenesis of JIA [16–20],
rheumatoid arthritis [21], and metabolic diseases [22].
For example, the gut microbiota in these patients is al-
tered [16–21], some of which are considerably correlated
with clinical indices in patients with rheumatoid arth-
ritis, such as anti-citrullinated protein antibody, rheuma-
toid factor, and C-reactive protein [21]. Furthermore,
the random forest models constructed using the micro-
biota are able to differentiate rheumatic patients from
healthy controls [20, 21]. Additionally, some microbe
components are detected in synovial fluid [23] and liver
tissue [24], which can trigger autoimmune responses
[23, 24]. Finally, the causal relationships among the gut
microbiome, short-chain fatty acids (SCFAs), and meta-
bolic diseases have been demonstrated [22]. However,

age, sex, and body mass index (BMI), which are the con-
founding factors that impact the composition of the gut
microbiota [25–27], were not matched in some studies,
and the results are inconsistent [17–20]. Whether the
SCFA-producing genera dominate the differences be-
tween patients with JIA and healthy controls has not
been well defined [17–20]. Furthermore, the clinical use-
fulness of the random forest models remains unclear
[20, 21].
In order to address these problems, at least in part, we

conducted an age-, sex-, BMI-, and ethnicity-matched
cross-sectional study in Han Chinese children. We char-
acterized the gut microbiota in patients with JIA, identi-
fied biomarkers, constructed a random forest model as a
disease classifier using these biomarkers, and evaluated
its usefulness in clinical prediction.

Results
Clinical and laboratory characteristics of the participants
In total, 40 children with JIA and 42 healthy children
(HC) were enrolled into the JIA group and the control
group, respectively. The median ages in the JIA group
and the control group were 10.27 years and 9.95 years,
respectively. There were no statistical differences in age,
sex, and BMI between the two groups (Table 1). The
disease subtypes, activity parameters, and other clinical
indices are also shown in Table 1 and Additional file 2:
Table S1. Five children with JIA did not have cytokine
data (Additional file 2: Table S1).

Gut microbiota diversities differed between the JIA and
control groups
A total of 40 JIA stool samples and 42 HC stool samples
were collected, and 16S rDNA sequencing was com-
pleted in June 2019. In total, 39 JIA and 42 HC stool
samples were successfully sequenced, and 7347 oper-
ational taxonomic units (OTUs) were obtained after the
removal of singletons. After OTUs less than 0.001% were
filtered, the remaining OTUs were classified into 11
phyla, 19 classes, 32 orders, 58 families, and 94 genera
(Additional file 2: Table S2 and Table S3). The Chao 1
and the Shannon indices, two commonly used α-
diversity indices, differed significantly between the two
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groups (P = 0.0026 and 0.031, Wilcoxon test; Fig. 1a,
Additional file 2: Table S4); however, there was no sig-
nificant difference in the Simpson index between the
two groups (P = 0.248, Wilcoxon test; Additional file 1:
Figure S3, Additional file 2: Table S4). The JIA and con-
trol groups had 3 and 8 unique genera, respectively; the
two groups shared 83 genera (Fig. 1b, Additional file 2:
Table S5). The Bray-Curtis dissimilarity, a commonly
used β-diversity index, differed between the two groups
(P = 0.019, R2 = 0.021, permutational multivariate ana-
lysis of variance [PERMANOVA] with 1000 Monte
Carlo simulations; Fig. 1c). The phylogenetic tree, which
was built using OTUs greater than 0.3%, showed that

these OTUs belonged to the following five phyla: Firmi-
cutes, Bacteroidetes, Actinobacteria, Proteobacteria, and
Verrucomicrobia (Fig. 1d, Additional file 2: Table S6).
The power of the study was 0.89 (Dirichlet-Multinomial
Model with 1000 Monte Carlo simulations).

Alterations of the gut microbiota in JIA patients and its
associations with clinical indices
At the phylum level, the most common phyla in the two
groups were the Bacteroidetes, Firmicutes, Actinobac-
teria, and Proteobacteria (Fig. 2a). The Proteobacteria
had higher abundance in JIA group (4.56%) as compared
to that in the control group (4.03%), and the

Table 1 Demographic and clinical characteristics of the two groups

Characteristics JIA group (n = 40) Control group (n = 42) Statistic P-value

Age, median (IQR) 10.27 (3.09–11.56) 9.95 (3.20–11.60) W = 827 0.907

Female 20 20 χ2 = 0 1.000

BMI, median (IQR) 16.23 (15.12–18.30) 16.60 (15.80–18.10) W = 759 0.455

Disease duration, months, mean (SD) 3.47 (1.45)

Subtypes of JIA

Oligoarthritis, n (%) 17 (42.50)

Polyarthritis, n (%) 9 (22.50)

Enthesitis-related arthritis, n (%) 14 (35.00)

Disease activity parameters

cJADAS10, median (IQR) 9 (7–13)

ESR, median (IQR) 20.50 (10.50–36.00)

CRP, median (IQR) 3.00 (0.50–10.01)

Autoantibody status

ANA, median (IQR)a 0.00 (0.00–4.60)

ACPA positive, n (%) 3 (7.50)

RF positive, n (%) 3 (7.50)

Cytokines

IL-2, mean (SD), pg/ml 2.64 (1.07)

IL-4, median (IQR), pg/ml 2.10 (1.30–2.07)

IL-6, median (IQR), pg/ml 6.80 (2.85–16.70)

IL-10, median (IQR), pg/ml 2.90 (2.15–3.90)

TNF, median (IQR), pg/ml 2.00 (1.15–2.40)

IFN-γ, median (IQR), pg/ml 3.50 (1.65–5.20)

Cluster of differentiation

CD3, mean (SD), % 70.60 (8.14)

CD4, mean (SD), % 34.89 (6.94)

CD8, mean (SD), % 29.58 (7.70)

CD19, median (IQR), % 15.47 (11.04–17.64)

CD3-CD16 + CD56+, median (IQR), % 10.47 (6.64–13.80)

CD4/CD8, median (IQR) 1.14 (0.88–1.61)

ACPA Anti-citrullinated protein antibodies, ANA Antinuclear antibody, BMI Body mass index, CD Cluster of differentiation, cJADAS10 Juvenile arthritis disease
activity score 10, CRP C-reactive protein, ESR Erythrocyte sedimentation rate, IFN Interferon, IL Interleukin, IQR Interquartile range, RF Rheumatoid factor, TNF
Tumor necrosis factor
aLog10 transformed
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Verrucomicrobia was the opposite (0.0036% vs 0.048%);
which were significantly different when analyzed using
ALDEx2 package (P = 0.033, 0.029, respectively; Wil-
coxon test). However, none reached significance when
the P-values were adjusted for multiple testing correc-
tions using the Benjamini–Hochberg method.
The genera of Bacteroidetes, Bifidobacterium, Prevo-

tella, Megamonas, and Lachnospira were dominant in
the two groups (Fig. 2a, Additional file 2: Table S3). The
4 genera Anaerostipes, Dialister, Lachnospira, and Rose-
buria had lower abundance in the JIA group (0.00,
0.011, 0.337, and 0.66%, respectively) as compared to
those in the control group (0.040, 0.725, 2.244, and
1.162%, respectively), which reached significance when
the P-values were adjusted for multiple testing correc-
tions using the Benjamini–Hochberg method (Adjusted

P = 0.031, 0.013, 0.041, and 0.011, respectively; Wilcoxon
test; Additional file 2: Table S7). Of the 4 genera, Dialis-
ter was a genus of the Veillonellaceae family, the others
belonged to the Lachnospiraceae family. All 4 genera
belonged to the Clostridiales order and were found to be
the microbes producing short-chain fatty acids (SCFAs)
in previous studies [28–31]. No genera that were signifi-
cantly enriched in the JIA group were identified by the
Wilcoxon test (Adjusted P > 0.05; Additional file 2: Table
S7). The 4 genera were significantly correlated with 11
clinical indices (all adjusted P-values < 0.05, “Holm” ad-
justment, Spearman’s correlation; Fig. 2b). Among the 4
genera, the Lachnospira and Roseburia were correlated
with 9 and 6 clinical indices, respectively, while the
Anaerostipes and Dialister were only correlated with 2
and 1 clinical indices, respectively. Out of the 18

Fig. 1 Diversity analyses show that the differences in the α- and β-diversities of the gut microbiota differ between the JIA and the control
groups. a Comparisons of the Chao 1 and Shannon indices between the two groups. The two indices were significantly reduced in the JIA group
compared to the control group (P = 0.0026 and 0.031, Wilcoxon test). b Venn diagram based on genera. The two groups have 83 shared genera,
with 3 unique genera in the JIA group and 8 unique genera in the control group. c Ordination plot for the first two PCoA axes based on Bray-
Curtis dissimilarity. The samples of the JIA and control groups are relatively clustered together, indicating that the Bray-Curtis dissimilarity differs
between the two groups (P = 0.019, PERMANOVA test). d The phylogenetic tree was built using the OTUs greater than 0.3% (Additional file 2:
Table S6). The OTUs in the plot are colored by phyla
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associations with adjusted P-values < 0.05, 14 were nega-
tively correlated and 4 were the opposite (Fig. 2b). The
absolute values of the correlation coefficients ranged
from 0.319 to 0.544 (Fig. 2b). The first three associations
with greatest correlation coefficients were the ones be-
tween Lachnospira and ESR, WBC, and ANA.
At the OTU level, 55 OTUs were significantly differ-

ent in abundance between the two groups when ana-
lyzed by Wilcoxon test (Fig. 2c, Additional file 2: Table
S8); however, only 5 OTUs, labeled as OTU_361727,
OTU_368261, OTU_369429, OTU_581003, OTU_
470382, and, differed between the two groups after the
P-values were adjusted (corrected P = 0.002, 0.015,
0.017, 0.037, and 0.043, respectively; the Benjamini–
Hochberg method; Additional file 2: Table S8). The 5
OTUs had lower abundance in the JIA group (0.004,
0.004, 0.000, 0.000, and 0.010%, respectively) than those
in the controls (0.158, 0.093, 0.132, 0.015, and 0.656%,
respectively). No OTUs with increased relative abun-
dance were identified by the Wilcoxon test after the P-
values were adjusted.

Twelve genera have the potential to serve as biomarkers
in JIA diagnosis
To explore whether the gut microbiota can be used as
biomarkers to differentiate JIA patients from healthy
controls, we constructed six random forest models using
all microbiota members at the phylum, class, order, fam-
ily, genus, and OTU levels (Additional file 1: Figure S4).
The model constructed using the microbiota at the
genus level showed the best predictive accuracy of 67.9%
(e.g., the out-of-bag error rate was 32.1%) among all
taxonomic levels (Additional file 1: Figure S4). The re-
sults of the ten-fold nested cross-validation showed that
as the predictors (e.g., variable or genus numbers in this
case) increased, the out-of-bag error rate decreased
sharply. When the genus number exceeded 12, the error
rates no longer decreased (Fig. 3a). It indicated that the
optimal number of biomarkers (genera) was 12. The 12
genera with highest variable importance are shown in
Fig. 3b. Of the 12 genera, 10 had a lower abundance in
the JIA group compared to the controls, while the other
2 genera (Faecalibacterium and Oscillospira) were the

Fig. 2 The compositional differences at phylum, genus, and OTU levels, and associations between genera and clinical indices. a The
compositional differences of the phyla and genera between the two groups. b Associations between the relative abundance of the 4 genera and
clinical indices. A pie chart with an asterisk indicates that the correlation coefficient reached significance after the P-value was adjusted. c Volcano
plot of the OTUs. Green and red points represent the sample of those with P-values < 0.05 by Wilcoxon test (unadjusted P-values). The green and
red colors indicate a decrease and increase in abundance, respectively. The effect size is the ratio of “the difference between groups” and “the
maximum difference within groups.” In general, the effect size cut-off is more robust than P-values. The OTUs are considered biological markers if
their absolute values of effect size are ≥0.5. Seven OTUs, marked with OTU numbers, have absolute values > 0.5, including the five OTUs
identified by Wilcoxon test (Additional file 2: Table S8). ACPA: Anti-citrullinated protein antibody; ANA: Antinuclear antibody; cJADAS10: Clinical
juvenile arthritis disease activity score 10; Duration: Disease duration; ESR: Erythrocyte sedimentation rate; Glo: Globulin; Hb: Hemoglobin; Pl:
Platelet; TC: Total cholesterol; WBC: While blood cell; Neu: Neutrophil

Qian et al. BMC Genomics          (2020) 21:286 Page 5 of 13



opposite (Fig. 3c). The 12 genera identified by the ran-
dom forest method included the 4 genera that were
identified by Wilcoxon test (Fig. 3c); at the OTU level,
the two analysis methods identified similar results (Add-
itional file 1: Figure S5).
After the 12 genera (biomarkers) were identified, we

constructed a new random forest model as a disease
classifier using these genera (Additional file 1: Figure
S2). The out-of-bag error rate of the new model was
33.30%, which was only slightly higher than that of the
model constructed using all microbiota members at the

genus level. The area under the receiver operating char-
acteristic curve (AUC) was 0.7975 (Fig. 3d). We used an-
other tool, known as decision curve analysis (DCA), to
evaluate the new model; the results of which showed
that the net benefit obtained by the model was greater
than the “treat-all” and “treat-none” curves within the
threshold probability between 0.23 and 0.77 (Fig. 3e).

Discussion
With the rapid development of sequencing technologies
[32–35] and bioinformatics analysis methods [36, 37],

Fig. 3 The random forest model constructed using 12 genera can be used as a disease classifier to differentiate JIA patients from healthy
controls. a Plot of genera numbers vs error rates. As the genera numbers increased, the error rates decreased sharply. The dashed gray line marks
the optimal cut-off for biomarker selection. This analysis indicated that 12 was the optimal predictor (genus) number. b The variable importance
of the genera analyzed using the randomForest package in R. The most important 12 genera are listed in the plot. The greater the Gini indices,
the more important the variables are. c The relative abundance of the 12 genera identified by the random forest model and Wilcoxon test. The 4
genera marked with an asterisk differed significantly in abundance between the two groups by Wilcoxon test (corrected P < 0.05). d ROC of the
random forest model constructed using the 12 genera. The diagonal line in the graph marks an AUC of 0.5. The 95% confidence intervals are
shown as shaded areas. e DCA for the random forest model constructed using the 12 genera. The y-axis measures the net benefit. The green line
represents the situation with the assumption that all children received treatment due to JIA. The blue line indicates the net benefit under the
assumption that no children received treatment due to JIA (e.g., representing the natural disease course without medical intervention so that the
net benefit is constantly zero). The red line is above the green and blue lines, especially within the threshold probability of 0.23–0.77, which
implies that the prediction model is able to achieve a greater net benefit than the situation when the children are treated or untreated without
any model
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the associations between microbiome and diseases have
been demonstrated in recent years. The gut microbiota
was found to be associated with rheumatic diseases ap-
proximately 50 years ago [38], and in the last 10 years,
the involvement of the gut microbiota in the develop-
ment and progression of JIA and other rheumatic dis-
eases has been further established [24, 39]. In the
current study, we found that the abundance of the 4
genera, Anaerostipes, Dialister, Lachnospira, and Rose-
buria, decreased in JIA patients, which were found to be
the SCFA-producing microbes in previous studies [28–
31]. The decreases in the 4 genera were correlated with
more serious clinical indices. Moreover, we constructed
a random forest model as a disease classifier using 12
biomarkers (genera), which was demonstrated that it
had usefulness in clinical prediction.
Age is one of the main factors impacting the compos-

ition of the gut microbiota [25, 40], similar to sex [26],
ethnicity [41], and others [42]. Thus, only age-, sex-, and
ethnicity-matched healthy controls were selected in
order to minimize confounding bias. Over the last dec-
ade, systemic JIA has increasingly been considered as an
autoinflammatory condition, rather than an autoimmune
disease. This distinguishes systemic JIA from other sub-
types [43, 44]; thus, children with systemic JIA were not
included in the current study.
The diversity in a single ecosystem or sample, called

α-diversity, is often measured by the Chao1, Shannon–
Wiener, and Simpson indices. The Chao1 and Shannon–
Wiener indices give more weight to rare species,
whereas the Simpson index puts more emphasis on
common species [45]. In this study, the Chao1 and
Shannon–Wiener index differed considerably between
the two groups, but the Simpson index did not, implying
that the rare species contributed to the differences to a
greater extent than the common species. The results of
the α-diversity analyses were similar to those of previous
studies [17, 46]; however, other studies did not find any
differences in the α-diversity indices [18–21].
Bray-Curtis dissimilarity, a commonly used β-diversity

index, differed between the two groups, which indicated
that the two groups had a different composition of gut
microbiota. However, the R2 value was 0.02132, which
showed that only 2.3% of the total variance could be ex-
plained by the group, e.g., JIA contributed to 2.3% alter-
ations of the gut microbiota composition. The result of
the β-diversity index was similar to those of previous
studies [17, 20, 46, 47]. However, other studies either
failed to find any differences in β-diversity indices or did
not have relevant data [18, 19, 21]. The inconsistent α-
and β-diversity results among these studies may be at-
tributed to, at least in part, study design, study popula-
tion, composition of JIA subtypes, duration of disease,
and medication use prior to enrollment [39].

Diversity analyses have revealed that the two groups
had a different composition of microbiota. Univariate
community analysis further demonstrated the micro-
biota differences between the two groups, which were
found to be the SCFA-producing microbes [28–31].
More specifically, at the genus level, the relative abun-
dance of Anaerostipes, Dialister, Lachnospira, and Rose-
buria in JIA patients decreased significantly (corrected
P < 0.05, Wilcoxon test), three of which are butyrate-
producing microbes including Anaerostipes [28, 29],
Lachnospira [30], and Roseburia [31]. The other genus,
Dialister, is a propionate-producing microbe [48]. Com-
pared to previous studies, decreases in the abundance of
the Anaerostipes or Lachnospira were also observed in
patients with JIA [18, 47], but these results were oppos-
ite to those observed in patients with rheumatoid arth-
ritis [21, 46]. In contrast to the results in our study, the
abundance of Dialister was increased in the previous
study [49]. Hence, the findings of microbiota changes
are inconsistent. Our study used the same sequencing
method and similar data analysis methods as the previ-
ous studies. The key difference between them was the
control selection. That is, whether the confounding fac-
tors of age, sex, BMI, and ethnicity were matched mainly
contributed to the differences in the results between our
study and others, because these confounding factors def-
initely impact the composition of gut microbiota [25–27,
40, 41]. Of these confounding factors, age probably is
the main one, because the composition of gut micro-
biota in children younger than 16 years old varies sub-
stantially [25, 50, 51]. To some extent, other factors such
as geography and diet may also have an effect on the dif-
ferences [40, 52]. It has been demonstrated that SCFAs,
including acetate, propionate, butyrate, and pentanoate,
have considerable immunomodulatory effects through
several pathways, such as inducing the differentiation of
regulatory T cells, enhancing IL-10 production, and sup-
pressing Th17 cells [53–55]. Moreover, butyrate admin-
istration suppressed the expression of inflammatory
cytokines and ameliorated collagen-induced arthritis in
mice [54]. Although causal relationships among gut
microbiota, SCFAs, and metabolic diseases have been
demonstrated previously [22, 56], these relationships re-
main vague in JIA and need to be further investigated.
Similar to a previous study [21], the correlations be-

tween the gut microbiota and some clinical indices were
verified in the current study, but the absolute values of
the correlation coefficients were relatively small. The 4
genera, especially the Lachnospira and Roseburia, were
mainly negatively correlated with the clinical indices,
e.g., when the relative abundance of the 4 genera de-
creased, the rheumatic clinical indices became higher or
more active. This implies that, as in the previous study
regarding metabolic diseases [22], the following
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sequential changes may be observed: Microbiota alter-
ations (decrease in the abundance of SCFA-producing
microbes), low concentrations of SCFAs, immune dys-
functions, and eventually rheumatic diseases.
The diagnosis of JIA primarily depends on medical

history, physical findings, and the exclusion of other dis-
eases, and is a challenging task in clinical practice. The
12 genera identified in our study were used to construct
a new random forest model, which could help physicians
to establish a diagnosis of JIA. The performance of a
prediction model is usually evaluated with ROC, which
assesses how well the predicted risks distinguish between
patients with and without disease. Nevertheless, ROC
cannot be used to evaluate whether a model could im-
prove clinical decision making [57, 58]. In 2006, the
DCA was introduced to overcome this limitation [59]. In
our study, the AUC of the new model was 79.75%, which
was lower than those reported in some earlier studies
[20, 21], while the other studies did not report ROC re-
sults [17–19, 23, 46, 47]. The DCA analysis showed that
our prediction model had greater clinical usefulness than
the situation when the children were managed without a
prediction model, particularly for those within the
threshold probability of 0.23–0.77 [60]. However, the
curve between the threshold probability of 0–0.23 is
close to the green line (Fig. 3e), indicating that the add-
itional gain of the model was not significantly different
from the “treat-all” model where the threshold probabil-
ity ranged from 0 to 0.23 [58]. To the best of our know-
ledge, our study is the first one to investigate the clinical
usefulness of a random forest model based on the gut
microbiota by using DCA. It remains unclear whether
the prediction model can be further improved by inte-
grating the clinical characteristics. Further studies of the
model based on the gut microbiota are warranted to re-
fine its application in clinical decision making.
There were several limitations to our study. First, oli-

goarthritis, polyarthritis, and enthesitis-related arthritis
were lumped together in the JIA group. Second, the pro-
portion of enthesitis-related arthritis among the subtypes
was relatively high; thus, whether the results can be ex-
trapolated to other study populations requires to be de-
termined. Third, the sample size was relatively small due
to the rigorous inclusion criteria; moreover, we did not
conduct a longitudinal study. Lastly, we did not detect
the SCFAs in fecal, blood, and synovial samples; thus,
whether the decreased abundance of SCFA-producing
genera leads to the concentration changes in these sam-
ples remains to be confirmed.

Conclusions
In summary, this study shows that the gut microbiota is
altered in patients with JIA, and is characterized by a de-
creased abundance of SCFA-producing genera, including

Anaerostipes, Dialister, Lachnospira, and Roseburia. The
4 genera, especially the Lachnospira and Roseburia, were
mainly negatively correlated with the clinical indices,
e.g., when the relative abundance of the 4 genera de-
creased, the clinical indices became higher or more ac-
tive. Furthermore, the random forest model constructed
using 12 genera could accurately predict individuals with
or without JIA, which indicates the 12 genera could be
used as biomarkers and predictors in clinical practice.
Further studies are warranted to explore the causal rela-
tionships among gut microbiota, SCFAs, and JIA, and to
refine the model’s application in clinical decision
making.

Methods
Study design, participants, and settings
We performed an age-, sex-, BMI-, and ethnicity-
matched cross-sectional study at two tertiary hospitals
between June 2018 and May 2019. All children were en-
rolled at the Children’s Hospital, Zhejiang University
School of Medicine, and the Jinhua Municipal People’s
Hospital, which are tertiary hospitals in Zhejiang Prov-
ince, located in the southeastern part of China. The
study had two groups: study group (JIA group) and con-
trol group (healthy controls). The flowchart of the study
is shown in Additional file 1: Figure S1. The healthy
children were those who visited their physicians for rou-
tine physical examinations at the two hospitals. The chil-
dren with JIA met the following inclusion criteria: 1)
Aged between 1 and 16 years old; and 2) new-onset JIA
diagnosed according to the International League of As-
sociations for Rheumatology classification criteria [61].
Specifically, new-onset was defined as disease duration
between 6 weeks and 6months, and absence of any
treatment with disease-modifying anti-rheumatic drugs
(DMARDs), biologic therapy, or steroids (ever). Healthy
controls were age-, sex-, BMI-, and ethnicity-matched
individuals with no history of JIA or the diseases listed
in the exclusion criteria.
The exclusion criteria applied to both groups were as

follows: 1) Children who were unwilling to participate in
the study; 2) patients with systemic JIA; 3) individuals
who had malnutrition [62] or were overweight [63]; 4)
patients with recent (< 3 months prior) use of any antibi-
otics or probiotics; and 5) patients with co-morbidities
including inflammatory bowel disease, allergic disorders,
diabetes, primary immunodeficiency, tumors, or other
chronic diseases.

Sample collection and measurement methods
Specimens used in this study included fecal and blood
samples. The former were used for 16S rDNA sequen-
cing, and the latter were used to determine clinical indi-
ces such as complete blood cell count, biochemical
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profile, and serum cytokines. Fecal and blood samples
from the JIA patients were collected within 24 h after
the patients were admitted to the two hospitals, and
fecal samples from the healthy controls were collected
mainly at home. The fecal samples were stored at −
20 °C within 15min after collection, and then were
transferred to our laboratory on dry ice within 24 h of
collection and stored at − 80 °C thereafter. Microbial
DNA was extracted from the fecal samples using the
TIANamp Stool DNA Kit (TIANGEN Biotech [Beijing]
Co., Ltd., Beijing, China). A polymerase chain reaction
was performed using 10–100 ng microbial DNA and
10 μMV3–V4 primers targeting 341F (CCTACGGGNG
GCWGCAG) and 805R (GACTACHVGGGTATC-
TAATCC) and Phanta Max Master Mix (Vazyme Bio-
tech Co., Ltd., Nanjing, China). Samples were pooled to
equal concentrations, then sequenced on one lane of a
MiSeq platform using the MiSeq Reagent Kit v3 (600 cy-
cles; Illumina Inc., Shanghai, China), generating at least
30000 reads per sample.
Complete blood cell count was determined using a

hematology analyzer (Mindray BC5310, Mindray Corp.,
China). Biochemical profile, such as alanine aminotrans-
ferase, aspartate aminotransferase, and creatinine, were
determined using an automatic biochemical analyzer
(HITACHI 7600, Hitachi Ltd., Japan). Serum cytokines
including IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ were
determined by the CBA Human Th1/Th2 Cytokine Kit
II (BD Biosciences, USA) using a cell analyzer (BD
FACSCanto™ II, Amersham Biosciences Corp., USA).
Immunoglobulins were determined using a photometric
assay analyzer (cobas® c 702 module, Roche Corp.,
Swiss). Autoantibodies, such as anti-citrullinated protein
antibodies and antinuclear antibody, were determined
using an immunofluorescence quantitative analyzer
(HELIOS IOS-1000-AES, AESKU, Germany) and an au-
tomated western blot processor (Blotray-866, Rayto Life
and Analytical Sciences Co., Ltd., China).

Bioinformatics analysis
The QIIME pipeline [64] was used to process the se-
quencing data. All of the downstream analyses including
diversity analyses and visualizations, differential abun-
dance testing, correlation analysis, and biomarker identi-
fication and its evaluation were performed in R 3.6.1
(https://cran.r-project.org/).

The processing of 16S rRNA sequencing data
The detailed methods are available in the literature [65].
We ran open-reference OTU picking at 97% identity,
and then feature sequences were assigned to taxonomic
classification using the classifier based on the Green-
genes 13.5 database [66]. Samples with less than 1000
sequences per sample were considered failures and

filtered out, and OTUs less than 0.001% were removed
[42, 67].

α-Diversity measures and calculations
α-diversity indices, such as the Chao 1, Shannon–
Wiener, Simpson, and Pielou’s evenness indices, were
calculated using the vegan package 2.5–5 [68].

β-Diversity measures and comparisons
The Bray-Curtis dissimilarity, a commonly used β-
diversity index, was used in our study, and was calcu-
lated using the distance() function (a function of R pack-
age was expressed as “function name()”) in the phyloseq
package 1.26.1 [69]. The Bray-Curtis dissimilarity be-
tween the two groups was compared by the adonis()
function in the vegan package [68]. In order to plot the
figure of principal coordinate analysis (PCoA), three
steps were carried out: 1) The zero values in the OTU
table were replaced using the zCompositions package
1.3.2–1 [70]; 2) the data were transformed using the
decostand() function (Hellinger transformation, from the
vegan package) in order to alleviate the horseshoe effect
[71]; 3) PCoA was performed using cmdscale() in the
vegan package [68].

Visualization of the phylogenetic tree
The phylogenetic tree was plotted using the ggtree pack-
age 1.14.6 [72].

Differential abundance testing
The differential abundance testing was performed using
the ALDEx2 package 1.16.0 [73]. The effect size and P-
values, generated by this analysis, were used to draw a
volcano plot, which was visualized with the ggplot2
package 3.2.1 [74].

Correlation analysis of the genera and the clinical indices
Spearman correlations between the genera and clinical
indices were calculated using the psych package 1.8.12
[75], and visualized using the corrplot package 0.84 [76].

Identification of the genera serving as biomarkers
The built-in rfcv() function from the randomForest
package 4.6–14 was used to explore the relationship be-
tween genera number and error rate [77, 78]. A nested
cross-validation procedure was implemented in order to
select an optimal predictor number using the rfcv(). The
number corresponding to the minimum error rate was
considered as an optimal predictor number or biomarker
number. The OTU table at the genus level, which con-
tained the selected biomarkers (biomarker data), was
used for downstream analyses. The flowchart of the
major steps involved in biomarker identification is
shown in “Additional file 1: Figure S2”.

Qian et al. BMC Genomics          (2020) 21:286 Page 9 of 13

https://cran.r-project.org/


Construction of the receiver operating characteristic curve
(ROC)
Ten-fold cross-prediction based on the biomarker data was
performed to construct the ROC, i.e., the input samples
(the biomarker data) were partitioned into 10 subsets, 9
subsets were used to fit random forest models in the ran-
domForest package [78], and the rest subset was used to
calculate prediction probability in the ROCR 1.0–7 [79].
This cross-prediction process was then repeated 10 times,
with each of the 10 subsets used exactly once as the predic-
tion data. The 10 sets of prediction results were used to cal-
culate 95% confidence intervals and plot the ROC.

Decision curve analysis (DCA)
Two main steps were performed to plot the DCA curve:
Step 1: a random forest model based on the biomarker
data was fitted in the randomForest package [80], and step
2: votes, a probability matrix produced in random forest
process, and sample metadata file were used to plot the
DCA curve in the R function that is detailed in the refer-
ence [60]. The net benefit and threshold probability were
calculated as previously described [57].

Sample size and power calculations
No formal sample size calculation was performed before
the participants were enrolled.
The sample size was bigger than those used in previ-

ous studies [18, 19]. After the study was completed, the
power of the study was calculated using the Dirichlet-
Multinomial Model in the R package HMP [81].

Statistical analysis
Continuous data were expressed as mean (standard devi-
ation) and tested by Student’s t test or median with
interquartile ranges and analyzed by Wilcoxon test. Cat-
egorical data were presented as percentages and were
tested by Chi-square analysis or Fisher’s exact test.
Spearman’s rank correlation was used to analyze correla-
tions between non-normal data. A few children with JIA
did not have cytokine data. These cytokine data were
treated as missing values when performing correlation
analysis in the R package psych [75]. All tests were two-
sided tests, and P < 0.05 was considered statistically sig-
nificant. P-values were adjusted for multiple testing
using the “Benjamini-Hochberg” method or the “Holm”
methods. All statistical analyses were performed with
relevant packages in R.
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