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Abstract

evidence-based annotations.

G3PO provide useful guidelines for future studies.

Background: The draft genome assemblies produced by new sequencing technologies present important
challenges for automatic gene prediction pipelines, leading to less accurate gene models. New benchmark
methods are needed to evaluate the accuracy of gene prediction methods in the face of incomplete genome
assemblies, low genome coverage and quality, complex gene structures, or a lack of suitable sequences for

Results: We describe the construction of a new benchmark, called G3PO (benchmark for Gene and Protein
Prediction PrOgrams), designed to represent many of the typical challenges faced by current genome annotation
projects. The benchmark is based on a carefully validated and curated set of real eukaryotic genes from 147
phylogenetically disperse organisms, and a number of test sets are defined to evaluate the effects of different
features, including genome sequence quality, gene structure complexity, protein length, etc. We used the
benchmark to perform an independent comparative analysis of the most widely used ab initio gene prediction
programs and identified the main strengths and weaknesses of the programs. More importantly, we highlight a
number of features that could be exploited in order to improve the accuracy of current prediction tools.

Conclusions: The experiments showed that ab initio gene structure prediction is a very challenging task, which
should be further investigated. We believe that the baseline results associated with the complex gene test sets in
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Background

The plunging costs of DNA sequencing [1] have made
de novo genome sequencing widely accessible for an in-
creasingly broad range of study systems with important
applications in agriculture, ecology, and biotechnologies
amongst others [2]. The major bottleneck is now the
high-throughput analysis and exploitation of the result-
ing sequence data [3]. The first essential step in the ana-
lysis process is to identify the functional elements, and
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in particular the protein-coding genes. However, identi-
fying genes in a newly assembled genome is challenging,
especially in eukaryotes where the aim is to establish ac-
curate gene models with precise exon-intron structures
of all genes [3-5].

Experimental data from high-throughput expression pro-
filing experiments, such as RNA-seq or direct RNA se-
quencing technologies, have been applied to complement
the genome sequencing and provide direct evidence of
expressed genes [6, 7]. In addition, information from
closely related genomes can be exploited, in order to trans-
fer known gene models to the target genome. Numerous
automated gene prediction methods have been developed
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that incorporate similarity information, either from tran-
scriptome data or known gene models, including Geno-
meScan [8], GeneWise [9], FGENESH [10], Augustus [11],
Splign [12], CodingQuarry [13], and LoReAN [14].

The main limitation of similarity-based approaches is
in cases where transcriptome sequences or closely re-
lated genomes are not available. Furthermore, such ap-
proaches encourage the propagation of erroneous
annotations across genomes and cannot be used to dis-
cover novelty [5]. Therefore, similarity-based approaches
are generally combined with ab initio methods that pre-
dict protein coding potential based on the target genome
alone. Ab initio methods typically use statistical models,
such as Support Vector Machines (SVMs) or hidden
Markov models (HMMs), to combine two types of sen-
sors: signal and content sensors. Signal sensors exploit
specific sites and patterns such as splicing sites, promo-
tor and terminator sequences, polyadenylation signals or
branch points. Content sensors exploit the coding versus
non-coding sequence features, such as exon or intron
lengths or nucleotide composition [15]. Ab initio gene
predictors, such as Genscan [16], GlimmerHMM [17],
GenelD [18], FGENESH [10], Snap [19], Augustus [20],
and GeneMark-ES [21], can thus be used to identify pre-
viously unknown genes or genes that have evolved be-
yond the limits of similarity-based approaches.

Unfortunately, automatic ab initio gene prediction
algorithms often make substantial errors and can
jeopardize subsequent analyses, including functional an-
notations, identification of genes involved in important
biological process, evolutionary studies, etc. [22-25].
This is especially true in the case of large “draft” ge-
nomes, where the researcher is generally faced with an
incomplete genome assembly, low coverage, low quality,
and high complexity of the gene structures. Typical er-
rors in the resulting gene models include missing exons,
non-coding sequence retention in exons, fragmenting
genes and merging neighboring genes. Furthermore, the
annotation errors are often propagated between species
and the more “draft” genomes we produce, the more er-
rors we create and propagate [3-5]. Other important
challenges that have attracted interest recently include
the prediction of small proteins/peptides coded by short
open reading frames (sORFs) [26, 27] or the identifica-
tion of events such as stop codon recoding [28]. These
atypical proteins are often overlooked by the standard
gene prediction pipelines, and their annotation requires
dedicated methods or manual curation.

The increased complexity of today’s genome annota-
tion process means that it is timely to perform an exten-
sive benchmark study of the main computational
methods employed, in order to obtain a more detailed
knowledge of their advantages and disadvantages in dif-
ferent situations. Some previous studies have been
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performed to evaluate the performance of the most
widely used ab initio gene predictors. One of the first
studies [29] compared 9 programs on a set of 570 verte-
brate sequences encoding a single functional protein,
and concluded that most of the methods were overly
dependent on the original set of sequences used to train
the gene models. More recent studies have focused on
gene prediction in specific genomes, usually from model
or closely-related organisms, such as mammals [30], hu-
man [31, 32] or eukaryotic pathogen genomes [33], since
they have been widely studied and many gene structures
are available that have been validated experimentally. To
the best of our knowledge, no recent benchmark study
has been performed on complex gene sequences from a
wide range of organisms.

Here, we describe the construction of a new benchmark,
called G3PO — benchmark for Gene and Protein Prediction
PrOgrams, containing a large set of complex eukaryote
genes from very diverse organisms (from human to pro-
tists). The benchmark consists of 1793 reference genes and
their corresponding protein sequences from 147 species
and covers a range of gene structures from single exon
genes to genes with over 20 exons. A crucial factor in the
design of any benchmark is the quality of the data included.
Therefore, in order to ensure the quality of the benchmark
proteins, we constructed high quality multiple sequence
alignments (MSA) and identified the proteins with incon-
sistent sequence segments that might indicate potential se-
quence annotation errors. Protein sequences with no
identified errors were labeled ‘Confirmed’, while sequences
with at least one error were labeled ‘Unconfirmed. The
benchmark thus contains both Confirmed and Uncon-
firmed proteins (defined in Methods: Benchmark test sets)
and represents many of the typical prediction errors pre-
sented above. We believe the benchmark allows a realistic
evaluation of the currently available gene prediction tools
on challenging data sets.

We used the G3PO benchmark to compare the accuracy
and efficiency of five widely used ab initio gene prediction
programs, namely Genscan, GlimmerHMM, GenelD,
Snap and Augustus. Our initial comparison highlighted
the difficult nature of the test cases in the G3PO bench-
mark, since 68% of the exons and 69% of the Confirmed
protein sequences were not predicted with 100% accuracy
by all five gene prediction programs. Different benchmark
tests were then designed in order to identify the main
strengths and weaknesses of the different programs, but
also to investigate the impact of the genomic environ-
ment, the complexity of the gene structure, or the nature
of the final protein product on the prediction accuracy.

Results
The presentation of the results is divided into 3 sections,
describing (i) the data sets included in the G3PO
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benchmark, (ii) the overall prediction quality of the five
gene prediction programs tested and (iii) the effects of
various factors on gene prediction quality.

Benchmark data sets

The G3PO benchmark contains 1793 proteins from a di-
verse set of organisms (Additional file 1: Table S1),
which can be used for the evaluation of gene prediction
programs. The proteins were extracted from the Uniprot
[34] database, and are divided into 20 orthologous fam-
ilies (called BBS1-21, excluding BBS14) that are repre-
sentative of complex proteins, with multiple functional
domains, repeats and low complexity regions (Additional
file 1: Table S2). The benchmark test sets cover many
typical gene prediction tasks, with different gene lengths,
protein lengths and levels of complexity in terms of
number of exons (Additional file 1: Fig. S1). For each of
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the 1793 proteins, we identified the corresponding gen-
omic sequence and the exon map in the Ensembl [35]
database. We also extracted the same genomic se-
quences with additional DNA regions ranging from 150
to 10,000 nucleotides upstream and downstream of the
gene, in order to represent more realistic genome anno-
tation tasks. Additional file 1: Fig. S2 shows the distribu-
tion of various features of the 1793 benchmark test
cases, at the genome level (gene length, GC content),
gene structure level (number and length of exons, intron
length), and protein level (length of main protein
product).

Phylogenetic distribution of benchmark sequences

The protein sequences used in the construction of the
G3PO benchmark were identified in 147 phylogenetic-
ally diverse eukaryotic organisms, ranging from human
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Fig. 1 Phylogenetic distribution of the 1793 test cases in the G3PO benchmark. a Number of species in each clade. b Number of sequences in
each clade. ¢ Number of sequences in each clade in the Confirmed test set. d Number of sequences in each clade in the Unconfirmed test set.
The ‘Others’ group corresponds to: Apusozoa, Cryptophyta, Diplomonadida, Haptophyceae, Heterolobosea, Parabasalia
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to protists (Fig. 1a and Additional file 1: Table S3). The
majority (72%) of the proteins are from the Opistho-
konta clade, which includes 1236 (96.4%) Metazoa, 25
(1.9%) Fungi and 22 (1.7%) Choanoflagellida sequences
(Fig. 1b). The next largest groups represented in the
database are the Stramenopila (172), Euglenozoa (149)
and Alveolata (99) sequences. More divergent species
are included in the ‘Others’ group, containing 57 se-
quences from 6 different clades, namely Apusozoa,
Cryptophyta, Diplomonadida, Haptophyceae, Heterolo-
bosea and Parabasalia.

Exon map complexity

The benchmark was designed to cover a wide range of
test cases with different exon map complexities, as en-
countered in a realistic complete genome annotation
project. The test cases in the benchmark range from sin-
gle exon genes to genes with 40 exons (Additional file 1:
Fig. S2). In particular, the different species included in
the benchmark present different challenges for gene pre-
diction programs. To illustrate this point, we compared
the number of exons in the human genes to the number
of exons in the orthologous genes from each species
(Fig. 2). Three main groups can be distinguished: i)
Chordata, ii) other Opisthokonta (Mollusca, Platyhel-
minthes, Panarthropoda, Nematoda, Cnidaria, Fungi and
Choanoflagellida) and iii) other Eukaryota (Amoebozoa,
Euglenozoa, Heterolobosza, Parabasalia, Rhodophyta,
Viridiplantae, Stramenopila, Alveolata, Rhizaria, Crypto-
phyta, Haptophyceae). As might be expected, the se-
quences in the Chordata group generally have a similar
number of exons compared to the Human sequences.
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The sequences in the ‘other Opisthokonta’ group have
greater heterogeneity, as expected due to their phylogen-
etic divergence, although some classes, such as the in-
sects are more homogeneous. The genes in this group
have three times fewer exons on average, compared to
the Chordata group. The ‘other Eukaryota’ group in-
cludes diverse clades ranging from Viridiplantae and
Protists, although the exon map complexity is relatively
homogeneous within each clade. For example, in the
Euglenozoa clades, all sequences have less than 20% of
the number of exons compared to human.

Quality of protein sequences

The protein sequences included in the benchmark were
extracted from the public databases, and it has been
shown previously that these resources contain many se-
quence errors [22—25]. Therefore, we evaluated the qual-
ity of the protein sequences in G3PO using a homology-
based approach (see Methods), similar to that used in
the GeneValidator program [23]. We thus identified pro-
tein sequences containing potential errors, such as in-
consistent insertions/deletions or mismatched sequence
segments (Additional file 1: Fig. S3 and Methods). Of
the 1793 proteins, 889 (49.58%) protein sequences had
no identified errors and were classified as ‘Confirmed’,
while 904 (50.42%) protein sequences had from 1 to 8
potential errors (Fig. 3a) and were classified as ‘Uncon-
firmed’. The 904 Unconfirmed sequences contain a total
of 1641 errors, i.e. each sequence has an average of 1.8
errors. Additional file 1: Table S4 shows the number of
Unconfirmed sequences and the total number of errors
identified for each species included in the benchmark.
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We further characterized the Unconfirmed sequences by
the categories of error they contain (Fig. 3b) and by
orthologous protein family (Additional file 1: Fig. S4A
and B). All the protein families contain Unconfirmed se-
quences, regardless of the number or length of the se-
quences, although the ratio of Confirmed to
Unconfirmed sequences is not the same in all families.
For example, the BBS6, 11, 12, 18 families, that are
present mainly in vertebrate species, have more Con-
firmed sequences (68.5, 80.0, 52.3, 61.1% respectively).
Inversely, the majority of sequences in the BBS8 and 9
families, that contain many phylogenetically disperse or-
ganisms, are Unconfirmed (68.8, 73.3% respectively).
The majority of the 1641 errors (58.4%) are internal (i.e.
do not affect the N- or C-termini) and 31% are internal
mismatched segments, while N-terminal errors (378 =
23.0%) are more frequent than C-terminal errors (302 =
18.4%). At the N- and C-termini, deletions are more fre-
quent than insertions (280 and 145, respectively), in con-
trast to the internal errors, where insertions are more
frequent (304 compared to 143).

The distributions of various features are compared for
the sets of 889 Confirmed and 904 Unconfirmed se-
quences in Additional file 1: Fig. S2. There are no sig-
nificant differences in gene length (p-value = 0.735), GC
content (p-value =0.790), number of exons (p-value =
0.073), and exon/intron lengths (p-value=0.690 / p-
value = 0.949) between the Confirmed and Unconfirmed
sequences. The biggest difference is observed at the pro-
tein level, where the Confirmed protein sequences are
13% shorter than the Unconfirmed proteins (p-value =
8.75 x 10~ °). We also compared the phylogenetic distri-
butions observed in the Confirmed and Unconfirmed

sequence sets (Fig. 1c and d). Two clades had a higher
proportion of Confirmed sequences, namely Opistho-
konta (691/1283 =54%) and Stramenopila (88/172 =
51%). In contrast, Alveolata (24/99 = 24%), Rhizaria (5/
21 =24%) and Choanoflagellida (5/22 =22%) had fewer
Confirmed than Unconfirmed sequences.

Quality of genome sequences

The genomic sequences corresponding to the reference
proteins in G3PO were extracted from the Ensembl
database. In all cases, the soft mask option was used (see
Methods) to localize repeated or low complexity regions.
However, some sequences still contained undetermined
nucleotides, represented by ‘n’ characters, probably due
to genome sequencing errors or gaps in the assembly.
Undetermined (UDT) nucleotides were found in 283
(15.8%) genomic sequences from 58 (39.5%) organisms,
of which 281 sequences (56 organisms) were from the
metazoan clade (Additional file 1: Fig. S5). Of these 283
sequences, 133 were classified as Confirmed and 150
were classified as Unconfirmed.

We observed important differences between the char-
acteristics of the sequences with UDT regions and the
other G3PO sequences, for both Confirmed and Uncon-
firmed proteins (Additional file 1: Table S5). The average
length of the 283 gene sequences with UDT regions (95,
584 nucleotides) is 6 times longer than the average
length of the 1510 genes without UDT (15,934 nucleo-
tides), although the protein sequences have similar aver-
age lengths (551 amino acids for UDT sequences
compared to 514 amino acids for non UDT sequences).
Sequences with UDT regions have twice as many exons,
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three times shorter exons and five times longer introns
than sequences without UDT.

Evaluation metrics

The benchmark includes a number of different perform-
ance metrics that are designed to measure the quality of
the gene prediction programs at different levels. At the
nucleotide level, we study the ability of the programs to
correctly classify individual nucleotides found within
exons or introns. At the exon level, we applied a strict
definition of correctly predicted exons: the boundaries of
the predicted exons should exactly match the boundaries
of the benchmark exons. At the protein level, we com-
pare the predicted protein to the benchmark sequence
and calculate the percent sequence identity (defined as
the number of identical amino acids compared to the
number of amino acids in the benchmark sequence). It
should be noted that, due to their strict definition, scores
at the exon level are generally lower. For example, in
some cases, the predicted exon boundary may be shifted
by a few nucleotides, resulting in a low exon score but
high nucleotide and protein level scores.

Evaluation of gene prediction programs

We selected five widely used gene prediction programs:
Augustus, Genscan, GenelD, GlimmerHMM and Snap.
These programs all use Hidden Markov Models
(HMMs) trained on different sets of known protein se-
quences and take into account different context sensors,
as summarized in Table 1. Each prediction program was
run with the default settings, except for the species
model to be used. As the benchmark contains sequences
from a wide range of species, we selected the most per-
tinent training model for each sequence, based on their
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taxonomic proximity (see Methods). The genomic se-
quences for the 1793 test cases in the G3PO benchmark
were used as input to the selected gene prediction pro-
grams and a series of tests were performed (outlined in
Fig. 4), in order to identify the strong and weak points of
the different algorithms, as well as to highlight specific
factors affecting prediction accuracy.

Gene prediction accuracy

In order to estimate the overall accuracy of the five gene
prediction programs, the genes predicted by the pro-
grams were compared to the benchmark sequences in
G3PO. At this stage, we included only the 889 Con-
firmed proteins, and used the genomic sequences corre-
sponding to the gene region with 150bp flanking
sequence upstream and downstream of the gene (Fig. 4
— Initial tests) as input. Figure 5(a-c) and Additional file
1: Table S6 show the mean quality scores at different
levels: nucleotide, exon structure and final protein se-
quence (defined in Methods).

At the nucleotide level (Fig. 5a), most of the programs
have higher specificities than sensitivities (with the ex-
ception of GlimmerHMM), meaning that they tend to
underpredict. F1 scores range from 0.39 for Snap to 0.52
for Augustus, meaning that it has the best accuracy.

At the exon level (Fig. 5b left), Augustus and Genscan
achieve higher sensitivities (0.27, 0.23 respectively) and
specificities (0.30, 0.28 respectively) than the other pro-
grams. Nevertheless, the number of mis-predicted exons
remains high with 65 and 74% Missing Exons and 62 and
69% Wrong Exons respectively for Augustus and Genscan.
At this level, GenelD and Snap have the lowest sensitivity
and specificity, indicating that the predicted splice bound-
aries are not accurate. We also investigated whether the

Table 1 Main characteristics of the gene prediction programs evaluated in this study. GHMM: Generalized hidden Markov model;

UTR: Untranslated regions

Gene Signal sensors Content sensors Algorithm model  Organism-
predictor specific
models

Genscan Promoter (15 bp), cap site (8 bp), TATA to cap site Intergenic, 5'-/3"-UTR, exon/introns in 3 3-periodic fifth- 3 models
(version 1.0) distance of 30 to 36 bp, donor (-3 to + 6 bp)/ phases, forward/reverse strands order Markov

acceptor (- 20 to + 3) splice sites, polyadenylation, model (GHMM)

translation start/stop sites
GlimmerHMM  Donor (16 bp)/ acceptor (29 bp) splice sites, start/ Exon/intron in one frame,intron length 50— Hidden Markov 5 models
(version 3.02)  stop codons 1500 bp, total coding length > 200 bp model (GHMM)
GenelD Donor/acceptor splice sites (— 3 to + 6 bp), start/stop  First/initial/last exon, single-exon gene, intron,  Fifth-order 66
(version 1.4) codons intron length > 40 bp, intergenic distance > Markov model models

300 bp (HMM)

SNAP (version  Donor (-3 to + 6 bp) /acceptor (— 24 to + 3) splice  intergenic, single-exon gene, first/initial/last Fourth-order 11
2006-07-28) sites, translation start (—6 to + 6 bp) /stop (—6 to +  exon, introns in 3 phases Markov model models

3 bp) sites (GHMM)
Augustus Donor (-3 to + 6 bp) /acceptor (=5 to + 1 bp) intergenic, single exon gene, first/initial/last Fourth-order 109
(version 33.2)  splice sites, branch point (32 bp), translation start (=  exon, short/long introns in 3 phases and Interpolated models

20 to + 3)/stop (3 bp) sites

forward/reverse strands, isochore boundaries

Markov model
(GHMM)
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Fig. 4 Workflow of different tests performed to evaluate gene prediction accuracy. The initial tests are based on the 889 confirmed proteins and
their genomic sequences corresponding to the gene region with 150 bp flanking sequences. At the genome level, effect of genome context and
genome quality are tested, and 756 confirmed sequences with +2Kb flanking sequences and no undetermined (UDT) regions are selected. These

are used at the gene structure and protein levels, to investigate effects of factors linked to exon map complexity and the final protein product

J

exon position had an effect on prediction accuracy, by
comparing the percentage of well predicted first and last
exons with the percentage of well predicted internal exons
(Fig. 5b right). The internal exons are predicted better
than the first and last exons. In addition, for all exons, the
3" boundary is generally predicted better than the 5’
boundary. To further investigate the complementarity of
the different programs, we plotted the number of Correct
Exons (i.e. both 5" and 3" exon boundaries correctly pre-
dicted) identified by at least one of the programs (Fig. 6a).
A total of 167 exons were found by all five programs, sug-
gesting that they are relatively simple to identify. More im-
portantly, 689 exons were correctly predicted by only one
program, while 5461 (68.4%) exons were not predicted
correctly by any of the programs.

As might be expected, the nucleotide and exon scores
are reflected at the protein level (Fig. 5c), with Augustus
again achieving the best score, obtaining 75% sequence
identity overall and predicting 209 of the 889 (23.5%)
Confirmed proteins with 100% accuracy. GeneID and

Snap have the lowest scores in terms of perfect protein
predictions (52.6, 46.6% respectively). Again, we investi-
gated the complementarity of the programs, by plotting
the number of proteins that were perfectly predicted
(100% identity) by at least one of the programs (Fig. 6b).
Only 32 proteins are perfectly predicted by all five pro-
grams, while 108 proteins were predicted with 100% ac-
curacy by a single program. These were mostly predicted
by Augustus (61), followed by GlimmerHMM (17). 611
(69%) of the 889 benchmark proteins were not predicted
perfectly by any of the programs included in this study.

Computational runtime

We also compared the CPU time required for each pro-
gram to process the benchmark sequences (Additional
file 1: Table S7). Using the gene sequences with 150 bp
flanking regions (representing a total length of 51,699,
512 nucleotides), Augustus required the largest CPU
time (18265s), taking > 3.4 times as long as the second
slowest program, namely GlimmerHMM (540 s). GenelD
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was the fastest program and completed the gene predic-
tion for the 1793 genomic regions, including 10Kb up-
stream/downstream flanking nucleotides (total length of
86,970,612 nucleotides), in 260 s.

Analysis of factors affecting gene prediction quality

Based on the results of our initial comparison of gene
prediction accuracy, and particularly the complementar-
ity of the programs highlighted in Fig. 6, we decided to
investigate further the different factors that may

influence the performance of the prediction programs.
Figure 4 provides an overview of the different tests per-
formed, including: i) factors associated with the input
genomic sequence, ii) factors associated with the gene
structure, and iii) factors associated with the protein
product.

Factors associated with the input genomic sequence
We first evaluated the genome context and the effect of
adding flanking sequences upstream and downstream of
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the benchmark gene sequence used as input to the pre-
diction programs, using the 889 Confirmed benchmark
tests. We added different flanking sequence lengths ran-
ging from 150 bp to 10Kb, and calculated the same qual-
ity scores as above, at the nucleotide, exon and protein
levels (Fig. 7 and Additional file 1: Table S8).

At the nucleotide level, the sensitivity of Augustus,
Genscan, GenelD and Snap is not significantly affected
by the addition of the flanking sequences. For Glim-
merHMM (p-value = 4.8 x 10™ ), a significant increase
in sensitivity is observed when 2Kb flanking sequences
are added, compared to the gene sequences with 150 bp
only. In terms of specificity, the addition of 2Kb flanking
sequences increases significantly the quality of all the
programs (Augustus: p-value =2.87 x 10”7, Genscan: p-
value = 1.27 x 10~ °, GenelD: p-value = 8.46 x 10™ °, Glim-
merHMM: p-value = 2.78 x 10”7, Snap: p-value = 1.03 x
10~ '), This is probably due to the addition of specific
signals in the genomic environment of the gene (further
than 150 bp from the gene boundaries), such as the pro-
moter, enhancers/silencers, etc. that are taken into ac-
count in the program prediction models. At the exon
level, the effect of the flanking sequences is not the same
for the different programs. For example, the sensitivity
of Augustus (p-value =4.06 x 10~ %), Genscan (p-value =
1.59 x 10™ %) and GenelD (p-value = 2.98 x 10™?) is high-
est when the input sequence has 150 bp flanking regions
and significantly decreases when 2Kb flanking nucleo-
tides are added, while for GlimmerHMM (p-value =
0.54) and Snap (p-value = 0.62) no significant difference
is observed. Similar results are observed in terms of spe-
cificity. At the protein level, for all five programs, the

sequence identity compared to the benchmark protein
sequence decreases as the length of the flanking se-
quences increases.

For Augustus, Genscan and GenelD, the addition of
the flanking sequences also reduces the number of pro-
teins perfectly predicted (100% identity). This is espe-
cially true for Genscan, where we observe a loss of more
than 24% of perfectly predicted proteins between 150 bp
and 2Kb. On the other hand, for GlimmerHMM and
Snap, the number of perfectly predicted proteins in-
creases, especially when 2-4Kb flanking DNA is provided.

Since the greatest effect of adding upstream/down-
stream flanking sequences was generally observed for a
length of 2Kb, the remaining analyses described in this
work are all based on the gene sequences with 2Kb up-
stream/downstream flanking regions.

Next, we studied the relative robustness of the pro-
grams to the presence of UDT regions in the genomic
sequences, generally due to genome sequencing errors
or assembly gaps. This test was limited to the Confirmed
sequences from the metazoan clade, since the sequences
with UDT regions were almost exclusively found in this
clade. Of the 675 metazoan sequences, 133 were found
to have UDT regions. We therefore compared the 542
Confirmed sequences without UDT (-UDT) regions
with the 133 Confirmed sequences with UDT regions
(+UDT). Figure 8 and Additional file 1: Table S9 show
the average scores obtained for these two sequence sets,
at the nucleotide, exon and protein levels. As might be
expected, a reduction in sensitivity and specificity was
observed at the nucleotide and exon levels for almost all
programs (except exon level specificity and 5°/3°
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internal exon boundaries of Augustus) for the +UDT se-
quences, and at the protein level, very few +UDT pro-
teins are predicted with 100% accuracy. Overall,
Augustus and Genscan perform better, although Glim-
merHMM predicts the highest number of proteins with
100% accuracy for the +UDT sequences.

Since the UDT regions affected the programs to differ-
ent extents, the analyses described in the following sec-
tions are all based on the set of 756 Confirmed
sequences that have no UDT regions.

Finally, we investigated how the GC content of the
genes influences the gene finders (Additional file 1: Fig.
S6). As might be expected, genes with high GC content
are predicted better than genes with high AT content.

The GC content of the genome is more difficult to test
independently of the other factors, but could contribute
to the species-dependent differences observed, shown in
Fig. 12.

Factors associated with the gene structure

We first evaluated the effect of the Exon Map Complex-
ity (EMC), represented by the number of exons in the
Confirmed benchmark tests (Additional file 1: Fig. S7).
Figure 9 shows the quality scores at the exon and pro-
tein levels, for sequences with the number of exons ran-
ging from 1 to 20. Overall, we observed a tendency for
the five programs to achieve better sensitivity and speci-
ficity for the genes with more exons. This may be
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because most of these more complex sequences are from
well-studied vertebrate genomes. For very complex exon
maps (220 exons), all the programs seem to perform
less well, although this may be an artifact due to the
small number of these sequences in the benchmark
(Additional file 1: Fig. S7A). For single exon genes, all
the programs tend to perform worse, although the 3’
internal exon boundary of the cDNA is predicted bet-
ter than the 5 internal exon boundary. Similarly, the

3" internal exon boundaries are generally predicted
better than the 5 internal exon boundaries by all the
programs, for genes with a small number of exons.
At the protein level, Augustus and GlimmerHMM
achieve higher sequence identity for genes with <7
exons, while Augustus and Genscan are more accur-
ate for genes with more exons. Most of the perfectly
predicted proteins (with 100% sequence identity) have
less than 3 exons.
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We then assessed the effect of exon lengths on the
prediction quality of the five programs, using the 756
Confirmed sequences without UDT regions. Figure 10a
and Additional file 1: Table S10A show the proportion
of Correct exons (both 5° and 3 exon boundaries
correctly predicted) depending on the exon length.
The short exons (<50 nucleotides) are generally the
least accurate, with the best program, Augustus,
achieving only 18% Correct short exons. Medium
length exons (50-200 nucleotides) are predicted bet-
ter than longer exons (>200 nucleotides) for Augus-
tus and Genscan.

To further investigate the exon prediction, each exon
predicted by a gene prediction program was classified as
‘Correct’ if both exon boundaries were correctly pre-
dicted, “Wrong (5') or “Wrong (3') if the 5" or 3" exon
boundary was badly predicted respectively, and “Wrong’
if both boundaries were badly predicted. In some cases,
the predicted exon has good 5" and 3’ exon boundaries,
however they correspond to 2 different benchmark
exons, so these exons are classed as “Wrong (Fusion)’.
Figure 10b and Additional file 1: Table S10B show the
number of Correct, Wrong, Wrong (5"), Wrong (3") and
Wrong (Fusion) exons, according to the exon lengths.
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Overall, there are more “Wrong' exons than ‘Correct’
exons for all exon lengths and for all the programs.
Interestingly, the number of predicted exons with only
one boundary correctly predicted, i.e. Wrong (5') or
Wrong (3°), is small for all exon lengths, except for
exons with > 200 nucleotides.

Factors associated with the protein product

In this section, prediction accuracy is measured at the
protein level and is estimated by the percent sequence

-

identity of the predicted protein compared to the bench-
mark protein.

First, we investigated the effect of protein length on
protein prediction quality. We divided the 756 Con-
firmed sequences without UDT regions into five groups,
with different protein lengths ranging from 50 to 1000
amino acids (Additional file 1: Fig. S8). Note that the
very large proteins (>1000 amino acids) in the bench-
mark are all classified as Unconfirmed and are therefore
not included in this study. Figure 11 and Additional file 1:
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Table S11 show the mean accuracies obtained by the five
programs for the different length proteins. The prediction
accuracy generally decreases for shorter proteins and for
protein lengths > 650 amino acids. For proteins with < 100
amino acids, GlimmerHMM achieves the best results with
68% sequence identity and five (25%) perfectly predicted
proteins (100% identity), while Augustus obtains only 57%
sequence identity and four perfectly predicted proteins.
We then studied the phylogenetic origin of the pro-
teins and the availability of suitable species models in
the different programs. Figure 12 and Additional file 1:
Table S12 show the performance of the five gene predic-
tion programs for the sequences in the different clades
in G3PO. The accuracy of each program is highly vari-
able between the different clades, probably due to the
availability of suitable prediction models for some spe-
cies. For the sequences in the Craniata clade, Augustus
and Genscan achieve the highest accuracy (72 and 70%
respectively), while Snap has the lowest accuracy (33%).
In contrast, Augustus obtains lower accuracy (21%) for
Fungi proteins, compared to the highest accuracy ob-
tained by GlimmerHMM (58%). The proteins in the
Euglenoezoa clade are predicted with the highest accur-
acy by all the programs, although this might be ex-
plained by their low EMC. Choanoflagellida and
Cnidaria proteins are the least well predicted (except for

Genscan), but these clade contain only a few sequences
(5 and 6 sequences respectively) and this result remains
to be confirmed.

Effect of protein sequence errors

Finally, we investigated the performance of the predic-
tion programs for the 904 Unconfirmed sequences,
where potential sequence errors were observed in the
benchmark sequences. As mentioned above, the G3PO
benchmark sequences were extracted from the Uniprot
database, which means that many of the proteins are not
supported by experimental evidence. In this test, we
wanted to estimate the prediction accuracy of the five
gene prediction programs for the Unconfirmed bench-
mark sequences. Since the Unconfirmed sequences
could not be used as a ground truth, here we measured
prediction accuracy based on a closely related Con-
firmed sequence (see Methods). Table 2 shows the pre-
diction accuracies achieved by each program for the sets
of Confirmed and Unconfirmed sequences. As might be
expected, the Unconfirmed sequences are predicted with
lower accuracy than the Confirmed sequences by all five
programs. Augustus and Genscan achieved the highest
accuracy (56, 50% respectively) for the Unconfirmed se-
quences. For comparison purposes, we also calculated
the accuracy scores for the Unconfirmed benchmark

Table 2 Effect of protein sequence quality measured at the protein level. %ldentity indicates the average sequence identity
observed between the predicted and benchmark protein sequences for the test sets of Confirmed and Unconfirmed proteins

Confirmed proteins (%ldentity)

Unconfirmed proteins (%ldentity)

Augustus 74.44
Genscan 67.13
GenelD 52.26
GlimmerHMM 5936
Snap 44.20

56.22
49.86
3852
45.60
41.70




Scalzitti et al. BMC Genomics (2020) 21:293

proteins. The benchmark proteins had higher accuracy
(76%) than any of the methods tested here, implying that
the more complex pipelines used to curate proteins in
Uniprot can effectively improve the results of ab initio
methods.

Discussion

Several recent reviews [3, 22, 23] have highlighted the
fact that automated genome annotation strategies still
have difficulty correctly identifying protein-coding genes.
This failure might be explained by the quality of the
draft genome assemblies, the complexity of eukaryotic
exon maps, high levels of genetic sequence divergence
or deviations from canonical genetic characteristics [36].
Consequently, it is essential to benchmark the existing
different gene prediction strategies to assess their reli-
ability, to identify the most promising approaches, but
also to limit the spread of errors in protein databases
[37]. An ideal benchmark for gene prediction programs
should include proteins encoded by real genomic se-
quences. Unfortunately, most of the protein sequences
in the public databases have not been verified by experi-
mental means, with the exception of the manually anno-
tated Swiss-Prot sequences (representing only 0.3% of
UniProt), and contain many sequence annotation errors.
It is therefore dangerous to use them to estimate the ac-
curacy of the prediction programs.

G3PO is a new gene prediction benchmark containing
1793 orthologous sequences from 20 different protein
families, and designed to be as representative as possible
of the living world. It includes sequences from phylogenet-
ically diverse organisms, with a wide range of different
genomic and protein characteristics, from simple single
exon genes to very long and complex genes with over 20
exons. The quality of the protein sequences in the bench-
mark was ensured by excluding sequences containing po-
tential annotation errors, including deletions, insertions
and mismatched segments. We also characterized the test
sets in the benchmark using different features at the gen-
ome, gene structure and protein levels. This in-depth
characterization allowed us to investigate the impact of
these features on gene prediction accuracy.

One of the main limitations of the benchmark con-
cerns the fact that the protein sequences were extracted
from the Uniprot database, where a ‘canonical’ protein
isoform is defined based on cross-species conservation
and the conservation of protein structure and function.
Consequently, programs that predicted more minor iso-
forms created by alternative splicing events were penal-
ized in our evaluations. Unfortunately, there is currently
no ideal solution to this. In the future, gene prediction
programs will need to evolve to predict all isoforms for a
gene. Another limitation of the benchmark concerns the
evaluation of the gene prediction results with respect to
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a single benchmark sequence. It is possible that the
flanking regions used in some tests covered more than
one gene, and that some programs successfully predicted
one or more exons from these neighboring genes in
addition to the reference gene.

The ab initio gene prediction programs included in
the benchmark study are based on statistical models that
are trained using known proteins and genes, and typic-
ally perform well at predicting conserved or well-studied
genes [33, 38]. However, ab initio prediction accuracy
has been previously shown to decrease in some special
cases, such as small proteins [39], organism-specific
genes or other unusual genes [40-42]. Our goal was
therefore to identify the strengths and weaknesses of the
programs, but also to highlight genomic and protein
characteristics that could be incorporated to improve
the prediction models.

In terms of overall quality, the gene prediction programs
were generally ranked in agreement with previous find-
ings, with Augustus and Genscan achieving the best over-
all accuracy scores. However, it should be noted that
Augustus is also the most computationally expensive
method, taking over 1h to process the 87 Mb correspond-
ing to the 1793 benchmark sequences, compared to the
fastest program, GenelD, which required only 4 min.

We then performed a more in-depth study of the dif-
ferent factors affecting prediction accuracy. At the gen-
ome level, an increase in accuracy was generally
observed when at least 2Kb flanking regions were added,
reflecting the fact that all the programs try to model
in vivo gene translation systems to some extent by tak-
ing into account the different regulatory signals found
within and outside the gene [43]. In contrast, undeter-
mined regions in the gene sequences had a negative ef-
fect on the accuracy of all the prediction programs, even
when they occur outside the coding exons of the genes.
Since undetermined or ambiguous regions are likely to
occur more often in low coverage genomes, this is an
important issue that needs to be addressed by the devel-
opers of gene prediction software.

At the gene structure level, we found that the number
of exons affects the accuracy of all the programs and
that gene prediction is generally more difficult for com-
plex exon maps, as might be expected. Concerning the
effect of exon length, the programs appear to be opti-
mized for intermediate length exons (50-200 nucleo-
tides), since none of the programs was able to reliably
predict exons that were shorter (<50 nucleotides) or
longer (> 200 nucleotides). Protein length had a similar
effect to that observed for exon length, since the pro-
grams seem to be optimized for intermediate length pro-
teins (300-650 amino acids). This result confirms
previous findings that smaller proteins (less than 100
amino acids) are often missed in genome annotations
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[39], although we also demonstrated that long proteins
are also more likely to be badly predicted. Finally, the
phylogenetic origin of the benchmark sequences had a
large effect on prediction accuracy, with different pro-
grams producing the best results depending on the spe-
cific species. The two best scoring programs, Augustus
and Genscan use different strategies, since Augustus in-
cludes > 100 different species models, while Genscan has
only three models.

Each of the analyses performed here highlights differ-
ent strengths or weaknesses of the prediction programs,
as summarized in the heat map shown in Fig. 13. The
in-depth characterization of the benchmark sequences
and the detailed information extracted from the analyses
provide essential elements that could be used to improve
model training and therefore gene prediction. It may be
interesting to further analyze the weaknesses identified,
including small proteins, very long proteins, proteins
coded by a large number of exons, proteins from non-
model organisms, etc.

Finally, the Unconfirmed sequences identified in
this study represent a goldmine for the identification
of atypical gene features, for example atypical regula-
tory signals or splice sites, that are not fully taken
into account in the current prediction models. More
than 50% of the original reference protein sequences
extracted from public databases were found to con-
tain at least one error. They therefore represent very
challenging test cases that were not resolved by the
combined ab initio and similarity-based curation

processes used to annotate these proteins. We accur-
ately located the errors within these badly predicted
sequences and classified them into 9 groups. Here, we
performed a preliminary analysis using the erroneous
sequences that confirmed our idea that all the predic-
tion programs are less accurate for these proteins. A
more comprehensive analysis of these proteins will be
published elsewhere.

Conclusions

The complexity of the genome annotation process and
the recent activity in the field mean that it is timely to
perform an extensive benchmark study of the main com-
putational methods employed, in order to obtain a more
detailed knowledge of their advantages and disadvan-
tages in different situations. Currently, most of the pro-
grams used for gene prediction are based on statistical
approaches and perform relatively well in intermediate
cases. However, they have difficulty identifying more ex-
treme cases, such as very short or very long proteins,
complex exon maps, or genes from less well studied spe-
cies. Recently, artificial intelligence approaches have
been applied to some specific tasks, for example DeepS-
plice [44] or SpliceAl [45] for the prediction of splice
sites. The further development of these approaches
should contribute to production of high quality gene
predictions that can be leveraged downstream to improve
functional annotations, evolutionary studies, prediction of
disease genes, etc.
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Methods

Benchmark test sets

To construct a benchmark set of eukaryotic genes, we
selected the 20 human Bardet-Biedl Syndrome (BBS)
proteins (Additional file 1: Table S2). Based on this ini-
tial gene set, we extended the test sets using the pipeline
shown in Fig. 14 and described in detail below.

(i) For each of the 20 human proteins, orthologous
proteins were identified in 147 eukaryotic
organisms (Additional file 1: Table S1) using
Ortholnspector version 3.0 [46], which was built
using proteins from the Uniprot Reference
Proteomes database [34] (Release 2016_11). For
each species, we selected one ortholog sharing the
highest percent identity with the human sequence.
This resulted in a total of 1793 protein sequences,
of which 65 (3.6%) were found in the curated
Swissprot database. The number of proteins in each
BBS family is provided in Additional file 1: Table
S2. BBS 6,10,11,12,15, 16 and 18 are specific to
Metazoa (with some exceptions), and therefore
contain fewer sequences than the other families.

(ii) Since the reference protein sequences extracted
from the Uniprot database may contain errors, we
identified potentially unreliable sequences based on
multiple sequence alignments (MSA). MSAs were
constructed for each protein family using the
Pipealign2 tool (http://www.lbgi.fr/pipealign) and
manually refined to identify and correct misaligned
regions. The SIBIS (version 1.0) program [47] using
a Bayesian framework combined with Dirichlet
mixture models and visual inspection, was used to
identify inconsistent sequence segments. These
segments might indicate that different isoforms are

defined as the canonical sequence for different
organisms, or they might indicate a badly predicted
protein (Additional file 1: Fig. S3). SIBIS classifies
the potential sequence errors into 9 categories: N-
terminal deletion, N-terminal extension, N-terminal
mismatched segment, C-terminal deletion, C-
terminal extension, C-terminal mismatched seg-
ment, internal deletion, internal insertion and in-
ternal mismatched segment. Of the 1793 protein
sequences identified in step (i), 889 proteins had no
errors (called “Confirmed”) and 904 proteins had at
least one potential error (called “Unconfirmed”). At
this stage, the BBS14 protein was excluded from the
benchmark because the MSA contained too many
misalignments.

(iii) For each orthologous protein, the genomic sequence

was extracted from the Ensembl database [35].
Genomic sequences were extracted with the ‘soft
mask’ option, i.e. repeated or low complexity regions
are replaced by lower case nucleotides. These are
generally ignored by gene prediction programs. We
also found regions with ‘n’ characters, which are used
to indicate undetermined or ambiguous nucleotides
(IUPAC nomenclature) probably caused by genome
sequencing errors or assembly gaps. A sequence
segment with a run of n characters was defined as an
undetermined (UDT) region. Additional file 1: Table
S5 summarizes the general statistics of these 283
sequences with UDT regions. Finally, we identified
the Ensembl transcript corresponding to the Uniprot
protein sequence, (generally the ‘canonical transcript’
from APPRIS [48]) in order to construct the exon
map by extracting the positions of all exons/introns,
including the 5'/3" untranslated regions when
available.
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(iv) For the baseline tests, we included flanking sequences
of length 150 bases upstream and downstream of the
gene. To make the benchmark set more challenging,
we also extracted genomic sequences corresponding
to 2Kb, 4Kb, 6Kb, 8Kb, 10Kb upstream and
downstream of the gene sequence.

Gene prediction methods

The programs tested are listed in Table 1 with the main
features, including the HMM model used to differentiate
intron/exon regions, and the specific signal sensors used
to detect the presence of functional sites. Transcriptional
signal sensors include the initiator or cap signal located
at the transcriptional start site and the upstream TATA
box promoter signal, as well as the polyadenylation sig-
nal (a consensus AATAAA hexamer) located down-
stream of the coding region and the 3" UTR.
Translational signals include the “Kozak sequence” lo-
cated immediately upstream of the start codon [49]. For
higher eukaryotes, splice site signals are also incorpo-
rated, including donor and acceptor sites (GT-AG on
the intron sequence) and the branch point [yUnAy] [50]
(underlined A is the branch point at position zero and y
represents pyrimidines, n represents any nucleotide) lo-
cated 20-50 bp upstream of the AG acceptor.

The command lines used to run the programs are:

augustus --species=<species> --softmasking=1 --gff3=
off <sequence.fasta>

genscan <species> <sequence.fasta>

geneid -A -P <species> <sequence.fasta>

glimmerhmm <sequence.fasta> -d <species> -g

snap -gff -quiet -lcmask <species> <sequence.fasta>
--a protein.fasta

where <species> indicates the species model used and <
sequence.fasta> contains the input genomic sequence.

All programs were run on an Intel(R) Xeon(R) CPU
E5-2695 v2 @ 2.40Ghz, 12 cores, with 256 Go RAM.
Each prediction program was run with the default set-
tings, except for the species model to be used. As the
benchmark contains sequences from a wide range of
species, we selected the most pertinent training model
for each target species, based on the taxonomic proxim-
ity between the target and model species. For each pro-
gram, we compared the taxonomy of the target species
with the taxonomy for each model species available,
where taxonomies were obtained from the NCBI Tax-
onomy database (https://www.ncbi.nlm.nih.gov/tax-
onomy). We then selected the model species that was
closest to the target in the taxonomic tree.

Evaluation metrics

The performance of the gene prediction programs is
based on the measures used in [29], calculated at three
different levels: nucleotides, exons and complete
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proteins. The significance of pairwise comparisons of the
evaluation metrics was evaluated using the paired t-test.

At the nucleotide level, we measure the accuracy of a
gene prediction on a benchmark sequence by comparing
the predicted state (exon or intron) with the true state
for each nucleotide along the benchmark sequence. Nu-
cleotides correctly predicted to be in either an exon or
an intron are considered to be True Positives (TP) or
True Negatives (TN) respectively. Conversely, nucleo-
tides incorrectly predicted to be in exons or introns are
considered to be False Positives (FP) or False Negatives
(EN) respectively. We then calculated different perform-
ance statistics, defined below.

Sensitivity measures the proportion of benchmark nu-
cleotides that are correctly predicted:

P

Sn=——"
"= TP Y EN.

The specificity measure that is most widely used in the
context of gene prediction is the proportion of nucleo-
tides predicted in exons that are actually in exons:

P

Sp——
P = Tp 1 Fp

The F1 score represents the harmonic mean of the
sensitivity and specificity values:

Sp+Sn

F1 = 2%
Sp+ Sn

At the exon structure level, we measure the accuracy of
the predictions by comparing predicted and true exons
along the benchmark gene sequence. An exon is considered
correctly predicted (TP), when it is an exact match to the
benchmark exon, i.e. when the 5" and 3’ exon boundaries
are identical. All other predicted exons are then considered
FP. Sensitivity and specificity are then defined as before.

Since the definition of TP and TN exons above is
strict, we also calculated two additional measures similar
to those defined in [29] (Additional file 1: Fig. S9). First,
true exons with or without overlap to predicted exons
are considered to be Missing Exons (ME) and the
MEScore is defined as:

ME

MEScore =
Total number of true exons

Second, predicted exons with or without overlap to
true exons are considered Wrong Exons (WE). The
WEScore is defined as:

WE
Total number of predicted exons

WEScore =

We also determined the proportion of correctly pre-
dicted 5" and 3’ exon boundaries, as follows:
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, number of true 5" exon boundaries correctly predicted«100

number of correct predicted exons + number of wrong exons

, number of true 3" exon boundaries correctly predicted+100

number of correct predicted exons + number of wrong exons

At the protein level, we measure the accuracy of the
protein products predicted by a program. Since a pro-
gram may predict more than one transcript for a given
gene sequence in the benchmark, we calculate the per-
cent identity between the benchmark protein and all
predicted proteins and the predicted protein with the
highest percent identity score is selected. To calculate
the percent identity score between the benchmark pro-
tein and the predicted protein, we construct a pairwise
alignment using the MAFFT software (version 7.307)
[51] and the percent identity is then defined as:

Number of identical amino acidsx100
Length of benchmark protein

%oldentity =

Evaluation metric for unconfirmed benchmark proteins
Since the Unconfirmed proteins in the benchmark are
badly predicted and have at least one identified sequence
error, the %Identity score defined above for the Con-
firmed sequences cannot be used. Instead, we compare
the protein sequences predicted by the programs with
the most closely related Confirmed sequence found in
the corresponding MSA. Thus, for a given Unconfirmed
sequence, E, we calculated the sequence identity be-
tween E (excluding the sequence segments with pre-
dicted errors) and all the orthologous sequences in the
corresponding MSA. If a Confirmed orthologous se-
quence, V, was found that shared >50% identity with E,
then the sequence V was used as the reference protein
to evaluate the program prediction accuracy.

As before, a pairwise alignment between the prediction
protein and sequence V was constructed using MAFFT
and the %ldentity score was calculated. Finally, the ac-
curacy score was normalized by the sequence identity
shared between the E and V benchmark sequences.

%ldentity(P, V)*100
%oldentity(E, V)

Accuracy =
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