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Abstract

Background: Adaptive changes in cis-regulatory elements are an essential component of evolution by natural
selection. Identifying adaptive and functional noncoding DNA elements throughout the genome is therefore crucial
for understanding the relationship between phenotype and genotype.

Results: We used ENCODE annotations to identify appropriate proxy neutral sequences and demonstrate that the
conservativeness of the test can be modulated during the filtration of reference alignments. We applied the
method to noncoding Human Accelerated Elements as well as open chromatin elements previously identified in
125 human tissues and cell lines to demonstrate its utility. Then, we evaluated the impact of query region length,
proxy neutral sequence length, and branch count on test sensitivity and specificity. We found that the length of the
query alignment can vary between 150 bp and 1 kb without affecting the estimation of selection, while for the
reference alignment, we found that a length of 3 kb is adequate for proper testing. We also simulated sequence
alignments under different classes of evolution and validated our ability to distinguish positive selection from
relaxation of constraint and neutral evolution. Finally, we re-confirmed that a quarter of all non-coding Human
Accelerated Elements are evolving by positive selection.

Conclusion: Here, we introduce a method we called adaptiPhy, which adds significant improvements to our earlier
method that tests for branch-specific directional selection in noncoding sequences. The motivation for these
improvements is to provide a more sensitive and better targeted characterization of directional selection and
neutral evolution across the genome.
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Background
An accurate and comprehensive characterization of the
genomic distribution of adaptive substitutions is essen-
tial for understanding the genetic basis for trait diver-
gence between species [1–5]. Tests for positive selection
at the interspecies scale developed during the 1980s
focused on ω, the ratio of nonsynonymous to synonym-
ous substitution rates in protein coding regions [6, 7].

These methods were first applied at a whole genome
scale soon after the release of reference genome assem-
blies for human, chimpanzee, and macaque [8–11], and
provided the earliest relatively unbiased views of positive
selection on protein-coding regions. At the same time, a
growing appreciation for the contribution of regulatory
mutations to adaptation [12–14] prompted the develop-
ment of methods to test for positive selection in noncod-
ing regions.
Two general approaches were devised to test for posi-

tive selection in the absence of a genetic code. One seeks
regions that contain many substitutions along the
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human branch (since the most recent common ancestor
with chimpanzees) but are otherwise highly conserved
among mammals or vertebrates [15–19]. The other
seeks an elevated rate of substitution along the human
lineage in a query region hypothesized to contain regula-
tory elements relative to a nearby reference (proxy neu-
tral) region thought to contain few functional elements
[20, 21]. Both approaches test for branch-specific accel-
erated substitution, but differ in the reference point
against which they assess acceleration: the first tests for
accelerated substitution within otherwise conserved re-
gions against a putatively neutral region that is usually
obtained from local Ancient Repeats (ARs) or fourfold
degenerate sites (4D) [15, 17–19], while the second em-
ploys a putatively non-functional local intron of the gen-
ome as a neutral reference against which to identify
branch-specific accelerated substitution [20, 21]. Wong
& Nielsen [20] defined the parameter ζ as the ratio of
substitution rates in the query region to those in the
associated neutral region; ζ is thus analogous to ω. To
detect significance in the departures from neutrality,
both approaches typically use maximum likelihood esti-
mation and likelihood ratio tests (LRTs) that compare a
null model allowing neutrality against an alternative
model that additionally allows for positive selection.
These two general approaches have complementary

strengths and weaknesses. The first approach is less sen-
sitive, in that it does not make use of an appropriate
proxy for neutral regions along the human lineage. This
approach allowed the discovery of Human Accelerated
Regions (HARs) [16]. However, there is no reason to sup-
pose adaptive evolution along the human lineage has been
confined to regions under purifying selection in most or
all other species, particularly since such regions constitute
a small fraction of the genome (Fig. 1a). Additionally, this
method may fail to distinguish regions evolving under re-
laxation of constraint from those that have experienced
positive selection. The first method has been implemented
in phyloP [22], which is straightforward to execute and al-
lows running selection tests using different approaches,
such as LRT, SPH, Score and Genomic Evolutionary Rate
Profiling (GERP) [16, 23–25]. phyloP has been extensively
used for more than a decade, and has been applied to
conserved DNA regions using neutral proxies based on
four-fold degenerate (4D) sites e.g., [26] or local ancient
repeats (ARs) e.g., [27, 28]. The second method runs in
HyPhy [29] and requires more computational and analyt-
ical effort than phyloP. On the other hand, it is more
broadly applicable because it can query any genomic re-
gion regardless of whether that region was previously
under functional constraint.
At the time these approaches were first developed,

very little information existed about the location of func-
tional elements in any genome. This limited the ability

to identify suitable proxy neutral regions, i.e., those likely
to be free from either purifying or positive selection.
Inadvertently using constrained or accelerated regions as
neutral proxies can potentially introduce artificial adaptive
signals or reduce sensitivity, respectively. In addition, not
knowing the location of regulatory elements meant that
testing for positive selection at a genome-wide scale was
intractable due to the need for massive correction for mul-
tiple testing. Prior to the invention of functional genomic
assays for chromatin status, the best method for identify-
ing putative regulatory elements was sequence conserva-
tion [15].
The ENCODE project [30, 31] and other efforts [32]

to identify regulatory elements throughout the human
genome mean that it is now possible to focus tests for
positive selection on likely functional noncoding ele-
ments and to identify appropriate proxy neutral regions.
Highly conserved noncoding regions overlap with only
about 1.09% of the ~ 3 million known DNase I Hyper-
sensitive Sites (DHSs) in the human genome [33] and
just 1.06% of ~ 1.7 million enhancers and promoters from
the HoneyBadger2 regions published by the ENCODE
and Roadmap Epigenomics projects (Fig. 1a). Accordingly,
it seems likely that a substantial fraction of functional
DNA elements do not occur in regions of strong conser-
vation. At the same time, ~ 18.3% of the human genome
currently has no known regulatory or functional annota-
tion, despite extensive study, providing a principled basis
for choosing proxy neutral sequences that may be superior
to 4D sites and ARs.
Here we introduce adaptiPhy, an improved analytical

method that can test for branch-specific directional
selection on any collection of query segments based on
accurate alignments from three or more species. We im-
plemented a series of technical and computational modi-
fications to our previously published method [21] using
openly available software from PHAST [22, 34] and
functional genomic datasets from ENCODE [35]. We
tested the performance of adaptiPhy in regions that have
been already tested (i.e., published Human Accelerated
Regions, or HARs) and among simulated sequences
evolving at neutral rates, positive selection in one branch
of the tree, or two branches of the tree, and relaxation of
constraint. Significant improvements include: 1) better
genome-wide representation of putatively neutral prox-
ies based on functional annotations; 2) ability to test for
selection in nearly any noncoding region of the genome,
including functionally dense regions; 3) the ability to in-
crease stringency by filtering reference sequences; and 4)
improved understanding of how branch number and the
size of query and reference regions impact test sensitiv-
ity. We demonstrate that this approach can be applied
productively to focal collections of genomic regions
commonly encountered in contemporary genomics and
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Fig. 1 (See legend on next page.)

Berrio et al. BMC Genomics          (2020) 21:359 Page 3 of 16



genetics research, such as the open chromatin landscape
of a specific cell type or trait-associated regions from a
genome-wide association study.

Results
Global nonfunctional sequences provide appropriate
neutral reference sequences
To identify appropriate proxy neutral regions, we began
by identifying all putatively non-functional regions
(NFRs) of length 300 bp (similar in length to many regu-
latory elements) throughout the human genome. NFRs
are regions devoid of any coding sequence, noncoding
RNA, open chromatin region, ChIP peak, or other func-
tional unit; we also masked repeats (see Methods for in-
clusion criteria). We then tallied the number of NFRs
located within 10, 40 and 100 kb of a set of 1000 random
DHS sites, non-coding Human Accelerated Elements
(ncHAE), and a control subset of “global” NFRs from
throughout the genome. For the longest region (i.e. 100
kb), on average, there are only 7.8 local NFRs per DHS,
28.8 NFRs per ncHAE, and 64.4 NFRs per global NFR
(Fig. 2a). Moreover, 58.5% of DHSs and 43.3% of
ncHAEs had no local NFRs within 100 kb. Thus, the
number of local NFRs that can be used as neutral refer-
ence regions is often insufficient for extensive testing of
positive selection. Some previous studies used ancient
repeats (ARs) as neutral proxies [e.g.,28].We found that
on average, there are only 3.3 ARs within 100 kb per
DHS, and 44% of DHS regions had no AR within 100 kb.
Thus, identifying sufficient ARs to use as a local refer-
ence for each DHS is also difficult.
Next, we asked whether local ARs, local NFRs, or glo-

bal NFRs can be used to build an appropriate reference
for testing positive selection. To build a local reference
region, we concatenated all the NFRs or ARs within 100
kb of a given query region. Next, we computed the

substitution rate of each concatenated sequence of local
ARs, local NFRs, and NFRs across the genome. For a set
of query regions in our sample, we found a wide distri-
bution of substitution rates among concatenated local
references including local NFRs, global NFRs, and ARs
(Fig. 2b).
We thus sought to test whether filtering global NFRs

by their relative substitution rate over the entire tree can
provide an improved neutral proxy for estimating posi-
tive selection. We filtered out global NFRs representing
the top and bottom quartiles of relative substitution
rates (Fig. S1), then concatenated 10 NFRs per query.
When we compared the substitution rates of this new
set of putative neutral references, we found that the distri-
bution of substitution rates of the filtered global NFRs is
narrower and its median is skewed to the right (Fig. 2c).
This suggests that global NFRs can provide a set of puta-
tively neutral elements if appropriately filtered. This ap-
proach also allows conservativeness and sensitivity to be
modulated by tuning the filtration step accordingly. More-
over, given that we use relative values of substitution rate,
this filtering step can be applied to any region of the gen-
ome regardless of the amount of functional annotation.
To assess the impact of using local versus global NFRs

on testing for positive selection, we sampled three sets
of queries: (1) widespread and specific DHSs (open in >
124 and exactly 1 ENCODE cell types, respectively); (2)
a set of ncHAEs to be used as positive controls; and (3)
a set of putatively non-functional DNA elements to be
used as negative controls. The correlation in P-values is
high among the 3531 DHSs that could be analyzed using
both local and global neutral proxies (Spearman’s Rank
test ρ = 0.80; P < 2.2 × 10− 16; Fig. 3a). Of these, only
2.63% scored high for positive selection (P < 0.05) for
global proxies, while 5.12% scored high for positive using
the local proxy alone. Likewise, the correlation of P-

(See figure on previous page.)
Fig. 1 Overlaps between functional regions of the human genome and the evolutionary model. a. Left, Venn diagram showing percentage of the
human genome that overlaps with known non-coding functional annotations and conserved regions of the human genome. Right, scaled Venn
diagram showing the proportion of conserved regions with respect to known functional annotations and gapped DNA representing telomeric
and centromeric sequences (white). b. Graphic summary of our improved method. Left panel, the evolutionary ratio “ζ” is computed as the ratio
of the substitution rate in a query (Kquery) with respect to the substitution rate in a reference (Kreference) region. Queries can be obtained from
functional annotations such as ATAC-seq or ChIP-seq peaks (red box), while reference alignments can either be taken by sampling local non-
functional elements in the vicinity of the query or from a genome-wide random sampling of non-functional and putatively neutral regions of the
genome (green boxes). Right panel, to test for positive selection in a query region on a foreground branch (red) of the tree, we fit, via maximum
likelihood, both a null model and an alternative model to the alignments of the reference and query regions. In both models, on all branches, all
sites in the reference region evolve neutrally. In both models, on the background branches, a fraction b1 > = 0 of sites in the query region evolve
under purifying selection, at rate ζ1 < 1 relative to sites in the reference region, and a fraction b2 = 1 - b1 of sites in the query region evolve
neutrally, at relative rate ζ2 = 1. In the null model, evolution on the foreground branch is the same as on the background branches, except a
fraction Δ > = 0 of sites in the query region that evolve under purifying selection on the background branches may evolve neutrally on the
foreground branch, that is, the model allows for relaxation of constraint on the foreground branch. In the alternative model, fractions Δ1 > = 0
and Δ2 > = 0 of sites in the query region that evolve under purifying selection and neutrally, respectively, on the background branches may
evolve under positive selection on the foreground branch, at rate ζ3 > 1. A likelihood-ratio test indicates whether the alternative model fits the
alignments significantly better than the null model. As explained under “Materials and methods”, we conservatively approximate this test as a chi-
squared test with one degree of freedom
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Fig. 2 Finding a neutral proxy. a. Distribution of the number of local reference alignments around each DNA element within three different
distances: 10 kb, 40 kb and 100 kb. b. Density distribution of relative substitution rates among concatenated Ancestral Repeats (ARs) around 100
kb of each DHS element in our list, concatenated local NFRs around each DHS, concatenated global NFRs before filtering out trees with low and
high substitution rates. c. Density distribution of relative substitution rates in the concatenated global NFRs before and after filtration step. The
arrow depicts the change in the median distribution of substitution rate of global reference alignments before versus after filtering
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values in the global and local sets is high among the
1291 ncHAEs that could be tested using both local and
global proxies (Spearman’s Rank test ρ = 0.86; P < 2.2 ×
10− 16). Of these, only 25.33% of the ncHAE regions
tested positive globally, while 39.04% tested positive for
selection using the local tests (Fig. 3b). Thus, local prox-
ies in general identify more putative cases of positive
selection but have limited applicability within function-
dense regions of the genome while global proxies can be
used to test any query region but possibly with lower
sensitivity.

Sensitivity is high given practical query length, reference
length, and branch number
Earlier, we observed that the distribution of substitution
rates among all global reference regions used in this
study is narrow and high (Fig. 2b). More specifically, we
observed an average human branch length of 0.0072
substitutions per site using global neutral proxies, which
is appreciably faster than the average substitution rates
of local elements (average branch length = 0.0055).
When we evaluated the effect of query and neutral proxy
length on the sensitivity of the estimation of positive
selection using empirical data, we measured the effect of
reference length on substitution rate; we tested reference
alignments of 300 bp, 900 bp, 3 kb, 9 kb, and 30 kb
(Fig. 4a). As expected, the median of the branch lengths
of the global references does not increase or decrease as
they get longer; rather, they reach an equilibrium at
0.00725 with reduced variation (Fig. S5).
Functional genomic approaches such as ChIP-seq and

ATAC-seq identify putative regulatory regions with win-
dow lengths that are usually between 150 and 800 bp

and skewed towards shorter lengths [33, 36–40]. In
order to assess the ability of adaptiPhy to identify posi-
tive selection throughout the biologically meaningful
range of putative regulatory element sizes, we tested the
effect of query lengths. Importantly, the ability to detect
selection is not strongly affected by differences in query
length, and remains similar down to ~ 150 bp (Fig. 4b).
This finding suggests that our set of reference sequences
is able to detect signatures of positive selection in re-
gions where the query is longer than the actual func-
tional element under selection, and in particular across
most of the size range of known regulatory elements and
open chromatin regions in the human genome.
Finally, we tested the impact of using three or five spe-

cies to detect positive selection, as more branches might
be expected to provide a better estimation of the back-
ground substitution rate in the reference. We found that
adding one or two species above the minimum of three
(two ingroup and one outgroup) provides only a negli-
gible improvement in sensitivity of adaptiPhy (Fig. 4c).
In contrast, the sensitivity of phyloP is more dependent
on the number of species, improving markedly with add-
itional taxa (Fig. 4c). Thus, adaptiPhy may be preferable
in situations where the minimum number of reference
genome assemblies is available.

The test discriminates between four different types of
evolutionary scenarios
To determine whether adaptiPhy can correctly detect
selection under different evolutionary scenarios, we sim-
ulated reference alignments evolving neutrally and query
alignments evolving under four selection regimes,
namely neutral on both background branches (BG) and

Fig. 3 Global proxy as a useful neutral proxy. a. Correlation between local and global tests of selection among different classes of DNA elements;
the Spearman rank correlation coefficient are highly significant and very highfor DHSs (P < 2.2 × 10− 16, ρ = 0.80) and ncHAEs (P < 2.2 × 10− 16,ρ =
0.86), while correlation is low for NFRs (P < 2.2 × 10− 16, ρ = 0.52). Inner dashed lines depict a significance level of P = 0.05. b. Venn Diagram of the
overlap of regions scoring high for positive selection using the global test vs the local test for DHS elements (top) and ncHAEs (bottom)
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Fig. 4 (See legend on next page.)
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a foreground branch (FG) of a five-species tree, purifying
selection on the BG and neutral on the FG (i.e., relax-
ation of constraint), neutral on the BG but positive
selection on the FG, and positive selection in the FG and
one BG species, while the other BG species remain neu-
tral. We found that adaptiPhy accurately discriminates
positive selection from relaxation of constraint and neu-
tral evolution (Fig. 5). Of the simulated neutral regions,
1.8% were incorrectly identified as positive selection
using adaptiPhy compared to 2.8% using phyloP. In
addition, phyloP fails to distinguish positive selection
from relaxation of constraint in almost half of the simu-
lated cases, while our approach fails in only 2.2% of
cases. In contrast, of the simulated regions under posi-
tive selection, adaptiPhy and phyloP identified 99.7 and
99.4% of sequences simulated to be under positive selec-
tion, respectively. When positive selection occurs in the
FG and in one of the BG species, adaptiPhy and phyloP
identified 99.2 and 83.5% of the cases, respectively (Fig. 5).
Across all the evolutionary scenarios tested, the sensitivity
of adaptiPhy to detect positive selection is 0.99 and speci-
ficity is 0.98, while the sensitivity of phyloP is 0.91 and
specificity is 0.74. While it is difficult to evaluate whether
the same would occur with real data, these results from
simulations suggest that adaptiPhy may produce a lower
false positive rate than phyloP, particularly for instances of
relaxed selection.

The test reconfirms many previously identified human
accelerated elements
To test whether adaptiPhy and phyloP replicate results
from previous scans for positive selection in noncoding
regions using our global NFRs [15, 17–19], we queried a
consolidated set of 2649 ncHAEs [41]. Since our findings
indicate that our test does not dilute signals of positive
selection when the query region is between 150 bp and
1 kb, and given that most ncHAEs are relatively short
(67% are shorter than 300 bp), we normalized query
length by capturing sequence up to 300 bp centered on
each ncHAE. At a significance level of 0.05, we con-
firmed 25.8% of previously reported ncHAEs using
adaptiPhy (Fig. S4A), while confirming 59% using phy-
loP (Fig. S4B). More broadly, the distribution of P-values
for previously reported ncHAEs is skewed toward 0; the
peak at the lower end of the distribution is pronounced
(Fig. S4C). As expected, this distribution is more skewed
towards 0 using phyloP and our set of neutral references
(Fig. S4D). Indeed, these results are consistent with rapid

acceleration in the human lineage among ncHAEs when
using our proxy neutral with both phyloP and adaptiPhy.
Interestingly, there is a substantially higher degree of

overlap between the regions we replicated in the consoli-
dated set of ncHAEs and those in each of the published
studies than between any two of them (Fig. S6). For in-
stance, we validated nearly 55% of the ncHAEs identified
by Bush and Lahn [18], a significantly higher fraction
than any of the other studies were able to validate (Fish-
er’s Exact Test, Two-sided, P = 0.0007). Of the other
methods that were used to identify human accelerated
elements, Bush and Lahn’s is the most methodologically
similar to ours, although they used ancient repeats
within 750 kb surrounding each ncHAE as the neutral
proxy. Only four loci were identified as ncHAEs in all
four prior studies, and all four were replicated here
(Table S1 and Fig. S7). One of these is near BNC2, a
gene that may be responsible for skin pigmentation dif-
ferences between humans and other primates [42, 43].
We also scanned a region of 100 kb containing one of

the genes that was significant for positive selection in
the published studies [15, 17–19] and the present study
using a sliding window. We found additional signals of
positive selection around the NEIL3 locus that were as
strong as the single ncHAE element that was originally
identified (Fig. 6). The striking clustering of signals of
positive selection around this locus suggests that tran-
scriptional regulation of NEIL3 changed extensively dur-
ing human origins and highlights the ability of adaptiPhy
to identify signatures of positive selection that other
methods may miss.

Discussion
Rigorous testing for selection depends upon accurate
identification of reference regions that represent neutral
rates of evolution. Prior studies have used four-fold
degenerate (4D) sites from coding sequences [15], sur-
rounding non-coding sequences [27], concatenated con-
served LINE elements (ancient repeats; ARs) [28], and
non-first intron sequences [21] as neutral references.
However, regulatory elements are often located in re-
gions that are dense with functional annotations and
thus potentially constrained or near sites evolving under
weak purifying selection (Fig. 2a). Consequently, identi-
fying sufficient non-functional regions to use as a neutral
proxy in the vicinity of most open chromatin sites is
simply not possible in primate genomes and this prob-
lem is even more acute in organisms with higher gene

(See figure on previous page.)
Fig. 4 Sensitivity test and the effect of reference and query length, and number of species in the estimation of selection in a subset of 1000
random DHSs. a. Effect of reference length on the power to identify selection at different significance levels. b. Effect of query length on the
power to identify selection at different significance levels. c. Percentage of significant tests in a sample of 1000 DHSs that were analyzed with
phyloP and adaptiPhy. Bars labeled as 5 sp. depict tests done for five branches, while 3 sp. labels depict three-species tests
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density. To address this limitation, we used the dense
functional annotation of the human genome to identify
a set of putatively non-functional regions (based on ab-
sence of any functional annotation) that can be used as
an appropriate neutral proxy (see Methods).
We then filtered this set of putatively non-functional

regions (NFRs) to address the challenges of rate hetero-
geneity and lineage sorting. For the entire set of DHS el-
ements in our sample, we found a wide distribution of
substitution rates among concatenated local samples

including local NFRs, prefiltered global NFRs and ARs
(Fig. 2b). This means that there are many such regions
in which the substitution rate on the human branch is
substantially slower or faster than average and thus
potentially confounding when used to test for positive
selection. These observations reflect generally less avail-
ability of non-functional elements in regions where
DHSs and ncHAEs are more common and slower rates
of evolution nearby each functional element, but also the
possibility that some ancient LINE elements in the

Fig. 5 Specificity test of adaptiPhy and phyloP for three types of evolution. All trees and alignments of each category were simulated to be
evolving by neutral evolution (left), relaxation of the constraint (center-left), positive selection (center-right), and positive selection in the
foreground and the gorilla branch with positive selection (right). The left and center simulations give an idea of the amount of type I error, while
the right simulation provides an estimation of the type II errors
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vicinity of DHSs are under functional constraint or
evolving under high mutation rates. Indeed, many stud-
ies have shown that ARs can become co-opted as local
regulatory elements e.g., [44–47]. Consistent with this
interpretation, we found that the proportion of reference
ARs with at least one multitissue eQTL or brain specific
eQTL is almost three times as large as in a set of global
non-functional sequences (Fig. S3). The relative absence
of local non-functional elements may also increase the
effect of incomplete lineage sorting in the reference
sequence, producing an increase of false positives and
negatives for query elements if the reference foreground
sequence is evolving at slower or faster rates than the
background.
Together, these results suggest that using local non-

functional elements and ARs can both contribute to mis-
estimation of selection. At the same time, ARs have the
tendency to overestimate the rates of evolution of query
alignments compared to a set of neutral references built
from global NFRs (Fig. S2). Our findings also suggest
that the local tests have a tendency to overestimate posi-
tive selection, probably because they contain unknown
functional sites and thus underestimate the neutral rate.
As expected, most putative non-functional elements ap-
pear neutral in tests for selection, with only one testing
positive for selection using both local and global refer-
ences (Fig. 3a). Overall, our results suggest that global
proxies are capable of testing more genomic regions,
with an important gain in accuracy as we sample puta-
tively neutral elements based on their distribution pat-
tern relative to the tree rates. As a consequence, every
query should be tested against a reference region in
which the rate on the foreground branch is approxi-
mately equal to the rate on the background branches.
Local reference regions can yield higher sensitivity to

positive selection but also more false positives due to
unrecognized purifying selection on parts of the refer-
ence region. Since incomplete lineage sorting or vari-
ation in the time to coalescence can be a potential
confounding factor for both local and global neutral
proxies [48], our filtering of global sequences based on
relative branch lengths and concatenation of non-
functional elements provides a useful strategy to control
these issues [49–51]. Moreover, coalescence times for
human polymorphisms are generally in the 103–105 year
range, which is shorter than the time of the between-
species branches. Cases of lineage sorting between ape
species certainly occur but are rare [52]. Nevertheless,
we suggest caution when analyzing query regions scoring
high for positive selection; this is particularly important
for genomes with relatively short branch lengths. Despite
these recommendations, there are situations where local
references may be useful alone or as a complement to
global references. In particular, local references may be
useful in regions of the genome with a lower density of
functional elements, because they may more accurately
reflect the local substitution rate. Indeed, the implemen-
tation of adaptiPhy allows the user to choose which ref-
erence to use (or both).
We also observed that among DHSs and nonfunctional

DNA elements, the distribution of P-values tends to-
wards the upper limit (P = 1) (Fig. S4C). This means that
most open-chromatin regions are probably evolving neu-
trally or under purifying selection because the maximum
likelihood estimate of the null and the alternative are
exactly the same when P = 1 (Fig. S4C). In contrast, most
tests on ncHAEs show a distribution of P-values strongly
skewed towards zero with a small but important density
peak at 1, suggesting that at least 92 out 2416 regions
originally identified as ncHAEs appear to be evolving

Fig. 6 Sliding windows analysis of the rate of evolution along a genomic region containing a ncHAE. Distribution of positive selection as ζ (top
panel), and vertebrate conservation scores (bottom panel) along a 100 kb region surrounding the gene NEIL3. This locus is located nearby one of
the human accelerated elements identified in our test and across all four of the cited studies (Fig. S6). The location of this ncHAE is highlighted in
pink, and the red dots represent windows of 300 bp where ζ scored significant for positive selection (P < 0.05)
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neutrally or by purifying selection in the human branch
when using global proxy (Fig. S4C). Some of these may
reflect errors in the early reference assemblies that were
used in prior studies. Overall, however, our results are
generally consistent with earlier findings [15, 17–19],
identifying many of the same regions as being under
positive selection. Moreover, our results suggest that the
distribution of P-values is strongly dependent on the
genomic partition: DHSs and our set of putatively non-
functional regions scored nearly 2.5 and 0.02% of sites
under positive selection respectively, confirming the ex-
pectation that DHSs in general are more often subject to
positive selection than putatively nonfunctional DNA re-
gions. This fraction is higher than previously reported
[27, 28]. The likely reason is that these prior studies
underestimated the proportion of sites under selection
because the AR elements used as neutral proxies are
evolving under higher substitution rates than the rest of
the genome (Fig. S2).
By testing reference alignments of different lengths, we

show a diminishing added return as these neutral prox-
ies get longer. We recommend using reference align-
ments between 3 and 9 kb (Fig. 4a), as longer alignments
require more computing power while providing only
minimal additional sensitivity. Reference alignments
shorter than 3 kb introduce more variation in estimation
of ζ and thus increase the risk of false positives and neg-
atives. We also tested the effect of query region length
and found little difference in sensitivity between regions
of 150 bp and 1000 bp, which means our approach can
be applied to the vast majority of putative regulatory ele-
ments. We recommend caution in extending query region
length indefinitely because this risks combining multiple
functional elements with neutral and non-neutral substi-
tution rates.
Our framework can be used to detect sequence out-

liers under a high substitution regime while controlling
for relaxation of constraint. We propose that most sig-
nals that are detected reflect true instances of positive
selection. Locally elevated mutation rate is a potential
confound [53], however. Some evidence suggests that
mutation rate correlates with substitution rates between
species within long segments of the genome (~ 50 kb)
[54], perhaps due to mutation pressure. However, the
situation remains unclear, as other studies found that
mutation rate does not explain variation in divergence
between species [55, 56]. In addition, regulatory ele-
ments are much shorter (generally 100–350 bp), and our
sliding window scans reveal highly localized peaks of ele-
vated substitution rather than the broad regions ana-
lyzed in the studies just mentioned. To investigate
whether local differences in mutation or recombination
rate might produce a false positive, we recommend in-
vestigating the amount of common and rare variation

present in a query region by consulting dbSNP or 1000
genomes databases. Rare variants are often used as a
proxy for mutation rate [56–58], making this a straight-
forward way to flag queries that score high for positive
selection but are under a higher or lower mutational re-
gime. Moreover, finding an excess of common variants
under high-to-intermediate frequencies in the Site-
Frequency Spectrum (SFS) in a given region that scores
high for positive selection is potentially a useful way to
identify previously unknown regions under persistent
balancing selection [59]. Indeed, we found that the most
variable element under positive selection is located in
the MHC region (Supplementary Data), a region known
to be under balancing selection.
Another potential confound of our approach is variation

in recombination rate [48], which can cause discordance
in the phylogenetic inference of substitution rates. Again,
however, our query regions are very short (100 s of bp)
while values for recombination rates in the genome are
calculated over much longer scales (~ 100 kb) and are still
rather imprecise [60, 61]. Furthermore, the effects of a
selective sweep are more evident at the within- than
between species scale. Some tests for selection designed to
work within species measure reduced polymorphism
around the selected site and later a signal of low-
frequency derived mutations in linkage disequilibrium
(LD) with it. These signals only persist for tens of thou-
sands of years in human populations, since over time
recombination erodes LD and drift eliminates most low-
frequency alleles [62]. As a result, it is not possible to test
for selection across deeper evolutionary time scales using
signals like the SFS or LD. Divergence times between great
apes range from ~ 7–16 million years, much too long for
the LD effects of a selective sweep to be evident and leav-
ing only a signature of elevated substitution.
If selective sweeps did influence tests for positive se-

lection at the between-species level, we would expect the
same query regions to be flagged by tests at the within-
and between-species levels. This is not what we observe.
As a specific example, we analyzed the region that in-
cludes SNPs responsible for lactase persistence in some
human populations. The region around these SNPs
shows one of the strongest selective sweeps known from
the entire human genome, making it a good test case. Of
1847 windows tested around the LCT locus, only 9
(0.48%) scored significant for positive selection using
adaptiPhy (Fig. S7), which is about the percentage
among non-functional regions distributed randomly
across the genome. Further, the specific area around the
lactase persistence SNP that recently swept in humans is
not positive for selection by our test for selection be-
tween species.
A final potential confound is the idea that reference

genome sequences do not capture all the variation that
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is present at the population level [63]. In this study, we
used the human (hg19), chimpanzee (panTro4), gorilla
(gorGor3), orangutan (ponAbe2), and macaque (rhe-
Mac3) reference assemblies. None of these reflect the
ancestral state for their respective species, and are in-
stead based on observed sequences from at least one
diploid individual. As a result, some regions may contain
concentrations of rare or common derived alleles simply
by chance. This will artificially increase the apparent in-
terspecies substitution rate. To control for this potential
confound, we suggest re-running tests for selection for
any query regions of particular interest using local align-
ments that represent the reconstructed ancestral state in
order to correct for intraspecific variation.

Conclusion
Together, the improvements introduced here increase
the ability to identify proxy neutral regions and to
modulate the sensitivity and conservativeness of branch-
specific tests for positive selection in noncoding regions.
The test is sensitive across nearly the entire range of an-
notated functional regulatory elements, dropping only
for elements < 150 bp in length. It is possible to apply
these tests to nearly any noncoding region of the gen-
ome, even those in functionally dense locations.

Methods
Testing for branch-specific positive selection using our
approach requires at least one reference alignment in
which all branches of the tree are evolving at putatively
neutral rates, and one query alignment, which can be
obtained from any genomic region of interest, such as
putative open chromatin regions or segments of a
GWAS peak (Fig. 1b). First, we downloaded the 100-way
multiple alignment from the University of California
Santa Cruz (UCSC) website (http://hgdownload.soe.ucsc.
edu/goldenPath/hg19/multiz100way/) and several anno-
tations of functional DNA elements from the ENCODE
Project at UCSC, including: 5′ and 3′ UTRs, total hu-
man mRNA, lincRNAs, microRNAs, sncRNAs, short re-
peats, CpG islands, etc. (supplementary Table 2). We
also enriched this list of functional elements with a set
of HoneyBadger2-intersect promoters and enhancers
from reg2map annotated by the Broad Institute and Epi-
genomics Roadmap project. Then, using maf_parse im-
plemented in PHAST [22], we transformed the 100-way
alignment into a smaller 5-way genome-wide alignment
in MAF format that included only our focal species hu-
man (hg19), chimpanzee (panTro4), gorilla (gorGor3),
orangutan (ponAbe2), and rhesus macaque (rheMac3).
To draw reference alignments and non-functional re-
gions, we generated a masked 5-way MAF alignment
with a BED file containing all known functional DNA re-
gions using maf_parse with the optional command

--mask-features. To mask the genome, we used a merged
BED file that included 5′ and 3′ exons, all coding and
non-coding RNAs, vista enhancers, roadmap and EN-
CODE regulatory elements and promoters, CpG repeats,
microsatellite sequences and simple repeats. Interest-
ingly, the remaining non-functional fraction of the gen-
ome covered only ~ 20.5% of the genome. We used
msa_split [22] to draw alignments from non-coding hu-
man accelerated elements, ncHAEs [15, 17–19, 64], a
random subset of non-functional regions (as defined
below), and DNA Hypersensitive Sites (DHSs) from 125
human cell types and tissues [33].
To select non-functional regions (NFRs) for our analyses

of positive selection, we randomly chose around two mil-
lion (1,893,795) non-overlapping segments of 300 bp from
the non-functional fraction of the genome described above,
collectively amounting to 18.3% of the genome. Subse-
quently, we excluded all the alignments containing any
masked regions. Next, we computed branch lengths of
each of the tree branches using the tool phyloFit available
in PHAST [22]. phyloFit computes a tree with branch
lengths and a substitution rate matrix by fitting a tree
model to a multiple sequence alignment using maximum
likelihood for a total of 92,160 regions. We noted a large
peak of substitution rates near 0, and to avoid this bias we
removed sites with a relative substitution rate < 0.001 for
any of the sites. Within the remaining sample of 52,879
alignments from the last filtration step, we excluded any
alignments in which the human branch was evolving too
quickly or too slowly with respect to the total tree by using
a custom R script; in this step, we omitted all trees with a
relative branch length within the top and bottom 25% of
this distribution (Fig. S1). This step reduced the pool of
global NFRs to 26,426 FASTA alignments in which the
relative human branch length ranged between the lower
and the upper quartiles. The genome locations of these
NFRs are available in the supplement (NFR.sorted.bed.csv).
To run our tests of selection, we fitted the null and

alternative models for each DNA-element alignment using
the batch scripts written by Haygood and collaborators
[21] that run under the program HyPhy [29]. After all
tests were completed, we extracted the best maximum
likelihood estimates from twenty fittings to allow for sto-
chasticity. Then, we obtained P-values from each likeli-
hood ratio test (LRT) using the Chi2 distribution tool
(pchisq) with one degree of freedom, implemented in R
[65]. Consistent with previous findings [66], we observed
that all P-value distributions were non-uniform and highly
skewed to 1, therefore we considered our test to be con-
servative (Fig. 3b). Consequently, we decided to use nom-
inal P-values smaller than 0.05 to name regions scoring
high for positive selection, instead of correcting for mul-
tiple testing to avoid violating the assumption of uniform
P-value distribution underlying the False Discovery Rate
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methodology [67, 68, 69]. We recognize that each query is
independent of the rest, and thus the problem of multiple
testing is real. We thus recommend that any query region
where the nominal P-value indicates positive selection
should be re-tested against different reference regions. In
this case, we recommend adjusting P-values when the
same query region is tested multiple times or when testing
enrichment between multiple groups. All data generated
during this study are included in the supplementary infor-
mation files as comma delimeted files (NFR.data,
DHS.data and ncHAE.data).

Evaluation of the effect of query and reference length on
sensitivity using empirical data
To examine the sensitivity of our framework to detect
positive selection under varying lengths of the query and
reference, we obtained seven sets of 1000 queries of
DHS alignments from the center of the peak position up
to a total of 150 bp, 250 bp, 300 bp, 400 bp, 500 bp, 600
bp and 1000 bp on both sides. For each of these align-
ments, we also generated 10 reference alignments in
order to account for the stochasticity of the evolutionary
processes by concatenating 10 alignments from our set
of 26 K non-functional 300 bp elements. Likewise, to
identify the effects of variation in reference length in our
queries, we also ran each query alignment of 300 bp
against each of ten reference alignments varying from
300 bp to 30,000 bp. We also investigated the effects of
including five species in our alignments rather than the
minimum of three species considered by Haygood and
collaborators [21]. There are now many genomewide as-
semblies that are available for many species, so we de-
cided to employ additional species to test the effect of
removing two branches in the tree. To do this, we ex-
tracted a random pool of 1000 queries with both three
(human, chimp and macaque) and five species (human,
chimp, gorilla, orangutan and macaque) from the DHSs
prepared by Thurman and collaborators [33].

Evaluation of the effect of evolutionary state on
specificity and sensitivity using simulated data
One typical concern of any test of directional selection is
the fact that it may deliver a signal of positive selection
if reference sequences are under unrecognized purifying
selection or if mutation rates are increased in the query
region [66]. To test for these effects, we used the distri-
bution of both relative and absolute branch lengths
among non-functional sequences to simulate the distri-
bution of trees under different classes of evolution (i.e.
relaxation of constraint, increased mutation rate, positive
selection or neutrality). To do this, we assumed that the
alignments in the second quartile were putatively neu-
tral, while those in the lower quartile were constrained,
and those beyond the highest value of the upper quartile

were under positive selection. Subsequently, we used
these ‘neutral’ distributions to generate random sets of
simulated trees, which were executed in the program
seq-gen [70] to simulate sequence alignments in FASTA
format. Consequently, we generated four sets of 1000
query alignments in which 100% of the alignments were
evolving by different classes of evolution: i, neutral in
the foreground and in the background; ii, neutral in the
foreground but constrained in the background by scaling
down the substitution rates in the background by a fac-
tor α = 0.1; iii, scaling up the neutral rate in the fore-
ground by a factor α = 7; and iv, scaling up the neutral
rate in the foreground by a factor of α = 7 and scaling up
the neutral rate in one of the background species (i.e.
gorilla) by a factor of α = 10. Next, we used these simu-
lated alignments to explore the power of adaptiPhy to
distinguish positive selection from relaxation of con-
straint and other types of evolution at the phylogenetic
scale. Finally, we compared the results obtained from
adaptiPhy with phyloP. This computational tool esti-
mates a null distribution of the number of substitutions
from the reference model, and computes the number of
actual substitutions that occur in the query alignment,
then it estimates P-values in the branch of interest given
the total tree using a LRT method [16]. Here, for each
query region used before, we tested the human subtree
using the SPH model against the putatively neutral refer-
ence alignment obtained from phyloFit. Then, we parsed
the P-value of acceleration in subtree given total tree
using custom bash scripts.

Evaluation of sensitivity using known non-coding human
accelerated elements
To test for selection in regions of the genome that have
been previously investigated, we obtained a consolidated
set of positive control queries of 2649 ncHAEs studied
by Capra (2013) [41]. To compare the fraction of posi-
tive selection among ncHAEs with other sets of known
regulatory elements, we used a subset of DHSs previ-
ously published by Thurman and collaborators (2012)
[33]. To sample the DHSs in our test, we defined the
“Ubiquity Score” as the fraction of cell types a given
open chromatin site was open among the total number
of tissues or cell types surveyed, thereby identifying a
different set of queries to run our LRT method on
known regulatory elements. To do this, we selected 4216
DHSs that were open in at least 124 of 125 cell types,
which we term ‘widespread sites’ (Ubiquity score > 0.98),
and we selected 7433 DHSs that were open in at most 2
of 125 cell types, which we term ‘specific sites’ (Ubiquity
score < 0.02). Although these numbers seem arbitrary,
they are a consequence of losing sequence alignments
due to missing sequences from any of the branches or
high frequency of gaps.
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Adapting the method to sliding windows
To test if our method is suitable for sliding windows, we
applied adaptiPhy to test for positive selection within a
100 kb region around the NEIL3 locus, with the purpose
of investigating additional signals of selection in the vicin-
ity of a ncHAE. Here, we split the entire region in win-
dows of 300 bp with a 150 bp step size, and each query
was run against a reference made from the filtered NFRs
that were extracted from the masked genome alignment.
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1186/s12864-020-6752-4.
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