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Abstract

Background: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of
freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to
freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging.

Results: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining
poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism
cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates.
Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully
capture sample degradation due to freeze-thaw. We further examined differential expression results and found that
three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw
also resulted in a 3' shift in the read coverage distribution along the gene body of poly(A)-enriched samples
compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-
induced sample degradation.

Conclusion: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue,
and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-
thaw cycles on reproducibility.
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Background

RNA sequencing (RNA-Seq) is a ubiquitous method,
used to answer a wide range of biological questions.
Methods for aligning, quantifying, normalizing, and ana-
lyzing expression data are available through popular
packages including Tophat, STAR, cufflinks, SVA, RUV,
Combat, DESeq2, edgeR, Kallisto, Salmon, and BWA-
MEM [1-11]. Each method aims to accommodate and
mitigate the unique challenges presented by RNA-Seq
data. Some approaches attempt to account for character-
ized variability in RNA-Seq measurements due to factors
such as sequencing depth, gene length, and transcripts’
physical characteristics (e.g.,, GC content). Others ac-
count for “unwanted variance” due to technical, batch,
or experimental variation. In contrast, the influence that
sample handling requirements, such as tissue lysis or
varying processing times [12—14], have on RNA-seq
measurement quality is not comprehensively character-
ized. Knowledge-gaps in the impact of sample-handling
can make it difficult to control for such factors. Ad-
equately characterizing technical variation introduced to
RNA-Seq measurements by sample processing steps is
important for optimizing sample quality during sample
handling, accounting for transcript degradation during
data processing, and, consequently, improving the accur-
acy and reproducibility of sequencing results.

Many steps in sample processing, e.g. sample storage
conditions including temperature and the use of stabilitiz-
ing reagents, may specifically decrease sample quality by
inducing transcript degradation [14, 15]. Non-uniformity
in degradation across genes and samples introduces vari-
ability in signal and causes inaccurate normalization and
transcript ~ quantification  [16].  Poly(A)-enrichment
methods are commonly used to separate mRNA from
other highly abundant RNA molecules (e.g., rRNA, tRNA,
snoRNAs, etc.), but variable degradation directly impacts
read counts by causing non-uniform transcript coverage
[17]. Yet, different sources of RNA degradation can im-
pact RNA-Seq in different manners [18]. Of particular
interest, freeze-thaw can induce 20% degradation of spike-
in standards per cycle, a factor that may be generalizable
to mRNA transcripts [19]. Freeze-thaw cycles increase
RNA degradation by disrupting lysosomes which store
RNases, freeing the enzymes to promiscuously catalyze
nuclease activity [20]. Furthermore, partially defrosted
crystals create uneven cleaving pressure on mRNA strands
[21, 22]. Despite these observations, the extent to which
freeze-thaw negatively impacts count and differential ex-
pression in RNA-Seq analyses has not been comprehen-
sively characterized.

Standard sample quality control often relies on RNA
integrity number (RIN), which quantifies the 28S to 18S
rRNA ratio [23]. RIN-based quality control approaches
rely on a heuristic threshold to assess sufficient quality
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[24, 25]. RIN-based metrics have known confounders
such as transcript level, and thus have been called into
question as an appropriate quality metric [26]. For ex-
ample, RIN failed to indicate a decrease in sample qual-
ity in lung cancer tissue samples that underwent five
freeze-thaw cycles [27] and, in statistical analyses, failed
to correct for the effects of degradation [28]. Despite
this, many studies rely on RIN to correct for and assess
sample quality confounders [18, 29, 30]. This is espe-
cially problematic in the case of transcript degradation
because RIN scores are assessed by the entire sample,
while degradation effects can be transcript-specific [16,
31, 32]. Furthermore, existing studies on degradation are
not simply generalizable to freeze-thaw, which has dis-
tinct and independent effects on sample quality and
must be fully explored as such [18, 33].

Here, we tested the susceptibility of poly(A)-enriched
RNA-Seq results after multiple freeze-thaw cycles. We
assessed sample quality independently of RIN by simu-
lating read count variability to capture the noise between
technical replicates. We found that each additional
freeze-thaw cycle increased the random counts between
technical replicates by approximately 4%. Subsequently,
differential expression reproducibility approached zero
after three freeze-thaw cycles. These effects are not cap-
tured by RIN. We find that these effects are reflected in
increased 3’ bias in read coverage when combining
poly(A)-enrichment with freeze-thaw, a phenomenon
that appears to be generalizable to publicly available
datasets.

Results
3’ bias in read coverage of public datasets is associated
with poly(a)-enrichment and freeze-thaw
We first examined public data to establish initial evi-
dence of the incompatibility of poly(A)-enrichment and
frozen samples. Specifically, we analyze the gene-
coverage distribution in libraries prepared from frozen
samples by either poly(A)-enrichment or ribosomal de-
pletion. Since evidence exists that freeze-thaw enhances
transcript degradation, and since poly(A)-enriched sam-
ples select mRNA by hybridization to the poly(A)-tail,
we expect increased read coverage on the 3" end of tran-
scripts--3° bias--when these two factors are combined.
To test this expectation, we compared gene body cover-
age from the 5’ to 3" end between poly(A)-enriched and
ribosomal RNA depleted samples with and without
freezing. Specifically, we examined the median coverage
percentile, the transcript length-normalized nucleotide
percentile at which median cumulative coverage for a
given sample is achieved (Fig. 1a).

We compared median coverage percentile between
237 blood-tissue samples spanning 10 publicly available
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Fig. 1 3' Bias is Exacerbated in Frozen, Poly(A)-enriched Samples Across Multiple Studies. a Demonstration for determining median coverage
percentile (red vertical line). When coverage is unbiased, reads (yellow) are distributed throughout the entire body of the transcript (green). In the
absence of read bias and observing coverage as a function of the nucleotide percentile, we see that cumulative coverage along the transcript
reaches 50% half-way through the gene body, at the 50th percentile nucleotide. In contrast, given a 3' read bias, there is a shift in the distribution
of reads and cumulative coverage reaches 50% at, for example, the 60th percentile nucleotide. This can be seen by the "rightward" shift in
median coverage percentile towards the 3" end of the transcript. In the right panel, gene coverage (y-axis) at the i nucleotide percentile from 5’
to 3' (x-axis) displayed for the unbiased and 3' biased transcripts. b Median coverage percentile was calculated for 237 blood tissue samples
spanning 10 RNA-Seq datasets downloaded from SRA. Samples are stratified by sample handling (unfrozen or frozen) and library preparation
(poly(A)-enrichment or ribosomal depletion). Read coverage distributions were compared using a two-sided, two-sample t-test with a Benjamini-
Hochberg correction (* FDR < 0.05, ** FDR < 0.01, *** FDR < 1e-3, **** FDR < 1e-4). ¢ Comparison of 5’ to 3" bias ratio (y-axis) of samples from the
TCGA and UNC tissue repositories (x-axis) between extraction methods (two-sample t-test). Querying human RNA samples listed in GEO from
2008 to 2018, and stratifying by those annotated as “frozen”, we observe (d) the number of samples prepared with poly(A)-enrichment or
ribosomal depletion (x-axis), (e) the proportion of samples extracted using either method, and (f) the change in the number of samples over time

datasets (Supplementary Table S1, Fig. 1b). We found
that for either library preparation method, freezing in-
creases 3’ bias (independent t-test, Benjamini-Hochberg
correction, FDR < 0.003), but that this increase is much
more significant for poly(A)-enriched samples. Addition-
ally, poly(A)-enrichment has a consistently larger 3" bias
than ribosomal depletion (FDR <0.041). Furthermore,
both library preparation and freezing independently and
significantly contribute to 3’ bias (two-way ANOVA,
p <3.99%-9). In an additional study examining the im-
pact of RNA extraction in frozen tissue from the UNC
and TCGA tumor tissue repositories [34], we found a
significant (two-sample t-test, p < lel6) decrease in the
5'-to-3" coverage ratio of poly(A)-enriched samples
compared to ribosomal depletion (Fig. 1c). This indicates
an increase in 3 bias of frozen tissues consistent across
both repositories.

To determine the breadth of this potential sample pro-
cessing issue, we explored the prevalence of poly(A)-en-
richment from frozen tissue by examining metadata in
the Gene Expression Omnibus (GEO). Using GEOme-
tadb [35], we queried all human RNA samples between
2008 and 2018 extracted with either poly(A)-enriched or
ribosomal depletion. There are thousands of samples an-
notated as “frozen” prepared using either total RNA or
poly(A)-enrichment methods (Fig. 1d). In samples anno-
tated as “frozen”, the frequency of poly(A)-enrichment
increases from less than 10% to over 25% relative to all
samples (Fig. le), suggesting that this potentially prob-
lematic combination of library preparation and sample
storage is prevalent and possibly preferred. Finally,
stratifying this trend over time, we see that poly(A)-en-
richment, as well as the relative proportion of poly(A)-
enriched frozen samples, is increasing in popularity rela-
tive to the fairly consistent usage of total RNA extraction
(Fig. 1f). Taken together, these results indicate a poten-
tial, widespread distortion in RNA-seq associated with a
deleterious interaction between poly(A)-enrichment and
freeze-thaw. As these results span several studies, each

may introduce unaccounted sources of technical vari-
ation. To explore this potential more formally, the re-
mainder of our analyses focus on a specific experiment
designed to address this question. Specifically, we sub-
jected whole-blood extracted leukocyte samples--with
technical replicates--from autistic (ASD) or typically de-
veloping (TD) toddlers to a varying number of freeze-
thaw cycles, which we record alongside other sample
quality metrics such as RIN.

An additional freeze-thaw cycle increases random read
counts 1.4-fold
To address the scarcity of analyses on the effect of
freeze-thaw on RNA-seq measurements, we use our
technical replicates to compare changes in sample qual-
ity across freeze-thaw cycles. We first note that neither
RIN nor TIN capture significant (one-sided Wilcoxon
test) decreases in sample quality due to increased freeze-
thaw (Fig. S1). Given previous indications that these
metrics may not sufficiently address transcript degrad-
ation [16, 26—28], we instead measure the introduction
of noise to samples (Fig. S2-3). We define noise as the
fraction of reads in a sample that are randomly counted,
rather than mapping to a sample-specific gene. To esti-
mate noise, we simulated the randomness in read counts
between technical replicates (Supplementary Methods).
By comparing technical replicates that have undergone
the same number of freeze-thaws, we can calculate the
expected noise in a sample at a given number of freeze-
thaw cycles. Since noise does not rely on RIN, we can
compare freeze-thaw and RIN effects independently.
Median noise increased 1.4-fold from one to two
freeze-thaw cycles (one-sided Mann-Whitney U test, p
<0.007) on average across all measures (Fig. 2a). By def-
inition, technical replicates reveal variation due to tech-
nical measurement error. We estimated noise between
technical replicates that have not undergone freeze-thaw
to range between 9.11-10.15% (Wald test, p <5.77e-7).
The expected increase in noise per additional freeze-
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thaw cycle was estimated to be 3.6-4.1 percentage
points (Wald test, p <8.12e-3) (Fig. 2b). The introduction
of random reads to samples by freeze-thaw cycles may
have substantial effects on count quantification (see Dis-
cussion) and, consequently, downstream analyses such
as differential expression.

RIN does not predict additional noise after one freeze-
thaw cycle

Next, we asked whether our observations that RIN does
not sufficiently capture changes in sample quality due to
freeze-thaw (Fig. S1) could be extended to noise. Specif-
ically, we tested whether RIN can reflect the differences
in sample quality as measured by noise.

When only considering samples that underwent one
freeze-thaw, each unit increase in RIN decreases noise
by 3.24-3.38 percentage points for all metrics (Wald
test, p <6.3e-3) (Fig. 3a-b, Fig. S14). Yet, when only ac-
counting for samples that underwent two freeze-thaw
cycles, noise does not significantly change as RIN in-
creases. Taken together, these results indicate that
while RIN can be a good measure of noise for samples
that underwent one freeze-thaw, it does not capture
the loss in sample quality induced by two freeze-thaw
cycles.

Differential expression similarity increases 10.3% in high
quality samples

Next, we investigated how the introduction of noise im-
pacts differential expression (DE) analysis. We assessed
DE reproducibility by generating thousands of sample
combinations, ie. subsets, with varying sample quality

(Fig. S4). We define sample quality by the aggregate
number of freeze-thaw cycles or RIN. We ran DE across
ASD-TD groups and compared results between subsets
of various sizes (4—14 samples). We measure reproduci-
bility using similarity or discordance, based on correl-
ation and dispersion, respectively; higher similarity and
lower discordance each represent higher reproducibility.
We use these measures to assess differences that arise
between subsets consisting of high quality (low freeze-
thaw or high RIN) and low quality (high freeze-thaw or
low RIN) samples.

We held two expectations regarding the effect of sam-
ple quality on DE reproducibility in the context of simi-
larity: 1) the reproducibility between subsets with high
quality samples should be higher than those with low
quality samples at any given subset size, and 2) subset
size and sample quality should interact to increase the
reproducibility of DE analysis; this would be reflected by
a higher rate of increase in reproducibility with respect
to subset size for higher quality subsets.

As expected, similarity increases with subset size (Fig.
$10), as reflected by the estimated 0.02 (Wald test, p =
2.2e-5) increase in similarity per additional sample
(Fig. 4a); thus, expected similarity would increase by
0.20 in a subset with 14 samples relative to a subset with
4 samples. Regression results for each model predicting
similarity are reported in Supplementary Table S5.

To measure similarity, we took the pairwise Spearman
correlation of the log-fold change values between sub-
sets. We tested our first expectation by placing subset
pairs into high and low sample quality bins--defined by
either RIN or freeze-thaw--for each subset size and
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comparing their similarity values. Regardless of sample
quality, DE similarity increases with subset size. Yet, for
nearly all subset sizes, higher quality bins have signifi-
cantly (one-sided Mann-Whitney U test, p < 2.8e-17)
higher similarity than low quality bins (Fig. 4d-e). Across
subset sizes, we observed an average 1.13-fold and 1.06-
fold increase in similarity from low to high quality sam-
ples for freeze-thaw and RIN, respectively.

Similarity significantly (Wald test, p < 9.2e-3) de-
creases with the number of freeze-thaw cycles and in-
creases with RIN when accounting for the effects of
sample size (Fig. 4a-c), validating our second expect-
ation. Similarity decreases by 0.077 per additional freeze-
thaw cycle (Wald test, p = 8.77e-4). Given the estimated
similarity of 0.23 for samples that have not undergone
freeze-thaw, this implies that DE reproducibility will ap-
proach zero after approximately three freeze-thaw cycles
(Fig. 4b). Even when accounting for subset size and the
effects of RIN, the estimated decrease in similarity from
freeze-thaw is nearly the same--0.078 (Wald test, p =
8.77e-4); this further corroborates that RIN alone cannot
capture the changes in sample quality due to freeze-
thaw. Taken together, these results indicate that higher
sample quality increases DE reproducibility as measured
by similarity.

<

Discordance decreases nearly 5-fold in high quality
samples

We further investigated the relationship between DE
reproducibility and sample quality using an effect
size sensitive measure of discordance (Fig. S9). Spe-
cifically, we explored how sample quality affects the
relationship between discordance and the DE effect
size--measured by the mean-variance standardized
effect--at each subset size. In this context, we ex-
pected 1) discordance at any given effect size to be
lower in high-quality subsets and 2) the rate of in-
crease in discordance to be lower in high quality
subsets relative to low quality subsets.

Corresponding to the regression models used for this
analysis, we label the expected change in discordance
per unit increase in fold-change effect size as AD. We
observed a significant (Wald test, p < 9.45e-141) de-
creasing trend in AD with increasing subset size (Fig.
S11, Supplementary Table S6).

We estimate discordance with respect to effect size at
each subset size and for subsets of either high or low
quality. As expected, independent of sample quality, AD
demonstrates an overall decreasing trend with respect to
subset size for both RIN and freeze-thaw. With respect
to freeze-thaw, at a subset size of 6, there is a 1.1-fold
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decrease in the value of AD from low quality subsets to
high quality subsets. The disparity in AD between high
and low sample quality (Am=AD;qy Quality / ADHigh
Quality) increases nearly monotonically through to the
subset size of 14, at which point there is a 3.2-fold de-
crease (Fig. 5a). This monotonicity indicates that the ob-
served relationship between discordance and sample
quality is consistent. Furthermore, it causes notable dif-
ferences in discordance values, even at low effect sizes.

Consistent with our expectations, AD is lower for high
quality subsets as compared to low quality subsets for
both freeze-thaw and RIN across all subset sizes (Fig.
5b-c). Nearly all estimates are significant after multiple
test correction (Wald test, Benjamini-Hochberg FDR
correction, q < 0.07), with the exception of those for the
smallest subset size for freeze-thaw.

Taken together, these results indicate that higher sam-
ple quality increases DE reproducibility as measured by
discordance.

Additional freeze-thaw cycles show increased 3’ bias in
poly(a)-enriched but not ribosomal RNA depleted samples
Finally, we asked whether repeated freeze-thaw cycles
can induce a 3’ bias, consistent with the induction of
random reads and the loss of DE reproducibility as well
as our initial observation in the public datasets.

Using the median coverage percentile, we found a shift
in mRNA coverage towards the 3" end of the poly(A)-
enriched samples relative to ribosomal depletion (Fig.
S13a). Specifically, the median coverage percentile for
poly(A)-enriched samples is significantly (one-sided Wil-
coxon test, p<2.2e-16) larger than that of ribosomal
RNA depleted samples (Fig. S13b). Samples prepared
with poly(A)-enrichment have more 3’bias compared to
ribosomal depletion in both one (one-sided Wilcoxon
test, p =7e-15) and two (one-sided Wilcoxon test, p =
5.9e-5) freeze-thaw cycles (Fig. S13d). Altogether, this
indicates an overall 3" bias of poly(A)-enriched samples,
even independently of freeze-thaw (Fig. S13b).
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Crucially, this 3’ bias is accentuated when samples are
stratified by the number of freeze-thaw cycles (Fig. 6a).
We observe a significant increase (Wald test, p = 0.007)
in normalized median coverage percentile due to the
number of freeze-thaw cycles in poly(A)-enrichment.
The increase was not maintained in ribosomal RNA
depleted samples (Wald test, p = 0.07) (Fig. 6b, Supple-
mentary Table S8). For poly(A)-enriched samples,
normalized median coverage percentile increases 1.12
percentage points per log freeze-thaw cycle; freeze-thaw
cycles were log-transformed to stabilize variance. We
further demonstrate a dependency of 3" bias on freeze-
thaw cycles by showing that median coverage percentile
significantly increases with freeze-thaw in poly(A)-

enriched samples (Kruskal-Wallis test, p =0.041). This
3’ bias is particularly apparent after five freeze-thaw
cycles (one-sided Wilcoxon test, p=0.008). Unlike
poly(A)-enrichment, ribosomal depletion, while demon-
strating significant differences in median coverage
percentile between freeze-thaws (Kruskal-Wallis test,
p=0.012), does not follow a trend due to increases in
freeze-thaw cycles. This is highlighted by the fact that
the difference in median coverage percentile between
one and two freeze-thaw cycles is significant (one-sided
Wilcoxon-test, p =0.001), but the remaining compari-
sons are not (Fig. S13c).

Taken together, these analyses indicate that poly(A)-
enrichment inherently introduces a 3" bias in coverage
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as compared to ribosomal depletion, and that this bias is
exclusively exacerbated in poly(A)-enriched samples due
to freeze-thaw cycles. Thus, 3" bias may indicate the
severity of freeze-thaw induced signal degradation in
poly(A)-enriched samples. If this 3" bias is the root cause
of freeze-thaw induced instability in absolute and differ-
ential RNA-seq quantification, such instabilities may be
subverted by substituting poly(A)-enrichment for riboso-
mal depletion during library preparation.

Discussion

Despite the utility and ubiquity of RNA-Seq, many of
the confounding elements associated with the technol-
ogy are still being characterized. In this work, we
demonstrated how one such confounder--freeze-thaw--
impacts sample quality and downstream analyses. We
highlighted biases in publicly available datasets, and
observed an increased 3’ bias in read coverage distribu-
tions when both freeze-thaw and poly(A)-enrichment
are combined. Proceeding with RNA-seq from frozen
leukocytes drawn from a toddler Autism cohort, we first
measured the noise between technical replicates. This
allowed us to examine the impact of freeze-thaw cycles
and the ability of RIN to capture those impacts. Next,
we examined the impact of freeze-thaw cycles on the ro-
bustness and reproducibility of differential expression
analysis. By our estimates and at these subset sizes, DE
reproducibility approaches zero after three freeze-thaw
cycles (Supplementary Table S5). Finally, we demon-
strated that poly(A)-enriched samples demonstrate

substantial 3’ bias in read coverage with increased
freeze-thaw cycles. Our results have implications with
regards to technical variation due to sample handling,
the sensitivity of differential gene expression analysis for
frozen tissues and samples, and the utility of RIN.

Technical variation in RNA-Seq is substantial and can
be attributed to a variety of factors, including read
coverage, mRNA sampling fraction, library preparation
batch, GC content, and sample handling [36, 37]. As
such, accounting for technical variation has been a major
research area of focus for the past decade [1, 2, 5, 37,
38]. Degradation in combination with poly(A)-enrich-
ment is a known source of variation in RNA-Seq. Yet,
before technical variation can be accounted for, it must
be characterized. While studies have looked into the ef-
fect of degradation on RNA-Seq, each mode of degrad-
ation impacts sample quality differently, and direct
connections between freeze-thaw and sample quality has
mainly been assessed via RIN [18, 39, 40].

Our noise estimates help delineate technical variation
due to freeze-thaw and may be more sensitive than RIN.
Furthermore, the resulting noise provides an estimate
for the number of random read counts associated with a
gene. For example, given an average 25 million reads se-
quenced per sample, our approximate 4 percentage
points increase in noise per freeze-thaw cycle (Fig. 2b)
yields an expected randomness in 1 million reads per
sample. Approximating the number of protein-coding
genes in the human genome to be 20-25 thousand [41],
we can expect a difference of ~ 40-50 additional random
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counts per gene to exist between technical replicates due
to a freeze-thaw cycle (Supplementary Methods, Fig.
S15). Thus, each freeze-thaw cycle introduces a non-
negligible level of noise to the quantification of gene
expression and differential expression of such genes.

To check for the possibility that there is a signature
which can help correct for freeze-thaw distortion of
RNA-Seq, we attempt to find a group of consistently dif-
ferentially expressed genes due to freeze-thaw. We find
no such signature (Supplementary Results, Supplemen-
tary Tables S9-10). This is expected, given that a major
source of reduced sample quality due to freeze-thaw is
mRNA degradation, which occurs randomly for each
transcript and sample. A possible path forward is to cor-
rect for sample degradation. Several methods have been
proposed for this. While some of these methods rely on
RIN or similar metrics (e.g. mRIN, TIN, etc.) [18, 42],
others have implemented statistical frameworks which
account for gene-specific biases. DegNorm, for example,
accounts for the gene-specific relative randomness in
degradation in its correction approach [16]. Quality sur-
rogate variable analysis (qQSVA) specifically improves dif-
ferential expression by identifying transcript features
associated with RNA degradation [28]. Furthermore,
there are recent methods which only assay the 3" end of
a transcript and therefore claim robustness in degraded
samples [43].

The effect of freeze-thaw and resultant degradation on
RNA-Seq is particularly concerning when considering
differential gene expression analysis. It has been ob-
served that RNA degradation can induce the apparent
differential expression in as many as 56% of genes [42].
To this end, we quantified this loss of DE reproducibility
by measuring similarity and discordance in the context
of sample quality. We found a decrease in reproducibil-
ity with both decreasing RIN and increasing freeze-thaw.
Interestingly, for most reproducibility assessments, we
observed a monotonic or near monotonic increase in
disparity between low and high quality subsets with re-
spect to subset size. Similarity demonstrated a larger
average magnitude of disparity for freeze-thaw, whereas
discordance demonstrated a larger average magnitude of
disparity for RIN.

Based on our analysis, the utility of RIN in assessing
quality when samples undergo freeze-thaw is question-
able. The non-uniformity in mRNA degradation [44—47]
due to freeze-thaw sheds light on these challenges, since
RIN cannot quantify quality at the individual gene level
[23]. This is reflected in the fact that samples with RIN >
8 demonstrate degradation [32]. Furthermore, results
assessing the effect of freeze-thaw cycles on RIN are in-
conclusive. While some studies claim RIN can be used
to account for degradation effects in RNA-Seq [18],
others suggest it does not sufficiently capture the effects
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of degradation on sample quality [26, 28]. When directly
observing the effect of freeze-thaw on RIN, studies have
found a negligible effect [12] or can only detect an effect
after numerous cycles [27, 48].

As such, we re-examined the utility of RIN as a meas-
ure of sample quality in relation to our noise estimation
of random reads per sample [23]. We found that while
noise increases with both decreasing RIN and increasing
freeze-thaw, RIN may be an insufficient indicator of
quality for samples that have undergone two or more
freeze-thaws. Given these results, RIN may not always
be a good metric to quantify the difference between
technical replicates that have undergone variable sample
handling [16, 26-28]. We validate noise by confirming
that it does not change with input RNA concentration,
excepting outliers (Fig. S12). Therefore, noise could be a
useful supplement to RIN when technical replicates are
present.

The fact that our predicted decrease in similarity due
to freeze-thaw does not change when incorporating RIN
into our model further indicates that RIN alone cannot
capture the changes in sample quality due to freeze-
thaw. Despite this, RIN is a good indicator of sample
quality, if not specifically for freeze-thaw. This is
reflected in the fact that RIN validates our expectations
for DE reproducibility analysis and the comparable range
of noise, similarity, and discordance values between
freeze-thaw and RIN assessments.

Finally, to confirm our expectation that freeze-thaw
decreases sample quality [17, 19-22] and to further
characterize the underlying mechanism, we validated the
presence of a 3" bias in coverage. This builds on our and
others’ observations that a lower percentage of poly(A)-
enriched transcripts are covered [40]. We compared
coverage to ribosomal RNA depleted RNA-Seq data,
which does not use 3" hybridization to retain transcripts.
We find that poly(A)-enrichment does in fact introduce
a strong 3’ bias in coverage as compared to ribosomal
depletion. This bias is further exacerbated with add-
itional freeze-thaw cycles in poly(A)-enriched but not
ribosomal RNA depleted samples. This implies that deg-
radation due to freeze-thaw does not impact RNA-
sequencing of ribosomal RNA depleted samples to the
extent that it does in poly(A)-enriched samples. In light
of our demonstrations that 3" bias is associated with a
substantial increase in noise and a decrease in DE repro-
ducibility, these findings suggest that RNA-seq from
samples that have both been poly(A)-enriched and
undergone freeze-thaw cycles likely has unknown, di-
minished stability. While not all studies have technical
replicates to estimate noise, the presence of exaggerated
3" bias when poly(A)-enrichment is combined with
freeze-thaw can be a simple indicator of RNA-seq
distortion.
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Conclusion

Altogether, these results indicate that transcriptomics
quality control steps cannot rely on RIN alone for sam-
ples that have undergone poly(A)-enrichment and mul-
tiple freeze-thaws. Furthermore, accounting for the
effect of freeze-thaw on poly(A)-enriched RNA sequen-
cing is crucial. Poly(A)-enrichment is prevalent for
RNA-sequencing, and, in parallel, samples that undergo
multiple freeze-thaws are common in many protocols,
especially rare tissues, e.g., postmortem neural tissue.
Yet, there is no clear recommendation to avoid poly(A)-
enrichment following multiple freeze-thaws. Our results
indicate that ribosomal depletion could be a better alter-
native when freeze-thaw is necessary.

Methods

Terminology used throughout the paper and described
in the proceeding methods sections is summarized in
Table 1.

Sample collection and storage

Blood samples drawn from male toddlers with the age
range of 1-4 years were usually taken at the end of the
clinical evaluation sessions. To monitor health status,
the temperature of each toddler was monitored using an
ear digital thermometer immediately preceding the
blood draw. The blood draw was scheduled for a differ-
ent day when the temperature was higher than 37°C.
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Moreover, blood draw was not taken if a toddler had
some illness (for example, cold or flu), as observed by us
or stated by parents. We collected 4—6 ml blood into
EDTA-coated tubes from each toddler. Blood leukocytes
were captured using LeukoLOCK filters (Ambion). After
rinsing the LeukoLOCK filters with PBS, the filters were
flushed with RNAlater (Invitrogen) to stabilize RNA
within the intact leukocytes. After RNA stabilization, the
LeukoLOCK filters were immediately placed in a —20°C
freezer. Additional RNA standards were sourced from
normal human peripheral leukocytes pooled from 39
Asian individuals, ages 18 to 47 (Takara/ClonTech:
636592). The RNA standards underwent 1-5 simulated
freeze-thaw cycles; a freeze-thaw cycle is defined as
freezing a sample in - 80 °C for at least 24 h, proceeded
by thawing it to room temperature, with the first hour
spent on ice.

RNA extraction, sequencing and quantification

For 47 samples (from 16 individuals), mRNA was ex-
tracted using polyA selection with the TruSeq Stranded
mRNA library preparation kit (Illumina). Ribosomal de-
pletion was used to prepare an additional 52 samples.
Relevant metadata regarding poly(A)-enriched and ribo-
somal depleted samples can be found in Supplementary
Table S2-3. Ribosomal RNA depleted samples used the
TruSeq Stranded Total RNA with RiboZero Gold library
preparation kit (Illumina). RNA Integrity Numbers

Table 1 Various terms used in assessing the effect of freeze-thaw on RNA-sequencing, their definitions, and the specific analyses

they are applied to

Category Term Definition Analyses
RNA Distortion A generic term referring to changes in RNA-sequencing data
sequencing introduced due to technical factors.

Consistency A generic term referring to the reproducibility of RNA-

sequencing results between samples.

Sample Noise

The fraction of reads in a sample that are randomly counted,

Results section 2 and 3

Quality (randomness) rather than mapping to a sample-specific gene.

Freeze-thaw  The number of freeze-thaw cycles a sample undergoes. A

All results sections

freeze-thaw cycle is defined as freezing a sample in — 80 °C for
at least 24 h, proceeded by thawing it to room temperature,

with the first hour spent on ice.

RIN The RNA integrity number as previously decsibed [23]

All results sections

Results section 4 and 5

DE Similarity
Reproducibility

Discordance

Bias 3' Bias

Median
coverage
percentile

Spearman correlation of LFC results from differential expression
on sample subsets. Correlation was taken between all pairs of
subsets.

Standard deviation of LFC results from differential expression on
sample subsets. Standard deviation was taken across all subsets
for each gene.

The extent to which reads map in a skewed manner to the 3'
end of a transcript.

Results section 4 and 5

Results section 1 and 6

The nucleotide percentile (relative to transcript length) at which median cumulative coverage Results section 1 and 6

across a transcript is achieved; cumulative coverage is aggregated

from the 5" end to the 3’ end. This is a measure of bias in which
a larger median coverage percentile indicates more 3’ bias and
vice versa




Kellman et al. BMC Genomics (2021) 22:69

(RIN) were measured using a NanoDrop ND-1000
(ThermoFisher). Both library preparation kits use
random hexamers for first-strand ¢cDNA synthesis, im-
proving the accuracy of comparisons across isolation
methods and potentially mitigating 3’ bias due to
priming methods [49]. Poly-A selected samples were se-
quenced using 50-base pair single end sequencing on a
HiSeq4000 (Illumina) to a depth of 25M reads. The
ribo-depletion prepared libraries were sequenced using
100-base pair paired end sequencing on a HiSeq4000
(Ilumina) to a depth of 50 M reads.

Fastq files for each sample underwent quality control
using FastQC (v0.33). PolyA and adaptor-trimming were
conducted using Trimmomatic [50]. Reads were aligned
to the gencode annotated (v25) human reference gen-
ome (GRCh38) using STAR (v2.4.0) [7]. Alignments
were processed to sorted SAM files using SAMtools
(v1.7) [51]. Finally, HTSeq (v0.6.1) was used to quantify
reads [51, 52].

Estimation of noise between technical replicates

To estimate noise between technical replicates of the
same individual blood samples, we simulate random loss
and gain of reads (Fig. S2). Unlike other metrics, e.g.
Euclidean distance, “noise” allows us to quantify the
dissimilarity between samples at the scale of raw counts.
One technical replicate was chosen as the “reference”
replicate, making the other technical replicate the
“target” replicate. To measure noise at a given number
of freeze-thaw cycles, we only compared technical
replicates that had undergone the same number of
freeze-thaw cycles. The dissimilarity between replicates
is measured by one of four metrics (Euclidean distance,
RMSE, Pearson correlation, and Spearman correlation).
We iteratively add and remove random reads to the
reference replicate until the dissimilarity between the
simulated replicate and the reference replicate was equal
to the dissimilarity between a target replicate and the
reference replicate (Fig S2, Fig. S3). We define the noise
between the reference and target replicate as the fraction
of reads added or removed per total reads in the refer-
ence replicate to achieve the aforementioned level of dis-
similarity. We represent this as a percentage, e.g. 5%
noise between a reference and target replicate can be
interpreted as 5% randomness between their reads. For
additional details on noise simulation, see Supplemen-
tary Methods.

Measuring the effect of sample quality on noise
Unless otherwise specified, all linear regressions in all
analyses were performed using a generalized linear
model (GLM) with an identity link function.

To measure the association between noise and sample
quality metrics (number of freeze-thaw cycles, input
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RNA concentrations, and RNA integrity number), we
used a linear regression. The significance of the model
parameters is determined by the Wald test. All results
are reported in Supplementary Table S4.

For each model, to mitigate the contribution of poten-
tial confounding variables, samples with input RNA
concentrations in the top and bottom 5% (|z|>1.645)
were removed, decreasing the total number of samples
from 47 to 41. For noise prediction from concentration,
samples with more than one freeze-thaw were also ex-
cluded, decreasing the total number of samples to 35.
Noise prediction from the RNA integrity number (RIN)
was run separately for samples that had undergone one
freeze-thaw and samples that had undergone two freeze-
thaws.

Differential expression analysis

We assess whether the observed sample qualities (mea-
sured by number of freeze-thaw cycles and RIN) have an
impact on differential expression (DE) reproducibility
using a resampling approach. DE was run on random
subsets of varying sample sizes (Fig. S4). Before subset-
ting, we filtered our expression matrix for genes with an
average count <20 across all samples. This reduced the
number of genes from 10,028 to 4520. The total number
of samples considered was 46 when disregarding samples
that were industry standards, were not assigned to either
an autism-spectrum disorder (ASD) or typically-
developing (TD) indication, or did not have a recorded
sample quality value.

We generated subsets containing N =4-14 samples.
For each subset size N, we generated 2000 unique sub-
sets. Each subset had an equal number of TD or ASD
samples. Additionally, only one replicate from each
blood sample could be included. These requirements
limited our subset size to a maximum of 14 samples.

DE between ASD and TD subjects was conducted using
DESeq2 (v1.20.0) [1]. Fig. S10 summarizes DE results for all
subsets. To account for potential confounders, we used
RUV to introduce a control covariate to our design matrix
(RUVSeq v1.14.0) [5]. Specifically, we use a set of “in-silico
empirical” negative control genes, including all but the top
5000 differentially expressed genes as described in section
2.4 of the documentation for RUVseq (http://bioconductor.
org/packages/release/bioc/vignettes/RUVSeq/inst/doc/
RUVSeq.pdf). We confirm that RUV produces consistent
results with previous Autism leukocyte gene expression sig-
natures [53, 54] (see Supplementary Results).

Similarity to assess differential expression reproducibility

To assess DE reproducibility, we measure the similarity
in log-fold-change (LFC) values between DE runs. Simi-
larity is calculated as the Spearman correlation in the
LEC between a pair of subsets of the same size (Fig. S6);
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we measured similarity in a pairwise manner between all
subsets of the same size. Genes with a median base
mean (the mean of counts of all samples, normalizing
for sequencing depth) or median LFC in the bottom
10th percentile across all subsets were excluded to filter
for low magnitude effects (Fig. S5).

Average RIN and freeze-thaw were measured for all
subset pairs. Resulting distributions for all collected
values from similarity analyses are displayed in Fig. S7.

Next, subsets of each size were split into two quantile
bins for each sample quality metric separately. High
sample quality bins (low average freeze-thaw cycles or
high average RIN) were compared to low sample quality
bins. High sample quality subsets were tested for higher
similarity than low sample quality subsets using a one-
sided Mann-Whitney U test.

Additionally, three linear regressions were fit to quan-
tify the contribution of sample quality metrics to the
change in similarity for DE results across subsets. We fit
one model to predict similarity from freeze-thaw and
RIN, while also accounting for the improvement in re-
producibility due to increase in subset size (Similarity ~
Freeze-Thaw + RIN + Subset Size). We also fit two
models predicting similarity from freeze-thaw or RIN
alone.

Discordance to assess differential expression
reproducibility

We adapted a measure of concordance to measure
discordance, or the lack of reproducibility, between dif-
ferential expression results [55]. Average RIN and
freeze-thaw were calculated for each subset (Fig. S8-9).
Subsets for each subset size were split into two quantile
bins for either sample quality metric (number of freeze-
thaw cycles and RIN). Genes with a median base mean
across all subsets in the bottom tenth percentile were
excluded from the analysis (Fig. S5).

We do not use the original concordance at the top
(CAT) metric because we are not comparing our results
to a gold standard dataset. Instead, we use gene-wise
LFC standard deviation across subsets as a measure of
discordance. Thus, the average LFC for each gene across
DE runs is analogous to the gold standard, and the dis-
persion from this average indicates a lack of reproduci-
bility. At each combination of subset size and sample
quality bins, we calculate discordance and compare it to
the gene-wise median effect size (Fig. S8). We measure
effect size as the mean-variance standardized effect [1].
This and two additional effect size metrics (Cohen’s d
and absolute median LFC) we use are further described
in Fig. S9. Results for all three effect size metrics reflect
similar trends and can be found in Supplementary
Tables S6-7.
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We used a linear regression to predict discordance
from effect size at each subset size. Additionally, in a
separate linear regression, we account for the interaction
between effect size and sample quality (Discordance ~
Effect Size x Sample Quality) at each subset size. Here,
sample quality is a dummy variable, assuming a value of
0 for low quality and 1 for high quality. We did not in-
clude a term for subset size because regressions were fit
within each subset size.

Read coverage bias

The distribution of read coverage over each gene
body was measured using geneBody_coverage.py from
the RSeQC (v3.0.0) package [56]. We measure this
coverage ranging from the Oth percentile (5° end) to
the 100th percentile (3’ end) nucleotide. The i™ percentile
nucleotide is calculated as nucleotide;/lengthc,.. Coverage
at the i™ percentile nucleotide is normalized across all
genes within a sample.

For a given sample, the median coverage percentile is
defined as the nucleotide percentile at which median cu-
mulative coverage is achieved; cumulative coverage is ag-
gregated from the 5’ end to the 3" end. The larger the
median coverage percentile value, the larger the 3’ bias
in coverage. We include 9 industry standards in our ana-
lysis--six of which had undergone five freeze-thaw cycles
and three of which had undergone one freeze-thaw
cycle--to explore the impact at higher freeze-thaw
counts. We also include ribosomal RNA depleted sam-
ples as a negative control.

We conducted a meta-analysis of read coverage bias
on ten publicly available blood tissue RNA-seq datasets.
These datasets were either queried from SRA using pys-
radb (v0.11.1) [57] or manually identified. Altogether,
these datasets contained samples that underwent both li-
brary preparation methods (poly(A)-enrichment and
ribosomal depletion) and both sample handling condi-
tions (frozen and unfrozen). We further verified queried
datasets for accuracy of relevant conditions (e.g., tissue-
type, sample handling) by manually checking the
methods sections of associated publications. For the
meta-analysis, SAM files were directly downloaded using
the sam-dump command from SRA-toolkit (v2.8.2).
SAM files were converted to bam, sorted, and indexed
using SAMtools (v1.7). Gene body coverage was calcu-
lated from alignments using RSeQC as previously
described. We also analyzed an additional dataset
(phs000676.v1.p1), which contains frozen tissue samples
from the UNC and TCG tumor tissue repositories [34].
We did not directly analyze the raw files from TCGA or
UNC, but instead reanalyzed the reported 5" to 3’ bias
ratios. Conceptually, the smaller this ratio is, the larger
the 3" bias in read coverage.
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