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Abstract

Background: Despite the increasing use of RNAseq for transcriptome analysis, microarrays remain a widely-used
methodology for genomic studies. The latest generation of Affymetrix/Thermo-Fisher microarrays, the ClariomD/XTA
and ClariomS array, provide a sensitive and facile method for complex transcriptome expression analysis. However,
existing methods of analysis for these high-density arrays do not leverage the statistical power contained in having
multiple oligonucleotides representing each gene/exon, but rather summarize probes into a single expression
value. We previously developed a methodology, the Sscore algorithm, for probe-level identification of differentially
expressed genes (DEGs) between treatment and control samples with oligonucleotide microarrays. The Sscore
algorithm was validated for sensitive detection of DEGs by comparison with existing methods. However, the prior
version of the Sscore algorithm and a R-based implementation software, sscore, do not function with the latest
generations of Affymetrix/Fisher microarrays due to changes in microarray design that eliminated probes previously
used for estimation of non-specific binding.

Results: Here we describe the GCSscore algorithm, which utilizes the GC-content of a given oligonucleotide probe
to estimate non-specific binding using antigenomic background probes found on new generations of arrays. We
implemented this algorithm in an improved GCSscore R package for analysis of modern oligonucleotide microarrays.
GCSscore has multiple methods for grouping individual probes on the ClariomD/XTA chips, providing the user with
differential expression analysis at the gene-level and the exon-level. By utilizing the direct probe-level intensities, the
GCSscore algorithm was able to detect DEGs under stringent statistical criteria for all Clariom-based arrays. We
demonstrate that for older 3-IVT arrays, GCSscore produced very similar differential gene expression analysis results
compared to the original Sscore method. However, GCSscore functioned well for both the ClariomS and ClariomD/
XTA newer microarrays and outperformed existing analysis approaches insofar as the number of DEGs and cognate
biological functions identified. This was particularly striking for analysis of the highly complex ClariomD/XTA based
arrays.
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(Continued from previous page)

Conclusions: The GCSscore package represents a powerful new application for analysis of the newest generation of
oligonucleotide microarrays such as the ClariomS and ClariomD/XTA arrays produced by Affymetrix/Fisher.

Keywords: Oligonucleotide microarray, Transcriptomics, Differential expression, Software

Background

Despite the advent of RNAseq for transcriptomics ana-
lysis, microarrays continue to be widely used with an aver-
age of over 7000 PubMed listings per year in 2015-2019
for this technology. A major commercial platform for
microarray analysis, produced originally by Affymetrix
and now by Thermo-Fisher, utilizes collections of
oligonucleotides distributed across cognate genes to probe
RNA expression by hybridization. Popular analysis
methods for oligonucleotide arrays, such as the Robust
Multiarray Analysis (RMA) method, produce expression
values for given genes/transcripts/exons by summarizing
hybridization intensities across all corresponding oligonu-
cleotides [1]. Since expression “differences” rather than
absolute expression levels are generally the goal in
microarray studies, our laboratory previously developed
the Sscore algorithm for analysis of Affymetrix oligo-
nucleotide microarrays for detecting significant expression
changes between paired samples [2]. This entailed
comparing individual oligonucleotide probes within each
probeset between two samples, after applying a heterosce-
dastic error correction model. The Sscore method pro-
vided an easily interpretable standard normal distribution
of expression differences between two samples for a given
probeset, akin to a z-score transformation. Prior work
demonstrated the advantage of the Sscore method over
probe summarization techniques such as RMA for Affy-
metrix microarray analysis, particularly for experiments
having smaller numbers of replicates [2, 3]. This advan-
tage prompted development of a Bioconductor R package,
sscore, for application of the original Sscore method on
Affymetrix microarrays [4]. This algorithm has been uti-
lized in publications across multiple laboratories for stud-
ies based on 3" IVT array technology [5-12].

The original Sscore relies on the difference between
perfect match (PM) and cognate mismatch (MM) probes
to correct for non-specific hybridization while
calculating a measure of expression difference between
two samples. MM probes were designed to capture array
background noise (rawQ) and non-specific binding
(NSB) of off-target transcripts. However, MM probes
were subsequently shown to be an inconsistent measure
of non-specific binding [13]. While the RMA method ex-
cluded MM probe data from the expression calculation
and has come to be widely used, use of RMA
summarization/normalization followed by appropriate
statistical testing differential gene expression does not

utilize probe-level information as with the S-score
values.

Since NSB signal is strongly correlated with GC-
content of the probe sequence, newer Affymetrix array
technology eliminated the MM probes and instead uti-
lized 16,943 antigenomic probes of varying GC-content
on 25-mer oligonucleotide targets ranging from 3 (12%
GC) to 25 (100% GC) to estimate non-specific binding
[14]. This new technology, referred to as Whole
Transcriptome (WT) arrays, allows probes to be grouped
either in Transcript Cluster IDs (TCids) for a gene-level
analysis or into Probe Selection Region IDs (PSRids) for
an exon-level analysis. Subsequent arrays designs pro-
vide more detailed measures of exon expression and
transcript splicing variants, via exon-exon Junction IDS
(JUCids), that are on par with RNA-seq [15]. These
Transcriptome Assay chip types were released for hu-
man (HTA1.0/2.0), rat (RTA1.0), and mouse (MTA1.0).
This fully featured design was further developed into the
ClariomD chip type, available for human and mouse. An
additional gene-level only chip type, the ClariomS, was
created using only the ten best performing probes from
each TCid present on the ClariomD/Transcriptome
Assay (HTA/RTA/MTA) designs, which will be referred
to as ClariomD/XTA arrays. Unfortunately, no genera-
tions of the WT-style arrays are compatible with the ori-
ginal Sscore algorithm and existing sscore R package for
probe-level analysis due to lack of MM probes on the
new array designs. We have therefore developed an R
package, GCSscore, with a new algorithm that enables
the Sscore probe-level analysis method for the newest
generation of Affymetrix/Thermo-Fisher Clariom-style
microarrays. We have also utilized updated data hand-
ling methods that improve the speed of the analysis con-
siderably. We show here that GCSscore performed
similarly to the originally published sscore R package for
older type microarrays (3" IVT) and added functionality
for analysis of the newest Affymetrix/Fisher microarray
types. Furthermore, our results suggest that use of the
GCSscore package provides substantial benefit compared
to existing methods in detection of differential gene ex-
pression (DEG) on these newer generation microarrays.

Implementation

Algorithm

The most fundamental change from the original algo-
rithm is the introduction of background correction
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based on the median signal of antigenomic probes hav-
ing the same GC-content as the given PM probe, rather
than relying on the cognate MM probe hybridization
signal. The GCSscore algorithm is based upon the oper-
ations in eqs. (1) through (3). For a given probe grouping
method (as defined below), k, which is made up of N
probes, the GCS-score, denoted as GCSsy, is as follows:

N
lip—lia
GCSsi = (1)
; 81\/ﬁ
& =\/y?(By - &) + SDT + SDT} 2)
SDT = 4xrawQxSF (3)

In the algorithm equations, /;4 and /;, represent the
background corrected intensities of the i-th probe pair
from array A and B, respectively. As defined in the Affy-
metrix MicroArray Suite (MAS) documentation, the sig-
nificant difference threshold (SDT) is determined by the
noise floor of each array and the chosen scaling factor.
The noise floor (rawQ) is calculated from the standard
deviation of the bottom 2% of the probe intensities
across the array. The scaling factor (SF) for each array is
a multiplier that scales the median intensities to a target
value (default is 500). The gamma factor is set to 0.1 to
prevent calculated GCS-score values from being affected
by gene expression levels [2].

The GCSscore package imports functions from the
following CRAN/BioConductor packages: BiocManager,
Biobase, utils, methods, RSQLite, devtools, dpIR, stringr,
graphics, stats, affxparser, and data.table. If it is desir-
able to pull datasets for GEO or perform the down-
stream analysis presented in this publication, the
following additional packages are necessary: siggenes,
GEOquery, and R.utils. All probe-level data and annota-
tions utilized by the GCSscore package are parsed and
sourced directly from the following chip specific Bio-
Conductor packages: platform design (.pd) and Annota-
tionDbi (.db). The resulting probe-level data file is
packaged into a ‘probefile’ package, while the annota-
tions are packaged into an additional ‘annot’ package.
These packages are created on the fly and installed in
the user’s library by utilizing customized versions of the
makeProbePackage function and package templates
sourced from the AnnotationForge package [16].

While the theory of the GCSscore method can be
applied to any modern Affymetrix/Thermo-Fisher chip
type, the R package was written for use with Clariom-
style array, which include: ClariomS, ClariomD, and
XTA assay chip types. This package fully supports all
Clariom-style arrays and has support for two of the most
widely used 3" IVT arrays: Mouse Genome 430 2.0 and
Human Genome UG133 2.0. For older types of
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Affymetrix arrays, the original sscore package must be
used. The GCSscore algorithm allows the user to calcu-
late GCS-score values for ClariomD/XTA arrays using
two probe grouping methods: (1) utilizes TCids group-
ings for gene-level, (2) utilizes PSRids and JUCids for
exon & alternate splicing-level. Since the ClariomS
arrays only contain TCids, there is only a gene-level ana-
lysis method. Additionally, for supported 3" IVT chips,
the method refers to two background subtraction
options: (1) utilizes the new GC-bkg method (2) utilizes
the original PM-MM method.

The GCSscore package allows for direct probe-level
comparisons of two Affymetrix microarrays at a time.
The user can either input two. CEL files directly into the
function, or read in a formatted batch file that is setup to
run pair-wise comparisons of multiple. CEL files in a sin-
gle function call (Additional File 1: Table S1). For more in-
formation regarding the implementation, please refer to
the workflow diagram (Additional File 1: Figure S1). In
brief:. CEL files are scaled to have equivalent trimmed
median intensities for the desired probe grouping method.
The GCS-scores are calculated and normalized using the
middle 98% of the raw scores. Finally, normalized results
are combined with the annotation information parsed
from the Bioconductor repository and are returned to the
user’s environment using the Biobase data structure,
ExpressionSet. The user can also choose to save the GCS-
score results to disk, as a. CSV file.

Statistical properties and analysis of GCS-scores

One principal advantage of the GCSscore based method
is the simple Gaussian-like statistics of the resulting out-
put (Additional File 1: Figure S2). If no extreme differen-
tial expression exists between two. CEL files then the
GCSscore output will have a mean of 0 and a SD of 1
[2]. Since, each run is essentially z-scored and normal-
ized prior to output, each GCS-score becomes a repre-
sentation of the standard deviation from the mean of a
Gaussian-like distribution. Thus, the absolute values of
GCS-scores greater than 1.8-2.0 are likely to be statisti-
cally significant and this can be determined by using
statistical testing of biological replicates with correction
for multiple testing, as done with the SAM method
below.

Workflow for generating differential expression for
downstream analysis

In our standard implementation, all treatment samples
were run against all control samples in a pairwise fashion.
For example, if there are 3 replicates for the treatment
and 3 replicates for the control group, there will be 9 total
pairwise comparisons (Additional File 1: Table S1). The
GCS-scores were averaged for each treatment sample
against all 3 control samples, producing 3 averaged GCS-
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score values, one for each of the treatment samples. This
was done to reduce noise with small sample sizes and to
prevent over inflation of sample numbers that would
occur from taking all of the pairwise comparisons into
account [17]. Alternatively, random pairings of treatment/
control samples can be used for generation of GCS-scores
[5]. Multiple-testing correction of the GCS-score differen-
tial expression analysis can then be applied. For the statis-
tical analyses presented in this publication, the averages of
each treatment replicate against all of the control samples
were used as the input into a 1-class Significance Analysis
of Microarrays (SAM) analysis for multiple testing correc-
tion in identifying genes with GCS-score values statisti-
cally different from 0, as demonstrated in prior
publications with the original Sscore algorithm [5, 9, 17].
The SAM algorithm used here was provided by the sig-
genes package from Bioconductor. More complex experi-
mental designs implement multiple group testing in SAM
or other appropriate statistical methods, such as LIMMA
[18]. The average of these treatment replicate averages,
denoted as AvgSs, was used as an additional stringent fil-
ter to decrease contributions from genes with exceedingly
small fold-changes, as reported previously [5, 9, 17]. To
determine significantly regulated gene lists, the following
criteria were thus used: genes from the SAM output
within a determined FDR cutoff (e.g. 0.0125-0.1) and
genes who also have |AvgSs| > 1.8. In the Clariom-based
array cases explored in parts B and C of the Results sec-
tion, downstream analysis of the gene lists was performed
using ToppFun suite for Gene Ontology/Functional
enrichment analysis and Ingenuity Pathway Analysis (IPA)
to find significantly altered signaling pathways. For the
ToppFun analysis, only the gene symbols from the gener-
ated gene lists were input directly into the suite. For the
IPA analysis, the TCids, AvgSs, and rawp values from the
SAM output were used as the input.

Results

Comparison with original algorithm

Since the original Sscore algorithm has been validated
and utilized in previous publications, we initially com-
pared the GCSscore algorithm against the original
Sscore method. In this example, previously published
Mouse Genome 430 2.0 array data (GSE28515) from the
prefrontal cortex of DBA2/] mice is used [9]. We utilized
3 biological replicates exposed to acute i.p. ethanol (1.8
g/kg x4h; treatment) and 3 biological replicates that
received i.p. saline (control). The GCSscore package and
algorithm was written to be much more efficient and
contain several new functionalities compared with the
original sscore. To confirm that the new algorithm per-
formed as expected, we analyzed these 430 2.0 arrays
first using the PM-MM method found in the GCSscore
package with the original sscore package. For any given
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comparison between a treatment and a control,
GCSscore (PM-MM method) and the original Sscore
method produced identical GCS-score and S-score
values (Fig. la), since the GCSscore algorithm simply
utilizes individual MM probes instead of the GC-content
based background (GC-bkg). The new GC-bkg method
was also compared against the PM-MM method using
the AvgSs metric described in the implementation sec-
tion. There was considerable variation between the two
methods as the AvgSs values approached zero, where
there was no detectable difference between treatment
and the control groups (Fig. 1b). However, convergence
of the two methods was observed for GCS-score values
beyond an empiric significance threshold of |AvgSs|>
1.8 (red lines in Fig. 1b). Previous studies have demon-
strated that DBA2/] mice have many more genes that
are upregulated than downregulated, especially in the
medial prefrontal cortex (see figure 3 from [5]). This
explains the dramatic skew towards positive significant
AvgSs values, regardless of the background subtraction
method. The results displayed in Fig. 1 demonstrate that
the new background subtraction method returned very
similar results to the original PM-MM method for sig-
nificantly regulated genes, validating the use of the new
GC-based background subtraction method.

Comparison with RMA analysis of ClariomD/XTA assays

We then extended our characterization of GCSscore
by comparing resulting analysis with a traditional
RMA analysis for ClariomD/XTA arrays. In this use
case, the GCS-score results were compared with RMA
analysis results previously published in a study that
utilizes ClariomD mouse arrays (aka MTA 1.0) to
study effects of chronic diazepam (DZP) administra-
tion on gene expression in 3 mouse brain regions:
cerebral cortex, hippocampus, and amygdala [19].
The. CEL files used in the GCSscore analysis were
pulled directly from the corresponding GEO dataset:
GSE76700. For the purposes of this analysis of the
GCSscore algorithm, we limited comparisons to just
cerebral cortex. There were 3 biological replicates in
both the treatment (DZP) and control group. The ori-
ginal publication utilizes the standard workflow pro-
vided by Affymetrix’s Transcriptome Analysis Console
(TAC). Using statistical criteria without correction for
multiple testing (ANOVA uncorrected p-value <0.05
and |log2 fold change|>= 1.5), the authors identify
57 total transcripts regulated by chronic diazepam in
cerebral cortex (see Suppl. Table 1 from [19]).
Additionally, the reported PANTHER gene ontology
enrichment results show over-representation only for
general large categories such as “binding” or “receptor
activity” (see Figure 1c from [19]). Only one gene,
Lipocalin-2 (Lcn2), from the cortex results was
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Fig. 1 Comparison of GCSscore and Sscore methods. a Results for original Sscore algorithm (y-axis) and the GCSscore algorithm, using the PM-
MM background correction method (x-axis). b Comparison of total averaged GCSscores (AvgSs) on the 3" IVT array, Mouse Genome 430 2.0 assay,
for the GC-based background correction (x-axis) and the legacy PM-MM method (y-axis). The red lines denote the thresholds for significant

AvgSs (PM-MM method)

R=0.8
Pgonferroni < 2.2 X 1016
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replicated by quantitative PCR and used for further
analysis, as it is the most strongly upregulated gene
in all 3 brain regions investigated [19]. Current litera-
ture reports suggest that Lcn2 is implicated in innate
immune responses via the sequestration of iron.

For the analysis of microarray data used in [19], GCS-
scores for the 3 treated and 3 control. CEL files were
generated in the pairwise fashion described in Imple-
mentation. This results in 3 treatment replicate averages
produced for each of 3 treatment sample against all of
the control samples. These 3 treatment replicate aver-
ages were used as the input for SAM statistical analysis.
The GCSscore algorithm produced 432 transcripts with
the following criteria: SAM-based FDR<.015 and
|AvgSs| > 1.8. Thus, the GCSscore method was able to
produce many more significantly regulated transcripts
with stringent multiple testing corrections, while the
published RMA/LIMMA approach generated much
smaller gene lists using uncorrected p values and modest
fold changes produced from the standard TAC software.
As expected, Len2 (TC0200003303.mm.1) had very large
positive GCS-scores for all comparisons, which resulted
in an extremely high AvgSs=17.21, replicating aspects
of the results from the original publication. Strikingly,
over-representation analysis of GCS-score results with
ToppFun produced multiple categories directly related
to diazepam/GABA biology (Table 1), as should be ex-
pected from the experimental paradigm. GO categories
of note included: drug binding, glutamate decarboxylase
activity, synaptic signaling, GABAergic synapse, and
GABA synthesis. Pathway analysis of our GCSscore gen-
erated gene list via IPA produces multiple hits for
immune-related signaling pathways, which supported
the original findings from [19], in the context of the

known functions of Lcn2 (Additional File 1: Figure S3).
Importantly, the top 20 pathways produced by IPA con-
tained significant pathways for Glutamate degradation and
GABA receptor signaling (Additional File 1: Figure S3).
Furthermore, 50 of the 57 genes identified in [19]
had a study-wide AvgSs > |1.8| and AvgSs values dis-
played a highly similar distribution (Fig. 2a) to the
originally published log2 fold-change values (see
Suppl. Table 1 from [19]).

The original publication also investigates Lcn2 at the
exon-level using the differential splicing functionality of
the TAC software. The MTA 1.0 array has 15 PSRids (8
targeting exons) and 5 JUCids targeting splice junctions
for the Lcn2 transcript (see Table 2). The authors of the
original publication deduce that the main transcript,
Lcn2-201, is up-regulated rather than the only other
protein-coding  transcript variant, Lcn2-206 (see
Figure 4.A from [19]).

Using the exon-level GCSscore method to analyze
Lcn2, we found similar results to the original publica-
tion. The GCSscore method found that all 8 PSRids
targeting exons were significantly upregulated, while
none of the PSRids that targeted introns were altered
(see Table 2 and Fig. 3). Furthermore, all 5 of the
JUCids were significantly upregulated in the GCS-
score results. The genomic location of PSRids target-
ing introns suggest that the transcripts with retained
introns (Lcn-202 to Lcn2-205) are unlikely to be reg-
ulated by the treatment (see Figure 4.A from [19]).
Additionally, both PSRids in the final exon of Lcn-
201 (exon 6), are significantly upregulated via the
GCSscore method. Since exon 6 is not found in
Lcn2-206, we could not fully eliminate the possibility
of Lcn2-206 upregulation, but we confidently
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Table 1 Functional enrichment for GCS-score results for dataset: GSE76700. Top GO categories returned from ToppFun suite

Category ID Name p-value FDR (B&H)
GO: Molecular Function GO:0008144 drug binding 6.97E-05 2.11E-02
GO: Molecular Function GO:0032559 adeny! ribonucleotide binding 8.10E-05 2.11E-02
GO: Molecular Function GO:0030554 adenyl nucleotide binding 9.36E-05 2.11E-02
GO: Molecular Function GO:0051020 GTPase binding 1.03E-04 2.11E-02
GO: Molecular Function GO:0004351 glutamate decarboxylase activity 1.53E-04 2.13E-02
GO: Biological Process G0:2001280 positive regulation of unsaturated fatty acid biosynthetic process 4.16E-06 191E-02
GO: Biological Process GO:0045723 positive regulation of fatty acid biosynthetic process 1.62E-05 1.96E-02
GO: Biological Process GO:0045923 positive regulation of fatty acid metabolic process 1.63E-05 1.96E-02
GO: Biological Process GO:0099536 synaptic signaling 1.79E-05 1.96E-02
GO: Biological Process GO:0098916 anterograde trans-synaptic signaling 3.25E-05 1.96E-02
GO: Cellular Component GO:0030136 clathrin-coated vesicle 6.26E-07 3.52E-04
GO: Cellular Component GO:0045202 synapse 1.20E-05 2.68E-03
GO: Cellular Component GO:0030135 coated vesicle 1.43E-05 2.68E-03
GO: Cellular Component GO:0005938 cell cortex 2.67E-05 3.76E-03
GO: Cellular Component GO:0030054 cell junction 5.85E-05 5.70E-03
Pathway 1,268,766 Transmission across Chemical Synapses 2.54E-06 3.70E-03
Pathway P00018 EGF receptor signaling pathway 2.70E-05 1.62E-02
Pathway 3777263 GABAergic synapse 3.34E-05 1.62E-02
Pathway M8353 Human Cytomegalovirus and Map Kinase Pathways 7.95E-05 2.90E-02
Pathway 1,268,763 Neuronal System 1.37E-04 3.30E-02
Pathway 83,105 Pathways in cancer 1.52E-04 3.30E-02
Pathway 137,938 IL2 signaling events mediated by PI3K 1.61E-04 3.30E-02
Pathway 1,268,775 GABA synthesis 2.02E-04 3.30E-02
Drug ctd: D003024 Clozapine 437E-11 1.06E-06
Drug ctd: D020849 Raloxifene Hydrochloride 2.07E-10 2.01E-06
Drug ctd: D004390 Chlorpyrifos 249E-10 2.01E-06
Drug ctd: C548651 2-(1'H-indolo-3"-carbonyl)thiazole-4-carboxylic acid methyl ester 3.55E-09 2.15E-05
Drug CID000005637 Uo126 9.57E-09 4.65E-05
Disease 0027051 Myocardial Infarction 1.98E-06 6.85E-03
Disease C0006012 Borderline Personality Disorder 1.35E-05 2.29E-02
Disease C0917798 Cerebral Ischemia 2.32E-05 2.29E-02
Disease C0006287 Bronchopulmonary Dysplasia 2.65E-05 2.29E-02
Disease 0001430 Adenoma 5.34E-05 3.69E-02
Disease C0001973 Alcoholic Intoxication, Chronic 7.18E-05 4.14E-02

concluded that the main transcript, Lcn2-201, was
upregulated and that Lcn2 variants with retained in-
trons were unlikely to be altered by diazepam treat-
ment. This demonstrates the utility of GCSscore
exon-level method for deducing which transcript vari-
ants are altered for the significantly regulated genes
identified by the GCSscore gene-level method. These
results implied that the GCSscore package a valuable
tool for both detecting significantly regulated genes
and differential splicing analysis of exons for Clar-
iomD/XTA type arrays.

Comparison with RMA analysis of ClariomS assays

A final comparison illustrates use of the GCSscore vs.
RMA/LIMMA methods for analysis of published results
with the ClariomS platform. As described in [20], the
original study utilizes ClariomS mouse arrays to investi-
gate differential gene expression of mouse microglia cells
4 days after infection with the coronavirus, murine hepa-
titis virus (MHV). In this study, the authors generate a
gene list using an FDR cutoff of 0.05 and a linear fold
change with an absolute value greater than 2. The au-
thors utilize IPA to produce enriched pathways for their
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Fig. 2 Fold change vs averaged GCS-score (AvgSs) values for significant TCids identified in the original publications. a Published significant TCids
from GEO dataset: GSE76700. The vertical red lines denote the significant threshold for GCS-score values (JAvgSs| > 1.8). The horizontal lines
denote the published threshold (FC > 1.5, P < 0.01). b Significant TCids from GEO dataset: GSE103380. The vertical red lines denote the significant
threshold for GCS-score values (JAvgSs| > 1.8). The horizontal lines denote the published threshold (FC > 2, FDR < 0.05)

significant genes (see figure 1.C from [20]). The authors
find that interferon (IFN) signaling is the most upregu-
lated pathway following infection, followed by 3
additional pathways linked directly to the immune
system [20]. They also report the expression metrics of

Table 2 GCS-score results for all 15 exon-level probesetids
assigned to Lcn2. Probesetids in bold are either within an exon
(PSR) or connect 2 exons (JUQ)

Probesetid Exon ID GCSscore
PSR0200028082.mm.1 Exon 6 4.201
PSR0200028083.mm.1 Exon 6 8.35
PSR0200028084.mm.1 intron -0.15
PSR0200028085.mm.1 intron 0.27
PSR0200028086.mm.1 Exon 5 9.1
PSR0200028087.mm.1 intron -044
PSR0200028088.mm.1 Exon 4 9.92
PSR0200028089.mm.1 intron 0.83
PSR0200028090.mm.1 Exon 3 8.4
PSR0200028091.mm.1 Exon 3 9.68
PSR0200028092.mm.1 intron -1.585
PSR0200028093.mm.1 intron -0.071
PSR0200028094.mm.1 Exon 2 9.26
PSR0200028095.mm.1 Exon 1 5.17
PSR0200028098.mm.1 upstream intron -042
JUC0200014167.mm.1 Exon 5 -- Exon 6 5.1
JUC0200014163.mm.1 Exon 4 -- Exon 5 5.97
JUC0200014164.mm.1 Exon 3 -- Exon 4 6.19
JUC0200014165.mm.1 Exon 2 -- Exon 3 2.65
JUC0200014166.mm.1 Exon 1 -- Exon 2 4.42

29 select genes from their gene list that were highly
upregulated (see figure 1.D from [20]). All microarray
data related to the microglial analysis in [20] is available
in GEO dataset: GSE103380.

For GCSscore analysis, all 4 naive (control) samples
and all 4 infected samples in the GEO dataset were
investigated, leading to 16 total pairwise comparisons of
CEL files. As described above, the resulting 4 treatment
replicate averages were interrogated by a 1-class SAM
analysis to detect GCS-scores = 0. This resulted in 486
genes that passed the determined selection criteria
(FDR < 0.0125 and |AvgSs| > 1.8). The resulting gene list
was input into both IPA and ToppFun for functional
over-representation analysis as described in the Imple-
mentation section. The IPA analysis produced multiple
pathways related to immune function, including the top
pathways found in the original publication (Fig. 4). Of
note, all top 10 pathways from the GCSscore analysis are
related directly to immune response and function, which
is an even stronger implication of the biological func-
tions observed in the original published analysis (see
Figure 1.C from [20]). Furthermore, 2 of the enriched
pathways unique to the GCSscore results, “eIF2 Signal-
ing” and “role of PKR in Interferon Induction and Anti-
viral Response”, are likely upstream of the interferon
signaling pathways identified in both methods. Recent
literature has demonstrated that elF2-alpha is integral
for maximum production of inflammatory cytokines and
type I interferons in response to microbial infection [21].
This suggested that the GCSscore method was also able
to identify potential important additional biological
functions related to this experimental design. Further-
more, the ToppFun analysis was consistent with the IPA
data, showing major enrichment for categories related to
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immune response and modulating interferon production
during a viral infection (Table 3). Additionally, AvgSs
values displayed a high degree of correlation (see Fig. 2b)
with the linear fold change values for significantly regu-
lated genes identified by the authors of the original
manuscript (S. Perlman, personal communication; data
not shown). Finally, 24 of the 29 (83%) of the selected
upregulated genes highlighted in the original publication
(Figure 1.D from [15]) were also contained in the
GCSscore derived gene list, demonstrating good overlap
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between the methods when the comparing the most dif-
ferentially regulated transcripts that are identified by
either method.

Discussion

Here we have described a new software methodology for
analysis of the latest generation of Affymetrix/Thermo-
Fisher microarrays, based upon a re-derivation of our
original Sscore algorithm that allows analysis of current
oligonucleotide microarray platforms. Since microarray

Table 3 Functional enrichment for GCS-score results for dataset: GSE103380. Top GO categories returned from ToppFun Suite

Category ID Name p-value FDR (B&H)
GO: Molecular Function GO:0003723 RNA binding 1.11E-10 1.18E-07
GO: Molecular Function G0:0017076 purine nucleotide binding 5.01E-08 2.16E-05
GO: Molecular Function GO:0003735 structural constituent of ribosome 6.07E-08 2.16E-05
GO: Molecular Function GO:0032555 purine ribonucleotide binding 1.48E-07 3.93E-05
GO: Molecular Function G0:0032553 ribonucleotide binding 2.09€-07 4.45E-05
GO: Biological Process GO:0044403 symbiotic process 1.16E-35 6.36E-32
GO: Biological Process GO:0016032 viral process 2.25E-35 6.36E-32
GO: Biological Process GO:0044419 interspecies interaction between organisms 1.03E-34 1.93E-31
GO: Biological Process GO:0051707 response to other organism 2.90E-32 3.06E-29
GO: Biological Process GO:0009607 response to biotic stimulus 3.08E-32 3.06E-29
GO: Biological Process GO:0043207 response to external biotic stimulus 3.25E-32 3.06E-29
GO: Biological Process GO:0098542 defense response to other organism 9.85E-32 7.95E-29
GO: Biological Process GO:0045087 innate immune response 3.58E-31 2.53E-28
GO: Biological Process GO:0006952 defense response 4.28E-28 2.69E-25
GO: Biological Process G0:0002252 immune effector process 3.18E-26 1.80E-23
GO: Cellular Component G0O:0022626 cytosolic ribosome 148E-15 1.01E-12
GO: Cellular Component GO:0005840 ribosome 2.06E-10 5.84E-08
GO: Cellular Component GO:0044391 ribosomal subunit 2.57E-10 5.84E-08
GO: Cellular Component GO:0005764 lysosome 4.85E-10 6.90E-08
GO: Cellular Component GO:0000323 lytic vacuole 5.05E-10 6.90E-08
Mouse Phenotype MP:0005025 abnormal response to infection 5.88E-18 1.32E-14
Mouse Phenotype MP:0001793 altered susceptibility to infection 744E-18 1.32E-14
Mouse Phenotype MP:0002406 increased susceptibility to infection 3.38E-16 401E-13
Mouse Phenotype MP:0020185 altered susceptibility to viral infection 1.27E-14 T.13E-11
Mouse Phenotype MP:0002418 increased susceptibility to viral infection 2.17E-14 1.55E-11
Pathway 1,269311 Interferon Signaling 1.95E-19 3.36E-16
Pathway 1,269,310 Cytokine Signaling in Immune system 481E-15 3.38E-12
Pathway 1,269,312 Interferon alpha/beta signaling 5.86E-15 3.38E-12
Pathway 1,269,108 Influenza Infection 3.72E-14 1.61E-11
Pathway 1,268,686 GTP hydrolysis and joining of the 60S ribosomal subunit 3.13E-13 791E-11
Disease C0023893 Liver Cirrhosis, Experimental 1.08E-13 466E-10
Disease C0042769 Virus Diseases 1.34E-12 2.89E-09
Disease C0021400 Influenza 7.78E-12 9.47E-09
Disease C0024141 Lupus Erythematosus, Systemic 8.76E-12 947E-09
Disease C001919%6 Hepatitis C 401E-11 2.90E-08
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technology has inherent advantages for certain genomic
studies compared to RNAseq, on the basis of costs and
time required for analysis, such methodology develop-
ment is of considerable significance. Furthermore,
microarray studies continue to be utilized for thousands
of publications in the published literature each year, thus
documenting a sizeable ongoing scientific contribution.
Our software development is an outgrowth of the ori-
ginal Sscore method for probe-level analysis of Affy-
metrix arrays which has been previously validated as
a sensitive method for differential gene expression
analysis that was particularly valuable for studies
employing low numbers of replicates [2, 3]. Here we
have presented three use cases to demonstrate that
our new R package software and analysis algorithm,
GCSscore, can provide analysis results equal to the
prior Sscore method for older generation (3° IVT)
microarrays, while delivering substantial benefits com-
pared to existing methods for analysis of the newest
ClariomS/ClariomD/XTA arrays.

We demonstrated that for 3" IVT arrays, GCSscore
produced very similar differential gene expression ana-
lysis results compared to the original Sscore method,
which had been validated against multiple other algo-
rithms, including RMA [3]. We also found that the
GCSscore method produced similar results to the exist-
ing RMA/LIMMA method for the ClariomS$ arrays. The
results presented here suggest that GCSscore provides
greater sensitivity for detection of DEG gene lists for the
ClariomS assay, as evidenced by results of the IPA and
ToppFun enrichments. In particular, the GCSscore
method may provide more relevant pathways, including
two potential upstream regulators of the interferon sig-
naling identified in [20]. Additionally, GCSscore pro-
duced a larger gene set than the methods used in [15]
when using similar statistical thresholds (S. Perlman,
personal communication; data not shown). Finally, we
showed that GCSscore was far superior to the traditional
RMA/LIMMA approach for analysis of ClariomD/XTA
based studies. The GCSscore algorithm was able to iden-
tify many significantly regulated transcripts that survived
multiple test correction, while the RMA/LIMMA
method returned very few transcripts, even with uncor-
rected p-values. Importantly, the GCSscore method led
to increased biological insight that was consistent with
the studied treatment, as evidenced by identification of
multiple gene sets over-represented with functional
groups and pathways related to GABA biology, as would
be expected when profiling the cortex of chronically
diazepam-treated animals. In addition, the GCSscore
exon-level analysis was capable of providing critical
details regarding the regulation of individual transcript
variants in genes that show significant regulation at the
gene-level.
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Although not the object of this report, it is peculiar
that the RMA/LIMMA methods appeared to work satis-
factorily with ClariomS$ platforms, but failed to function
sensitively for ClariomD/XTA assays. The ClariomS
array is derived from the accompanying ClariomD/XTA
array for each species (mouse, rat, human). In fact,
multiple publications that use ClariomD/XTA arrays
only report uncorrected p-values due to this limitation
[19, 22]. The ClariomS arrays are composed of probes
taken directly from the corresponding ClariomD/XTA
array but utilizes only the 10 best performing probes for
TCids that code for well annotated genes producing at
least one protein-coding variant. Thus, ClariomD/XTA
arrays target many more noncoding transcripts than
protein-coding transcripts. Non-coding TCids on Clar-
iomD/XTA arrays are the predominant probe type and
tend to be expressed at very low or high levels compared
to protein-coding gene probes (data not shown). We
suggest that the LIMMA analysis of log2 RMA inten-
sities from ClariomD/XTA arrays may be affected by the
overwhelming number of noncoding transcripts found
in these low and high intensity distributions. This dis-
parate signal distribution might alter the normalization
of RMA intensity results and thus increase signal/noise
variance and thereby reduce statistically significant
results from FDR analysis of these arrays. GCSscore
methods are immune to this effect since it only con-
siders the relative changes for each individual TCid/
PSRid when making comparisons. These individual
TCid/PSRid comparisons are independent of each other,
so the coding transcripts are unaffected by the noncod-
ing transcripts. Furthermore, we demonstrated that
GCSscore is able to produce significant results for the
ClariomD/XTA arrays with as few as 3 control and 3
treatment arrays, which reduces the time and costs of
genomic experiments that utilize this technology. These
properties make the GCSscore method a powerful ana-
lysis tool for the most advanced array technology avail-
able on ClariomD/XTA arrays, as well as the ClariomS
arrays. The new methodology described here also further
supports the inherent strengths of the probe-level ana-
lysis provided by the GCSscore algorithm. Future
utilization of GCSscore and direct comparison with
other microarray analysis approaches would further add
to an understanding of the merits for such probe-level
strategies and may impact methodology development for
other transcriptomic approaches such as RNAseq.

Conclusions

The GCSscore package represents a powerful new appli-
cation for analysis of the newest generation of oligo-
nucleotide microarrays such as the ClariomS and
ClariomD/XTA arrays produced by Affymetrix/Fisher.
Based upon a well-validated legacy platform, sscore, this
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new software allows production of increased scientific
insight from the latest microarray genomic analysis
platforms.

Availability and requirements
All datasets used in this publication are freely available in
the GEO database (GSE28515, GSE76700, GSE103380).

Package name: GCSscore

Package home page: https://github.com/harrisgm/
GCSscore or http://www.bioconductor.org/packages/
release/bioc/html/GCSscore.html.  The Bioconductor
home page includes the source files, the compiled exe-
cutables and a software primer with demo examples.

Operating System: Any OS that supports the R pro-
gramming Language, including: Windows, macOS, and
Unix-based systems.

Programming Language: R.

Other Requirements: ability to compile R packages.
For Windows, install Rtools. For macOS, install xcode
command line options. See README on GitHub home
page for more details.

Recommended Hardware: The memory requirements
to run GCSscore is minimal as. CEL files are loaded in-
dividually and the annotation packages are relatively
small. However, there is greater memory usage when
building the probefile and the annotation packages for
ClariomD/XTA chips. It is recommended that the user
has at least 8GB of RAM, but 16GB of RAM is the rec-
ommended amount. The GCSscore computations were
performed on a computer with 32GB of RAM and a
2.9GHz Intel i9 processor with 6 cores.

License: GNU GPL version 3.

Restrictions for use by non-academics: None.
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