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broadening strategy.

resources to broaden elite germplasm.

Optimal cross selection

Background: The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the
vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy
is required to broaden the genetic base of commercial breeding programs while not compromising short-term
variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected
genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently
improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging),
and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to
jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base

Results: We compared simulated breeding programs introducing donors with different performance levels, directly
or indirectly after bridging. We also evaluated the effect of the training set composition on the success of
introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the
genetic diversity and increase mid- and long-term performances with only limited penalty at short-term.
Considering a bridging step yielded significantly higher mid- and long-term genetic gain when introducing low
performing donors. The results also suggested to consider marker effects estimated with a broad training
population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses.

Conclusion: Results of this study provide guidelines on how to harness polygenic variation present in genetic

Keywords: Genetic resources, Genetic diversity, Genetic base broadening, Pre-breeding, Genomic prediction,

Background

Modern breeding has been successful in exploiting crop
diversity for genetic improvement. However, current
yield increases may not be sufficient in view of rapid hu-
man population growth [25]. Moreover, modern inten-
sive breeding practices have exploited a very limited
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fraction of the available crop diversity [15, 50]. The nar-
row genetic base of elite germplasm compromises long-
term genetic gain and increases the genetic vulnerability
to unpredictable environmental conditions [39]. Efficient
genetic diversity management is therefore required in
breeding programs. This involves the efficient incorpor-
ation of new genetic variation and its conversion into
short- and long-term genetic gain.

Among the possible sources of diversity, wild relatives,
exotic germplasm accessions and landraces that predate
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modern breeding exhibit substantial genetic diversity.
These ex-situ genetic resources are conserved worldwide
in international gene banks and national collections.
They provide a promising basis to improve crop prod-
uctivity, crop resilience to biotic and abiotic stresses and
crop nutritional quality [55, 72]. In case of traits deter-
mined by few genes of large effect, the favorable alleles
can be identified and introgressed into elite germplasm
following established marker-assisted backcross proce-
dures (e.g. [13, 29, 58]). Such introgressions have been
successful for mono- and oligogenic traits (e.g. earliness
loci in maize, [60, 62] and SUB1 gene in rice, [8]). Intro-
gressions also proved to be successful for more poly-
genic traits where few major causal regions have been
identified. For instance, Ribaut and Ragot [51] success-
fully introgressed five regions associated with maize
flowering time and yield components under drought
conditions. For complex traits controlled by numerous
genes with small effect, e.g. grain yield in optimal condi-
tions, the identification and introgression of favorable al-
leles into elite germplasm were mostly unsuccessful [12].
This requires to go beyond the introgression of few
identified favorable alleles toward the polygenic enrich-
ment of elite germplasm [59, 61]. Although plant
breeders recognize the importance of genetic resources
for elite genetic base broadening, only little use has been
made of it [24, 72]. The main reason is that breeding
progress continues [20, 66] and that breeders are reluc-
tant to compromise elite germplasm with unadapted and
unimproved genetic resources [33]. Despite genetic re-
sources carry novel favorable alleles that may counter
balance their low genetic value by an increased genetic
variance when crossed to elites [4, 37], their progeny
performance is mostly insufficient for breeders. Thus,
breeding strategies are needed to bridge the performance
gap between genetic resources and elites and to transfer
beneficial genetic variations into elite germplasm while
not compromising the performance of released varieties
[26, 61]. Pre-breeding can be defined as the recurrent
improvement of diversity sources to release donors that
can be further introduced into the elite breeding popula-
tion (Fig. 1). According to Simmonds [61], pre-breeding
should start from a broad germplasm and should be
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carried out on several generations with low selection in-
tensity to favor extensive recombination events and min-
imal inbreeding. The donors released from pre-breeding
can be directly introduced into the elite breeding popu-
lation. However, in cases where the performance gap be-
tween the donors released from pre-breeding and elites
is too large, one may consider a buffer population be-
tween donors and elites before introduction in the elite
breeding population, further referred to as bridging. The
best progeny of bridging is then considered for introduc-
tion into the elite breeding population (Fig. 1).

Different sources of donors can be considered for gen-
etic base broadening. This includes landraces historically
cultivated before modern breeding. For instance in
maize, open pollinated varieties (OPVs) are landrace
populations of heterozygous individuals cultivated before
the hybrid maize breeding revolution in the 1950’s [7,
68]. Inbred lines derived from OPVs present a large di-
versity and a potential interest for adaptation, but also a
large performance gap with current varieties [10, 11, 40].
These landraces can be further improved through pre-
breeding that can be shared between the industry and
public institutes in collaborative projects. In maize, the
Latin American Maize Project (LAMP, [45, 54, 55]) pro-
vided breeders with useful characterization and evalu-
ation of United State of America (US) and Latin
American tropical germplasm accessions. Later, the
Germplasm Enhancement of Maize project (GEM, [46])
improved the accessions identified in LAMP with elite
lines furnished by private partners [47]. Similarly, the
Seeds of Discovery project (SeeD, [26]) aimed to harness
favorable variations from landraces and to develop a
bridging germplasm useful for genetic base broadening
of commercial maize breeding programs. In this vein,
Cramer and Kannenberg [17] proposed the Hierarchical
Open-ended Population Enrichment (HOPE) breeding
system to release enriched maize inbreds for the indus-
try. In its last version, the HOPE system is a breeding
program with three hierarchical open ended gene pools
permitting the transfer of favorable alleles from diversity
sources to the elite pools [34, 48]. Finally, breeders can
consider the varieties released by breeding programs
selecting on a different germplasm and in different
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Fig. 1 Diagram illustrating the respective positioning of pre-breeding, bridging and breeding from genetic resources to variety release
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environments as donors. In species where hybrid var-
ieties are cultivated, the ability to use one variety’s in-
bred parent as a donor depends on the germplasm
proprietary protection relative to species and countries
(e.g. the possibility of using reverse breeding, [63]). In
the US, maize inbred parents of hybrid varieties become
publically available after 20 years of plant variety protec-
tion act, these are referred to as ex-PVPA [44]. In inbred
species such as wheat, using current varieties for breed-
ing is straightforward if cultivated under the union for
the protection of new varieties of plants convention
(UPOV, [19]). These donors are likely the most perform-
ing but also the less original that can be considered.

With the availability of cheap high density genotyping,
Whittaker et al. [73] and Meuwissen et al. [42] have pro-
posed to use genomewide prediction to fasten breeding
progress by shortening generation intervals. A large
number of genomewide markers is employed, and their
effects are estimated on a training set (TS) of pheno-
typed and genotyped individuals. The genomic estimated
breeding values (GEBVs) are further predicted consider-
ing the estimated marker effects and individuals’ mo-
lecular marker information. Recurrent selection based
on genomewide prediction, further referred to as gen-
omic selection (GS), has been increasingly implemented
in crop breeding programs [31, 70]. GS efficiency de-
pends on the relationship between individuals in the TS
and the target population of individuals to predict [28,
49]. As a consequence, in commercial breeding pro-
grams, GS has been mostly implemented considering a
narrow elite TS that optimizes the prediction accuracy
on elite material. However, such a narrow TS limits the
prediction accuracy of individuals carrying rare alleles,
which is the case for the progeny of elite by donor
crosses. Therefore, it is important to define the TS com-
position that maximizes the prediction accuracy in both
elite and introduction families.

In the context of genetic base broadening, GS is also
interesting to fasten and reduce the costs for the evalu-
ation and identification of genetic resources in gene
banks [18, 77]. Furthermore, GS can fasten pre-breeding
programs to reduce the performance gap between diver-
sity sources and elite populations [26]. Instead of trun-
cated selection (i.e. select and mate individuals with the
largest estimated breeding values), Cowling et al. [16]
proposed to use the optimal contribution selection to
improve diversity sources while maintaining a certain
level of diversity in the pre-breeding population. Optimal
contribution selection [41, 74, 75] aims at identifying the
optimal parental contributions to the next generation in
order to maximize the expected genetic value in the pro-
geny under a certain constraint on diversity. Therefore,
the optimal contribution selection is particularly adapted
to pre-breeding and genetic diversity management.
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Cowling et al. [16] considered the pedigree relation-
ship information but genomic relationship information
can further improve the optimal cross selection [14].
Considering optimal contribution selection on empir-
ical cattle data, Eynard et al. [21] observed that allow-
ing for the introductions of old individuals in the
breeding population increased long-term response to
selection. The optimal cross selection (OCS) is the
extension of optimal contribution selection to deliver
a crossing plan [1, 2, 27, 35, 36].

In this study, we propose to take advantage of OCS for
selection of bridging, introduction and elite crosses (Fig.
1). Allier et al. [5] proposed to account for within family
variance and selection in a new version of OCS referred
to as Usefulness Criterion Parental Contribution based
OCS (UCPC based OCS). UCPC based OCS differs from
standard OCS in that it uses within-family variance to
predict the expected mean performance and the ex-
pected genetic diversity in the selected fraction of the
progeny while standard OCS predicts the expected mean
performance and genetic diversity in the unselected pro-
geny. Allier et al. [5] observed both higher short- and
long-term genetic gain compared to OCS in a simulated
closed commercial breeding program. We extend here
the use of UCPC based OCS to pre-breeding, following
Cowling et al. [16], and to an open commercial breeding
program with recurrent introductions of diversity
sources, extending the work of Eynard et al. [21]. Using
OCS, the donor by elite crosses are selected complemen-
tarily to the elite by elite crosses in order to ensure an
overall consistency of the genetic base broadening strat-
egy. In this context, we aimed at evaluating the efficiency
of genetic base broadening depending on the type of do-
nors considered and the genetic base broadening scheme
(Fig. 1). We considered either donors corresponding to
the generation of the founders of breeding pools or im-
proved varieties released 20 years ago and 5 years ago.
Our objectives were to evaluate (i) the advantage of re-
current introductions of diversity in the breeding popu-
lation compared to a benchmark scenario with no
introduction, (ii) the interest to conduct or not bridging
and (iii) the impact of the training set composition on
within family genomewide prediction accuracies.

Results

Advantages of pre-breeding and bridging

The advantage of recurrent introductions in the com-
mercial breeding program after or without bridging
depended on the type of donor considered. Donors is-
sued from a panel assembling founders of the breeding
pool, referred to as panel donors, showed a large per-
formance gap with the elites they were crossed to. This
performance gap increased with advanced breeding gen-
erations (the true breeding value difference with elites
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increased from - 15 to — 104 trait units on average over
the 60years period). Improved donors showed a lower
performance gap with elites. Twenty-year old donors
showed an intermediate performance gap with elites (- 22
trait units on average over the 60 years period) and five-
year old donors showed a reduced performance gap with
elites (- 8 trait units on average over the 60 years period).

Direct introductions of panel donors without bridging
(Nobridging Panel) penalized the breeding population
mean performance (u) at short-term (at 5 years, y =
8.168 +/-0.282 compared to 9.239 +/- 0.237 without in-
troductions, Fig. 2a, Table S1) and long-term (at 60
years, 4 = 9.651 +/-0.958 compared to 38.837 +/- 1.563
without introductions, Fig. 2a, Table S1). When consid-
ering the mean performance of the 10 best progeny
(#10), the short-term penalty was no more significant (at
5 years, p10 = 15.802 +/-0.341 compared to 15.746 +/-
0.391 without introductions, Fig. 2b, Table S2) but the
long-term penalty was still significant (at 60 years, g9 =
29.767 +/-1.108 compared to 39.567 +/- 1.571 without
introductions, Fig. 2b, Table S2). The introduction of
panel donors after bridging (Bridging Panel) did not sig-
nificantly penalize the short-term mean performance of
the breeding population (at 5 years, 4 = 8.688 +/-0.329
compared to 9.239 +/-0.237 without introductions, Fig.
2a, Table S1) and yielded significantly higher long-term
performance (at 60 years, 4 = 52.110 +/-0.886 com-
pared to 38.837 +/- 1.563 without introductions, Fig. 2a,
Table S1). When considering 41, the short-term penalty
was reduced (at 5 years, pjo = 15.605 +/-0.477 com-
pared to 15.746 +/- 0.391 without introductions, Fig. 2b,
Table S2) and the long-term gain increased (at 60 years,
H1o = 61.763 +/-1.298 compared to 39.567 +/-1.571
without introductions, Fig. 2b, Table S2).

Direct introductions of 20-year old donors without
bridging (Nobridging 20y) yielded a penalty in the mid-
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term compared to not introducing donors (at 20 years, y
= 16.818 +/-2.397 compared to 23.182 +/- 1.446 with-
out introductions, Fig. 2a, Table S1). When considering
U10, the mid-term penalty due to introductions was lim-
ited (Fig. 2b, Table S2). After 30 years, this introduction
scenario significantly outperformed the benchmark (¢ =
33.546 +/-1.519 compared to 30.006 +/- 1.319 without
introductions, Fig. 2a, Table S1) and this advantage in-
creased until the end of the 60 years evaluated period (¢
= 66.944 +/-0.849 compared to 38.837 +/- 1.563 with-
out introductions, Fig. 2a, Table S1). The introduction of
20-year old donors after bridging (Bridging 20y)
penalized only the short-term performance (at 5 years, u
= 8.687 +/-0.293 compared to 9.239 +/-0.237 without
introductions, Fig. 2a, Table S1) and yielded significantly
higher performance than the benchmark after 20 years
(u = 27987 +/-0.840 compared to 23.182 +/-1.446
without introductions, Fig. 2a, Table S1). Introductions
after bridging significantly outperformed the direct in-
troductions until the end of the 60 years evaluated
period (4 = 69.154 +/-0.868 with bridging compared to
66.944 +/-0.849 without bridging and y;9 = 74.413 +/-
0.932 with bridging compared to 72.258 +/-0.978 with-
out bridging, Fig. 2a-b, Table S1-S2).

Introducing 5-year old donors after or without bridg-
ing yielded significantly higher mid- and long-term per-
formances than all other tested scenarios, without any
significant long-term advantage of introductions after
bridging compared to direct introductions (at 60 years,
= 74.074 +/-0.869 with bridging compared to 74.662
+/-0.938 without bridging, Fig. 2, Table S1).

We observed that the recurrent introductions of do-
nors impacted the genetic diversity of the commercial
germplasm. The faster the commercial program had ac-
cess to recent germplasm of the external program, the
more the varieties released by the commercial program
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were admixed with the external program elite germ-
plasm (Fig. 3b and c). In the scenario where only panel
donors were accessible for introductions, the internal
program diversity did not converge toward the external
program (Fig. 3a).

The evolution of the mean frequency of initially rare
favorable alleles (i.e. favorable allele that had a frequency
at the end of burn-in <0.05 in the elite breeding popula-
tion) also highlighted differences between strategies. The
older the donors, the lower the observed increase in fre-
quency of initially rare favorable alleles (at 60 years for
scenario with bridging, the mean frequency was 0.414
+/-0.012 for 5-year old donors, 0.361 +/-0.009 for 20-
year old donors, 0.263 +/-0.008 for panel donors and
0.016 +/-0.006 without introductions, Fig. 2c, Table
S3). For 20-year old donors, omitting the bridging before
introduction delayed the increase in frequency of initially
rare favorable alleles (e.g. at 20 years, the mean fre-
quency was 0.088 +/— 0.014 without bridging compared
to 0.116 +/-0.011 with bridging, Fig. 2c, Table S3). For
panel donors the absence of bridging significantly
penalized the increase in frequency of initially rare favor-
able alleles (at 60 years, 0.068 +/- 0.007 without bridging
compared to 0.263 +/-0.008 with bridging, Fig. 2c,
Table S3).

Effect of a joint genomic selection model for bridging

and breeding

Scenarios with introductions after bridging that consid-
ered a single TS of 3600 E and 1200 DE progeny yielded
higher mid- and long-term g and y;0 than scenarios
considering two distinct TS for bridging and breeding
(Fig. 4a-b). After 20 years, single TS scenarios signifi-
cantly outperformed scenarios with two distinct TS (4 =
40.111 +/-1.149 compared to 34.900 +/-0.905 for five-
year old donors, 4 = 30.497 +/-1.135 compared to
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27.987 +/-0.840 for 20-year old donors and y = 29.292
+/-0.802 compared to 25.212 +/-1.314 for panel do-
nors, Fig. 4a, Table S1). After 60 years, the advantage of
a single TS remained significant except for 5-year old
donors (¢ = 75.749 +/-1.093 compared to 74.074 +/-
0.869 for 5-year old donors, 4 = 71.130 +/-1.028 com-
pared to 69.154 +/-0.868 for 20-year old donors and p
= 57.067 +/-1.444 compared to 52.110 +/-0.886 for
panel donors, Fig. 4a, Table S1). When considering p;0,
a single TS was still more performing but its interest
was less significant (e.g. for panel donors after 60 years,
Uio = 63.699 +/-1.698 compared to 61.763 +/-1.298,
Fig. 4b, Table S1-S2). A single TS also favored the
increase in frequency of initially rare favorable alleles in-
troduced by 5-year old donors and 20-year old donors
(e.g. for 20-year old donors after 60 years, 0.380 +/-
0.010 compared to 0.361 +/- 0.009, Fig. 4c, Table S3).
The observed within family prediction accuracies
varied depending on the TS considered. For 20-year old
donors introduced after bridging, considering a single
TS of 4800 DE + E did not significantly improve the pre-
diction accuracy within ExE families compared to using
the pure elite TS of 3600 E (cor(u,u) = 0.73 +/-0.06
compared to cor(u,it) = 0.72 +/-0.07, Table 1). How-
ever, it significantly improved the prediction accuracy
within introduction DEXE families compared to the pure
elite TS of 3600 E (cor(u,it) = 0.77 +/-0.07 compared
to cor(u,it) = 0.61 +/-0.11, Table 1). A single TS also
slightly but not significantly improved the prediction ac-
curacy within bridging DxE families compared to the
pure bridging TS of 1200 DE (cor(u,t) = 0.78 +/-0.05
compared to cor(u,#) = 0.73 +/-0.06, Table 1). Similar
observations were made on the other scenarios consider-
ing 5-year old and panel donors. Prediction accuracies
were larger in introduction DEXE and bridging DxE fam-
ilies with older donors, i.e. phenotypically distant to
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elites, due to larger within family variances (e.g. for
DEXE families 14.43 +/-4.40 for panel donors, 6.92 +/-
2.10 for 20-year old donors and 5.00 +/-1.41 for five-
year old donors, Table 1).

At constant TS size of 3600 DH, the increase in propor-
tion of DE progeny from 0 to 1/3 in the TS increased the
prediction accuracy within introduction DEXE families (
cor(u,it) = 0.58 +/-0.02 to 0.73 +/-0.01, Fig. 5b) while it
reduced the prediction accuracy within elite ExE families (
cor(u,it) = 0.70 +/- 0.01 to 0.65 +/- 0.02, Fig. 5a). The TS
with 3000 E and 600 DE appeared as a suitable comprom-
ise with within introduction DEXE family cor(u, &) = 0.70
+/-0.02 and elite ExE families cor(u, ) = 0.68 +/-0.01.
At constant TS size of 1200 DH, the TS with 900 E and
300 DE progeny performed similarly as the pure bridging
TS for prediction within DEXE families (cor(u,t) = 0.63
+/-0.03 compared to 0.62 +/-0.02, Fig. 5b) but signifi-
cantly outperformed the pure bridging TS for prediction

within elite ExE families (cor(u, %) = 0.52 +/- 0.04 com-
pared to 0.34 +/- 0.02, Fig. 5a). The within family variance
prediction accuracy showed similar tendencies (Fig. 6a-b).
The increase in proportion of DE progeny from 0 to 1/3
in the TS increased the prediction accuracy within intro-
duction DEXE families (cor(o,6) = 0.56 +/-0.09 to 0.76
+/-0.07, Fig. 6b) while it slightly reduced the prediction
accuracy within elite ExE families (cor(o,0) = 0.74 +/-
0.07 to 0.71 +/- 0.08, Fig. 6a).

Discussion

Despite the recognition of the importance to broaden
the elite genetic base in most crops, commercial
breeders are reluctant to penalize the result of several
generations of intensive selection by crossing elite ma-
terial to unimproved diversity sources. Furthermore,
among the large diversity available for genetic base
broadening (e.g. landraces, public lines, varieties...), the

Table 1 Within family prediction accuracies (cor(u, () depending on the validation set (VS)

Five-year old donor Twenty-year old donor Panel donor
Family Prediction accuracy Family Prediction accuracy Family Prediction accuracy
vanance - 1s= 1s=pe TS=E+ VM€ T5-  T5=pE TS=E+ VM T5-  TS=DE TS=E+
E (1200) DE (4800) E (1200) DE (4800) E (1200) DE (4800)
(3,600) (3,600) (3,600)
VS = ExE 376 0692 048 072° 393 0722 047 073° 402 0727 044 073°
(1.17) (0.07) 0.1) (0.06) (1.06) (0.07) (0.10) (0.06) (1.16) (0.05) (0.10) (0.05)
VS = DExE 5.00 0602 0.59 073® 6.92 061° 0.65 077° 14.43 0652 0.78 086°
(1.41) (0.1) 0.1) (0.07) (2.10) 0.11) (0.10) (0.07) (4.40) (0.12) (0.07) (0.05)
VS =DxE 9.69 0.61 0662 073b 18.31 0.65 073° 078"° 64.15 0.74 082° 086°
(.01 (0.08) (0.08) (0.07) (3.78) (0.08) (0.06) (0.05) (1289)  (0.07) (0.04) (0.03)

Elite (EXE), introduction (DEXE) and bridging (DxE) and the training set (TS) considered: pure elite (E), pure bridging (DE) and merged (E + DE). Results are given for
scenarios with different donors, from the panel, 20-year old and 5-year old donors, considering a single TS and prediction accuracies are averaged over the 10
replicates and all 60 generations. In brackets are given the standard errors averaged over 60 generations.

@ Prediction accuracies that would have been realized if the breeding (E) or bridging (DE) set had been each predicted only by the corresponding training set (to
be compared with )

b Realized prediction accuracies when considering a single training set (to be compared with 2)
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identification of the useful genetic diversity to broaden
the elite pool is difficult and might dishearten breeders.
Consequently, there is a need for global breeding strat-
egies to identify interesting sources of diversity that
complement at best the elite germplasm, to improve di-
versity sources to bridge the performance gap with elites,
and to efficiently introduce them into elite germplasm.

Genetic base broadening with optimal cross selection
accounting for within family variance

The identification of diversity sources for polygenic en-
richment of the elite pool should account for the com-
plementarity between diversity sources and elites as
reviewed in Allier et al. [6]. Allier et al. [4] proposed the
Usefulness Criterion Parental Contribution (UCPC) ap-
proach to predict the interest of crosses between

diversity sources and elite recipients based on the ex-
pected performance and diversity in the most perform-
ing fraction of the progeny. The interest of UCPC relies
on the fact that it accounts for within family variance
and selection when identifying crosses. For instance,
when crossing phenotypically distant parents, e.g. gen-
etic resource and elite recipient, we expect a higher cross
variance that should be accounted for to properly evalu-
ate the usefulness of the cross [4, 37, 56]. Additionally,
we expect the best performing fraction of the progeny to
be genetically closer to the best parent. This deviation
from the average parental value should be considered to
evaluate properly the genetic diversity in the next gener-
ation [4, 5]. Accounting for parental complementarity at
marker linked to QTLs also favors effective recombin-
ation in progeny and breaks negative gametic linkage
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Fig. 6 Effect of TS composition on family variance prediction accuracy (cor(o, 6)) considering genotypes simulated at generations 18, 19, 20 in
the scenario Bridging_20y. a Mean prediction accuracy in 50 elite (ExE) families and b mean prediction accuracy in 50 introduction after bridging
(DEXE) families. Boxplots represent the results for 20 independent replicates. One can distinguish three training set types (left to right): Full
training set considering all 3600 E progeny (Pure E), all 1200 DE progeny (Pure DE) and all 3600 E + 1200 DE progeny; Training sets at constant
size of 1200 DH for comparison with Pure DE; Training sets at constant size of 3600 DH and variable proportion of DE progeny for comparison
with Pure E. The red dotted line represents the median value for Pure E TS
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disequilibrium between QTLs (i.e. repulsion), which un-
leashes additive genetic variance and increases long-term
genetic gain [5]. Therefore, the OCS is particularly
adapted to genetic diversity management in pre-
breeding and breeding programs [1, 5, 16, 27]. Based on
these studies, we evaluated a UCPC based OCS strategy
to jointly select the donors and define the introduction
and elite crosses to ensure an overall consistency of gen-
etic base broadening accounting for the performance
and diversity available in both bridging and breeding
populations.

Diversity sources and pre-breeding

Different sources of diversity can be considered by com-
mercial breeders. The most original ones, but which
show a large performance gap with elites, are landraces
(e.g. DH libraries derived from landraces, [11, 40, 65])
and first varieties derived from landraces. Such a source
of diversity was represented in our study by a fixed col-
lection of panel donors. Since breeding industry is highly
competitive, breeders are likely reluctant to introduce
unselected sources of diversity directly into the breeding
germplasm despite they might carry favorable adaptation
alleles to face climatic changes [11, 30, 39]. Instead,
commercial breeders will prefer to consider elite inbred
lines from other than their own program [34].

In this study, the external breeding program was de-
signed to release every generation several improved
lines, later considered as donors for genetic base broad-
ening of the commercial breeding program. The external
program started from a broader genetic diversity than
the commercial program (on average, He = 0.283 com-
pared to He =0.133 at the end of burn-in) and was de-
signed to maintain higher genetic diversity during
selection (on average, He=0.101 compared to He=
0.014 after 60 years). This was done to mimic in a sim-
ple way the outcome of the activity of several companies
conducting separate programs and therefore maintaining
a global diversity. The external program can also be
viewed as a pre-breeding program since it aimed at im-
proving diversity sources to reduce the performance gap
with elites while maintaining genomewide diversity
(Fig. 1). The situation where the commercial breeding
program can access donors released 20 years ago mim-
icked the situation of private lines with expired plant
protection act in maize [44] or old public lines. The situ-
ation where the commercial breeding program can ac-
cess donors released 5 years ago mimicked either donors
released by pre-breeding programs (e.g. in maize the
SeeD project, [26]) or donors released by programs
working a different genetic basis and targeting different
environments (e.g. commercial varieties in inbred species
such as wheat that are accessible for breeding under the
UPOV convention, [19]).
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The selection intensity was lower in the external
breeding than in the commercial breeding programs
(10% vs 5% of progeny selected, respectively). This was
done to compensate the increased response to selection
due to the higher genetic diversity and ensure that the
donors released by the external program underperform
the commercial breeding elites. It should be noted that
donors outperforming elites might be encountered in
practice when considering elite germplasm as source of
diversity, but this situation was not considered in this
study. In such a situation the direct introduction of do-
nors would be clearly preferable.

Our results highlighted a clear beneficial effect of
introducing external diversity in the elite program. This
benefit increased with increasing performance level of
the introduced material from unimproved genetic re-
sources collections (panel donors) to recently improved
diversity sources (5-year old donors). This highlights
that protection policies that permit a mildly delayed ac-
cess to improved competitor varieties as diversity
sources have a positive impact on long term genetic
gain. This also shows that recurrent improvement of di-
verse and low performing genetic resources such as
landraces, ie. pre-breeding, may be beneficial before
introduction in the elite germplasm. More importantly,
we show that the approach for introduction should be
tuned given the type of external diversity that can be
accessed (see next section).

Advantages of bridging relative to direct introductions in
the elite pool

When considering recent donors (5-year old), scenarios
with introductions after bridging or direct introductions
performed similarly. Conversely, for panel and 20-year
old donors, introductions after bridging yielded signifi-
cantly higher mid- and long-term performance com-
pared to direct introductions.

For panel donors showing a large performance gap
with elites, the direct introductions were not converted
into genetic gain. The high inter-family additive variance
in this scenario (Figure S1 A) reflected the structuration
of the breeding population into badly performing intro-
duction families and performing elite families with only
limited gene flow between them. Such behavior might
be corrected by adding a constraint to force the recyc-
ling of introduction progeny in Eq. 1 (see Methods
section) when donors are too badly performing, which
requires further investigations. Waiting for these devel-
opments, bridging seems a suitable option to take advan-
tage of donors that show a large performance gap with
elites.

For donors with an intermediate gap level, both direct
introductions and bridging brought a higher long-term
genetic gain compared to the benchmark. This
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advantage was higher with bridging. More importantly,
bridging reduced to a large extent the short term penalty
in genetic gain which was observed for direct introduc-
tions. So here again bridging appears as a suitable option
to maximize efficiency at different time horizons.

These results can be explained by the fact that, when
donors (D) were less performing than elites, the fraction
of progeny selected in donor by elite bridging families
(DE progeny) carried on expectation less than half of do-
nor’s genome [4]. Thus, progeny of introduction crosses
after bridging (DEXE) carried on expectation less than
one fourth of the donor (D) genome. This selected D
fraction carried an enrichment in favorable alleles but
also still unfavorable alleles brought by linkage drag,
which number depends on the donor considered. Intro-
ductions penalized slightly the mean breeding popula-
tion performance in the first generations (Fig. 2a-b).
Next generations of recombination and selection
partially broke the linkage between favorable and un-
favorable alleles in introduced regions, resulting in a
higher genetic gain than in the benchmark (Fig. 2a-b)
and an increase of the frequency of novel favorable al-
leles (Fig. 2c). The more performing the donor, the less
unfavorable alleles linked to favorable alleles and the
more rapidly novel favorable alleles were introduced and
spread in the breeding population (Fig. 2c). In absence
of bridging, the introduction progeny (DxE) carried on
expectation one half of the donor genome. Conse-
quently, the penalty due to introductions was more im-
portant and the conversion of additional diversity into
genetic gain required more recombination events, i.e. re-
cycling generations (Fig. 2a-b). In a practical breeding
context, in absence of explicit bridging, the crosses DEXE
will be delayed in time compared to scenario with bridg-
ing. Incorporation of diversity contributed by donors re-
quires, in this case, that DE progeny of previous
generations are given the opportunity to contribute to
next generations despite their lower performances.

Practical implementation in breeding programs

We considered a commercial breeding program with a
genetic diversity matching that of an experimental pro-
gram reported by Allier et al. [3]. Breeding programs on-
going for different species and breeders may present a
diversity superior or inferior to the one that was simu-
lated, which would make the importance of introduc-
tions lower or stronger than in the simulated scenarios,
respectively. UCPC based OCS for genetic base broaden-
ing requires to genotype the candidate parents, including
breeding material and potential donors, a genetic map
and reliable marker effect estimates. This information is
available in breeding programs that have already imple-
mented genomic selection. In this study, we assumed
fully homozygous inbred lines but considering
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heterozygote parents in UCPC based OCS is straightfor-
ward following the extension of UCPC to four-way
crosses [4]. So similar approach could be tested for per-
ennial plants or animal breeding schemes.

In scenarios with bridging, we considered by default
two distinct bridging and breeding GS models. The pre-
diction of elite (ExE) and introduction (DEXE) crosses
usefulness and the prediction within crosses were based
on a model trained on the breeding progeny of the three
corresponding previous generations. Considering a
unique genomic selection model trained on both bridg-
ing and breeding progeny increased the prediction ac-
curacy within introduction families (DExE) (Table 1).
This higher selection accuracy favored the spreading of
the introduced favorable alleles in the breeding popula-
tion and resulted in an increased mid- and long-term
performance (Fig. 4). Furthermore, compared to use two
distinct TS, a single TS led to introduce more bridging
progeny (DE) for scenarios considering good performing
donors (5-year old) and less for scenarios considering
bad performing donors (20-year old) (Figure S2 A). Also,
as we likely selected more accurately the introduction
crosses (DEXE) with a single TS, there was an increase
in the proportion of those that contributed to the 10
best lines, especially for 20-year old and panel donors
(Figure S2 B).

It is well known that the prediction accuracy is in-
creased for larger TS [32]. At constant TS size, increas-
ing the proportion of bridging progeny (DE) up to one
third in the TS significantly increased the family variance
prediction accuracy (cor(o,6)) and within family predic-
tion accuracy (cor(u, it)) in introduction families (DEXE).
Conversely, these higher proportions of bridging pro-
geny (DE) in the TS significantly decreased cor(o,d) and
cor(u, ) in elite families (ExE). The optimal balance be-
tween introduction and elite family prediction accuracies
is likely data dependent as observed when considering
genotypes and phenotypes simulated in different genera-
tions (Figure S3). For instance, considering later genera-
tions, a large proportion of DE in the TS penalized less
the within elite prediction accuracy (Figure S3 C).
The reason being that later breeding generations get
closer to the external program germplasm (Fig. 3).
The optimal balance between bridging and breeding
progeny in the training set might be defined using an
optimization criterion such as the CDmean [52] ex-
tended to account for linkage disequilibrium as sug-
gested by Mangin et al. [38].

We proposed to implement bridging at constant cost
by splitting the breeding population into a small bridg-
ing population and a large breeding population. This in-
volves practical changes in the breeding organization
that remain to be studied. We considered equal family
sizes and within family selection intensities for bridging
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and breeding families. However, in practice different
within family selection intensities can be considered in
UCPC based OCS (Additional file 2) and one may want
to modulate the selection intensity among families, e.g.
select less intensively in bridging and more intensively in
breeding families. We could consider the selection inten-
sities as fixed parameters regarding breeding objectives
or as variable parameters to be optimized. The effect
and the optimization of within family intensities in
bridging and breeding requires further investigations.
We considered a selection accuracy h=1 for cross
selection, for sake of facility. However, we observed that
within family prediction accuracies were variable (Table
1, Fig. 5). Note that a priori within family accuracy can
be accounted for in UCPC based OCS (Additional file
2). For instance it would give less importance to pre-
dicted variance for crosses with a priori low within fam-
ily accuracy. The consequences on short- and long-term
UCPC based OCS efficiency need to be investigated. In
bridging, we gave more importance to performance than
to diversity (a=0.7) when selecting bridging crosses in
order to reduce the performance gap between donors
derived material and elites. When giving less weight to
the performance than to the diversity, i.e. a = 0.3, we ob-
served non-significant changes on the short- or long-
term performance for scenarios with 5-year and 20-year
old donors and a significant increase of long-term per-
formance and novel favorable allele frequency for the
scenario with panel donors (Figure S4 A-C). This sug-
gested that for unimproved donors, selecting too
strongly for performance in bridging favors the first elite
recipient genome contribution and limits the introduc-
tion of novel favorable alleles. Further investigations are
required to better define this parameter for practical
implementation.

Outlooks
We considered an inbred line breeding program corre-
sponding to selecting lines on per se values for line var-
iety development or on testcross values with fixed tester
lines from the opposite heterotic pool for hybrid breed-
ing. In this case, the use of testcross effects estimated on
hybrids between candidate lines and tester lines is
straightforward. The extension to hybrid reciprocal
breeding is of interest for genetic broadening in several
species such as maize and hybrid wheat [37]. In this con-
text it is possible to account for the complementarity be-
tween heterotic groups in UCPC based OCS to
complementarily enrich and improve both pools. This
would require to include dominance effects in UCPC
based OCS.

We assumed that diversity sources and elite germ-
plasm were derived from the same panel of founders
and shared similar QTL effects. In order to address the
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question of how to best introduce more exotic genetic
material that might not be adapted to local conditions, it
would be necessary to take into account potential differ-
ences in QTL effects and linkage between QTLs and
markers.

We considered a single trait selected in both the exter-
nal and the commercial breeding programs in the same
population of environments for a total of 8 years. These
assumptions should be relaxed in further simulations.
Firstly, it is well recognized that genetic resources suffer
agronomic flaws (e.g. lodging, [37, 67]) or miss adapta-
tion (e.g. flowering time) that should be accounted for
during pre-breeding and introduction in breeding. Also,
in addition to new grain yield favorable alleles, diversity
sources can provide elite germplasm with increased
stress tolerance and improved nutritional and processing
quality (e.g. in wheat, [57]). In species where major
genes are routinely followed in breeding (e.g. baking
quality in wheat, [9, 43]), they should also be considered
during pre-breeding and introduction in elite germ-
plasm. In such a multi-trait context, the multi-objective
optimization framework proposed in Akdemir et al. [2]
can be adapted to UCPC based OCS. This would require
further investigations but we assume the observed ten-
dencies between simulated scenarios should remain. Sec-
ondly, in practice several public pre-breeding programs
or competitor programs can be considered as sources of
candidate donors for genetic base broadening. These
programs likely did not select for the same target envi-
ronments and are themselves continuously enriched in
new allelic variation. Thirdly, in a context of climate
change and rapid evolving agricultural practices, breed-
ing targets are expected to change (e.g. emerging biotic
or abiotic stresses). Considering a more realistic context,
where donors are released by different programs select-
ing in different environments and for different traits
changing over time, likely makes the interest of main-
taining genomewide genetic diversity through genetic
base broadening even more important than highlighted
in this study.

Conclusions

This study highlights a clear beneficial effect of harnes-
sing polygenic variation present in diversity sources to
broaden the elite genetic pool, while still achieving sig-
nificant genetic gain. This interest is all the more im-
portant as the level of introduced material is high, which
highlights the importance of pre-breeding and the effect
of plant protection policies. We show that the strategy
for introduction should be tuned given the type of exter-
nal diversity that can be accessed. This study provides a
guideline for reaching an optimized genetic base broad-
ening strategy.
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Methods

Simulated breeding programs

Material and simulations

We considered 338 Dent maize genotypes from the
Amaizing project [6, 53] as founders of genetic pools.
This diversity was structured into three main groups: 82
Iowa Stiff Stalk Synthetics, 57 lodents and 199 other
dents. We sampled 1000 biallelic quantitative trait loci
(QTLs) with a minimal distance between two consecu-
tive QTLs of 0.2 cM among the 40,478 single nucleotide
polymorphisms (SNPs) from the Illumina MaizeSNP50
BeadChip [22]. Each QTL was assigned an additive effect
sampled from a Gaussian distribution with a mean of
zero and a variance of 0.05 and the favorable allele was
attributed at random to one of the two SNP alleles. We
sampled 2000 SNPs as non-causal markers, further used
as genotyping information. The consensus genetic
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positions of sampled QTLs and SNPs were considered
according to Giraud et al. [23].

Simulation parameters were first applied to the 338
founders, to define a fixed collection of genetic resources
that can be accessed to retrieve genetic diversity. This
simulates the status of genetic resources collections
which are not enriched by regular inputs from breeding
programs. Then, we simulated two different breeding
programs: an external breeding program (Fig. 7a) that
released every year varieties that were later considered
as potential donors for introduction in a commercial
breeding program (Fig. 7c-d). Both external and com-
mercial programs used doubled haploid (DH) technology
to derive progeny. We assumed a period of 3 years to
derive, genotype and phenotype DH progeny. Every year
T, progeny of the three last generations 7- 3, T-4 and
T-5 were considered as potential parents of the next
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generation. It created overlapping and connected genera-
tions as it can be encountered in breeding. We first con-
sidered a burn-in period of 20 years with recurrent
phenotypic selection from a population of founders.
Burn-in created extensive linkage disequilibrium as often
observed in elite breeding programs [69]. Every progeny
was phenotyped and phenotypes were simulated consid-
ering the genotypes at QTLs, an error variance corre-
sponding to a trait repeatability of 0.4 in the founder
population, and no genotype by environment interac-
tions (Additional file 1). Every individual was evaluated
in four environments in one year. After 20 years of
burn-in, we simulated different breeding programs using
GS. Every year, progeny phenotypes and genotypes of
the three last available generations were used to fit a G-
BLUP model (Additional file 1). Progeny were selected
based on GEBVs and marker effects were obtained by
back-solving the G-BLUP model [71] and further used
for optimal cross selection to generate the next gener-
ation (see Additional file 2).

External breeding program: improvement of diversity
sources

The external breeding program (Fig. 7a) was simulated
starting from a broad population of 40 founders sampled
among the 338 maize genotypes. During the three first
years, the founders were randomly crossed with replace-
ment to generate each year 20 biparental families of 40
DH progeny to initiate the three overlapping genera-
tions. The genetic material in the external breeding is re-
ferred to as improved donors (D). During 17 years, we
first selected among the three last generations the 10%
D progeny per family (i.e. 4 DH lines/family x 20 fam-
ilies x 3 years) with the largest phenotypic mean. We fur-
ther randomly mated with replacement the 50 DH with
the largest phenotypic mean to generate 20 biparental
families of 40 DH lines. After 20 years of burn-in, we
considered GS trained on the D progeny of the three last
generations (i.e. 2400 D progeny, Fig. 7a). Among these
three last generations, we considered per family the 10%
D progeny with the largest GEBVs as potential parents
of the next generation, i.e. Np =4 DH lines/family x 20
families x 3 years = 240 potential parents. The 20 two-
way crosses among the Np(Np-1)/2 =28680 candidate
crosses were selected using optimal cross selection (see
optimal cross selection section).

Commercial breeding programs

The commercial breeding program (Fig. 7b-d) started
from a population of 10 founders sampled among the 57
Iodent genotypes. During the first 3 years, the founders
were randomly crossed with replacement to generate
each year 10 biparental families of 80 DH progeny to ini-
tiate the three overlapping generations. The elite genetic

Page 12 of 16

material in the internal breeding is referred to as elite
progeny (E). During 17 years, we considered as potential
parents of the next generation the 50 E progeny with the
largest phenotypic mean from the three last generations,
i.e. without applying a preliminary within family selec-
tion. These were randomly mated to generate 20 bipa-
rental families of 80 DH lines. After 20 years of burn-in,
we considered GS and differentiated three different sce-
narios: the benchmark that is the commercial breeding
program without introductions (Fig. 7b), the commercial
breeding program with direct introductions without
bridging (Fig. 7c) or the commercial breeding program
with introductions after bridging (Fig. 7d).

In absence of introductions (benchmark), the E pro-
geny were selected based on the elite GS model trained
on E progeny of the three last generations (i.e. 4800 E
progeny, Fig. 7b). The 5% E progeny with the largest
GEBVs within each family (i.e. 4 DH) in the three last
breeding generations were considered as potential par-
ents. The 20 two-way crosses among the 28680 candi-
date ExE elite crosses were defined using optimal cross
selection (see next section).

For scenarios with introductions, we considered differ-
ent sub-scenarios for the genetic base broadening
scheme (i) including (Bridging) or not bridging (Nobrid-
ging) and (ii) different types of potential donors, to cover
different possibilities in both hybrid and inbred species.
We considered as potential donors either the 338 geno-
types from the Amaizing project or the D progeny with
the largest GEBVs per family released by the external
breeding program (i.e. 1 DH/family/year, 20 potential
donors released every year). The scenario using the 338
genotypes from the Amaizing panel for genetic base
broadening was identified with the suffix Panel. For the
donors released by the external breeding program, we
considered two time constraints for the access to diver-
sity. To mimic a situation close to that of the US maize
ex-PVPA system [44], we considered donors released 20
to 24 years before the current year (i.e. 5years x 20 DH =
100 potential D) in scenarios with the suffix 20y. To
simulate a faster access to external diversity, as it would
be the case in line breeding under UPOV convention
[19], we considered the donors released by the external
breeding 5 to 9 years before the current year (i.e. 100 po-
tential D) in scenarios with the suffix 5y.

For scenarios without bridging (Fig. 7c), the E candi-
date parents were selected every year among the 5% E
progeny showing the largest GEBVs per family in the
three last breeding generations resulting in Ng =4 DH x
20 families x 3 years = 240 potential E parents. The E
progeny were selected based on the elite GS model
trained on E progeny of the three last generations (ie.
4800 E progeny, Fig. 7c). The 20 breeding crosses among
the 28680 candidate EXE elite crosses and the candidate
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DxE introduction crosses were selected using optimal
cross selection and the elite GS model (see next section).
Note that there was no constraint on the proportion of
EXE elite or DxE introduction crosses.

For scenarios with bridging (Fig. 7d), the population was
split into a bridging population of 5 families of 80 DH (i.e.
400 DE progeny) and a breeding population of 15 families
of 80 DH (i.e. 1200 E progeny). Every year, the 15 breeding
crosses were selected among all possible ExE elite and
DEXE introduction crosses. The E candidate parents for
breeding were selected among the 5% E progeny per family
showing the largest GEBVs from the three last breeding
generations, resulting in Ng =4 DH/family x 15 family x 3
year = 180 potential E parents. The E progeny were selected
based on the elite GS model trained on all E progeny of the
three last generations (i.e. 3600 E progeny, Fig. 7d). The DE
candidate parents for introduction in the breeding popula-
tion were similarly selected among the three last bridging
generations, resulting in Npg =4 DH/family x 5 families x
3 years = 60 potential DE parents. The DE progeny were se-
lected based on the bridging GS model trained on all DE
progeny of the three last generations (i.e. 1200 DE progeny,
Fig. 7d). Among the Ng(Ng -1)/2 = 16110 EXE possible elite
crosses and the NpgNg = 10800 DEXE possible introduction
crosses, 15 breeding crosses were selected using optimal
cross selection with the elite GS model (see next section).
Note that there was no constraint on the proportion of ExE
elite or DEXE introduction crosses. The 5 DxE bridging
crosses were selected with the bridging GS model among
the possible crosses between the available D and the E can-
didate parents conditionally to the 15 selected breeding
crosses (see next section).

Optimal cross selection

The optimal cross selection selects the set of crosses (nc)
that maximizes the expected genetic value in the progeny
(V) under a constraint on the genomewide genetic diver-
sity in the progeny (D) [1, 2, 27, 35, 36]. As proposed in
Allier et al. [5], the effect of within family selection with
intensity (/) and accuracy (k) on V@M and DM can be
accounted for in optimal cross selection by using UCPC
based OCS (Additional file 2). Similarly as in Allier et al.
[5], we considered /1 =1 for sake of simplicity.

For breeding crosses, the optimal set of |mc| = 20
crosses (in scenarios without bridging, Fig. 7a-c) or | nc|
= 15 crosses (in scenarios with bridging, Fig. 7d) was se-
lected to solve the multi-objective optimization problem:

max V% (nc)
nc

with DY (nc) > He(t), (1)

where He(t),Vte[0,t7] is the minimal genomewide di-
versity constraint at time £ The evolution of diversity
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along time was controlled by the targeted diversity tra-
jectory, i.e. He(t),Vte[0,£] where £ '€ N' is the time
horizon when the diversity He(t") = He" should be
reached. For the external and the commercial bench-
mark without introduction breeding programs, we con-
sidered He = 0.10 and He” = 0.01 reached after 60 years,
respectively. As in Allier et al. [5], the constraint on D
followed a linear trajectory over time:

t
He® + - (He*-He"),Vte[0, t*]

He(t) = ’ (2)

He* vVt > t*

where He® is the initial diversity at £ =0, i.e. at the end of
burn-in.

For the commercial breeding program with introduc-
tions, we maintained the genomewide diversity constant
after the end of burn-in, ie. He(f) = He’,Vte]0,£].
Thus, the UCPC based OCS selected introduction
crosses (i.e. DxE if no bridging and DEXE if bridging)
when necessary to maximize the performance while
keeping genomewide diversity constant (Eq. 1). In case
of bridging, we completed the 15 selected breeding
crosses with 5 bridging crosses (DxE, Fig. 7d) that maxi-
mized the following function on the full set of |nc| =20
crosses:

max a VW (nc) + (1-a) DYV* (nc), (3)

Hnc

V9 (ne)-v (ncy,) (i)«
Vincy )~V ) D (ne)

with ncj, and ncj}, the lists of crosses

where VW (nc) = and
_ DY(nc)-D' (nc},)
" D (nc)-D (nc,)
that maximize the performance (V) and the diversity
(D), respectively, considering a within family selection
intensity of i. a € [0, 1] is the relative weight given to per-
formance compared to diversity. A differential evolution
(DE) algorithm was used to find Pareto-optimal solu-

tions of Eq. 1 and Eq. 3 [35, 36, 64].

Advantages of pre-breeding and bridging

We compared different commercial breeding programs
at a constant cost (i.e. total of 1600 DH/year) with recur-
rent introductions (i) either direct or with a bridging
step and (ii) considering three types of potential donors,
resulting in the six genetic base broadening scenarios:
Bridging Panel, Nobridging Panel, Bridging 20y, Nobrid-
ging 20y, Bridging S5y, Nobridging 5y. We ran 10 inde-
pendent simulation replicates of the external program
that generated donors, the commercial benchmark pro-
gram without introductions, and the six genetic base
broadening scenarios. Note that at a given simulation
replicate the commercial breeding program accessed the
potential donors released by the corresponding external
breeding program simulation replicate.
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We followed several indicators in the breeding families
(i.e. E progeny, Fig. 7). At each generation T € [0, 60]
with 7= 0 corresponding to the last burn-in generation,
we computed the mean true breeding value (TBV) of E
progeny u(T) = mean(TBV(T)) and of the 10 most per-
forming E progeny u,,(T) = mean( rrllgtx(TBV(T))) as a

proxy of the performance that could be achieved at the
commercial level by releasing these lines as varieties. We
also measured the frequency of the favorable allele in
the E progeny p{(T) at each QTL j among the 1000
QTLs. We further focused on the QTLs where the favor-
able allele was rare at the end of burn-in, i.e. p;(0) <0.05.
The results were averaged and standard errors were
computed over 10 independent replicates.

Effect of a joint genomic selection model for bridging
and breeding
For the three scenarios with bridging, we investigated
the advantage of a single TS grouping 3600 DE and
1200 E progeny to predict both breeding and bridging
families. These three additional scenarios were referred
to as Bridging Panel (Single TS), Bridging 20y (Single
TS) and Bridging 5y (Single TS). Every generation, we
defined the prediction accuracies as the correlation be-
tween true breeding values and GEBVs (cor(u, i)) within
breeding elite families (ExE), breeding introduction fam-
ilies (DEXE) and bridging families (DxE). The prediction
accuracies were averaged over the 10 replicates and fur-
ther averaged over the 60 generations. Note that consid-
ering a single GS model at constant cost yielded not
only a broader but also a larger training set (4800 DH
progeny instead of 3600 DH progeny for elite GS or
1200 DH progeny for bridging GS, Fig. 7).

We further investigated the effect of the proportion of
DE and E progeny in the TS at constant size on within

Table 2 Description of the compared training sets

TS name Number of E Number of DE
Full TS Pure E (3,600) 3600 0
Pure DE (1200) 0 1200
1/4 - DE (4800) 3600 1200
Constant size (1200) Pure E (1,200) 1200 0
1/4 - DE (1200) 900 300
Constant size (3600) 1/3 - DE (3600) 2400 1200
1/4 - DE (3600) 2700 900
1/6 - DE (3600) 3000 600
1/12 — DE (3600) 3300 300
1/24 - DE (3600) 3450 150
1/36 - DE (3600) 3500 100

The full training sets considering all available progeny of the last three
generations and training sets at constant size (1200 progeny or 3600 progeny)
with variable proportion of DE progeny
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ExE and DEXE family selection accuracy. We considered
the 1200 DE and 3600 E progeny genotypes and pheno-
types simulated at generations 18, 19, 20 in the first rep-
licate of scenario Bridging 20y. We further selected the
5% DH per family with the highest GEBVs obtained
using a GS model trained on all 4800 progeny genotypes
and phenotypes. These were randomly crossed to gener-
ate 50 elite (ExE) and 50 introduction (DExXE) families of
80 DH progeny. These families were considered as the
validation set (VS). We randomly sampled among the
4800 DH progeny different TS of variable sizes and com-
positions (Table 2) and we evaluated the within elite
(ExE) and introduction (DExE) family prediction accur-
acy (cor(u,it)). We also evaluated the within family vari-
ance prediction accuracy as the correlation between the
variance of true breeding values and the estimated vari-
ance (cor(o,0)). We reported results for 20 independent
samples.
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