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Abstract

Background: The human microbiome forms very complex communities that consist of hundreds to thousands of
different microorganisms that not only affect the host, but also participate in disease processes. Several
state-of-the-art methods have been proposed for learning the structure of microbial communities and to investigate
the relationship between microorganisms and host environmental factors. However, these methods were mainly
designed to model and analyze single microbial communities that do not interact with or depend on other
communities. Such methods therefore cannot comprehend the properties between interdependent systems in
communities that affect host behavior and disease processes.

Results: We introduce a novel hierarchical Bayesian framework, called BALSAMICO (BAyesian Latent Semantic
Analysis of MIcrobial COmmunities), which uses microbial metagenome data to discover the underlying microbial
community structures and the associations between microbiota and their environmental factors. BALSAMICO models
mixtures of communities in the framework of nonnegative matrix factorization, taking into account environmental
factors. We proposes an efficient procedure for estimating parameters. A simulation then evaluates the accuracy of
the estimated parameters. Finally, the method is used to analyze clinical data. In this analysis, we successfully detected
bacteria related to colorectal cancer.

Conclusions: These results show that the method not only accurately estimates the parameters needed to analyze
the connections between communities of microbiota and their environments, but also allows for the effective
detection of these communities in real-world circumstances.
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Background
Microbiota in the human gut form complex communi-
ties that consist of hundreds to thousands of different
microorganisms that affect various important functions
such as the maturation of the immune system, physiology
[1], metabolism [2], and nutrient circulation [3]. Species
in a community survive by interacting with each other
and can concurrently belong to multiple communities [4].
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Moreover, the composition of bacterial species can change
over time. In some cases, a single species or strain sig-
nificantly affects the state of the community, making it
a causative agent for disease. For example, Helicobacter
pylori is a pathogen that induces peptic disease [5].
However, problems are not always rooted in an individ-
ual species or strain. In many cases it is the differences in
different types of microbial communities, i.e. their com-
position ratios, that affect the overall structure of the gut
microbiota. These overall structures relate to various fea-
tures of interest— for example, the ecosystem process [6],
the severity of the disease [7], or the impact of dietary
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intervention [8]. Therefore, finding co-occurrence rela-
tionships between species and revealing the community
structure of microorganisms is crucial to understanding
the principles and mechanisms of microbiota-associated
health and disease relationships and interactions between
the host and microbe.
Thanks to modern technology, revealing these com-

munity structures is becoming easier. Advances in
high-throughput sequencing technologies such as shot-
gun metagenomics have made it possible to investigate
the relationship among microorganisms within the
whole gut ecosystem and to observe the interaction
between microbiota and their host environments. Many
microbiome projects, including the Human Microbiome
Project (HMP) [9] and the Metagenomics and the Human
Intestinal Tract (MetaHIT) project [10], have generated
considerable data regarding human microbiota by
studying microbial diversity in different environments.
The data consists of either marker-gene data (the
abundance of operational taxonomic units; OTUs) or
functional metagenomic data (the abundance of reaction-
coding enzymes). Although collecting such data is no
longer methodologically difficult, analysis remains chal-
lenging. Even with limited samples, the data always
consists of hundreds or even thousands of variables
(OTUs or enzymes). In addition, there are many rare
species of microbiota, and these are observed only in
very few samples. Thus the data is highly sparse [11]. The
sparse nature of the data means that classical statistical
analysis methods, which were designed for data rich sit-
uations, have limited ability to identify complex features
and structures within the data. Several new methods
are therefore emerging in order to properly analyze and
understand microbiota.
A main challenge in metagenomic data analysis is to

learn the structure of microbial communities and to inves-
tigate the relationship between microorganisms and their
environmental factors. Currently, there are several meth-
ods that seek to clarify this relationship. One is proba-
bilistic modeling of metagenomic data, which often pro-
vides a powerful framework for the problem. For example,
[13] proposed BioMiCo, a two-level hierarchical Bayes
model of a mixture of multidimensional distributions con-
strained by Dirichlet priors to identify each OTU cluster,
called an assemblage, and to estimate the mixing ratio
of the assemblages within a sample. Another popular
method for learning community structure is non-negative
matrix factorization (NMF) [14, 15]. Cai et al. [16] pro-
posed a supervised version of NMF to identify commu-
nities representing the connection between the sample
microbial composition and OTUs and to infer systematic
differences between different types of communities.
Knights et al. [12] reviewed how these statistical meth-

ods can be applied to microbial data. However, the

methods for identifying the relationship between bacte-
rial communities and environmental factors are not well
developed.
These methods are useful in a variety of circumstances,

but they also possess limitations. Both BioMiCo and
supervised NMF can associate only one categorical vari-
able to the microbial community. To our knowledge, no
framework currently exists that adequately details the
interaction between a mixture of microbial communities
and multiple environmental factors. A new framework is
needed to address this problem.
To remedy this situation, we propose a novel approach,

called BALSAMICO (BAyesian Latent Semantic Analy-
sis of MIcrobial COmmunities). The contributions of our
research are as follows:

• BALSAMICO uses the OTU abundances and the
host environmental factors as input to provide a path
to interpret microbial communities and their
environmental factors. In BALSAMICO, the data
matrix of a microbiome is approximated by the
product of two matrices. One matrix represents a
mixing ratio of microbial communities, and the other
matrix represents the abundance of bacteria in each
community. BALSAMICO decomposes the mixing
ratio into the observed environmental factors and
their coefficients in order to identify the influence of
the environmental factors.

• Not only is this decomposition a part of ordinary
NMF, but it improves upon ordinary NMF by
displaying a hierarchical structure. One clear
advantage of the Bayesian hierarchical model is to
introduce stochastic fluctuations at all levels. This
makes it possible to smoothly handle missing data
and to easily give credible intervals.

• BALSAMICO does not require prior knowledge
regarding the communities to which the bacteria
belong. BALSAMICO can estimate an unknown
community structure without explicitly using
predetermined community information.
Furthermore, the parameters of unknown
community structures can be estimated
automatically through Bayesian learning.

• While the computation cost of other methods, which
use Gibbs sampling, is high, we provide an efficient
learning procedure for BALSAMICO by using a
variational Bayesian inference and Laplace
approximation to reduce computational cost. The
software package that implements BALSAMICO in
the R environment is available from GitHub (https://
github.com/abikoushi/BALSAMICO).

The structure of this paper will proceed as follows: The
“Methods” section describes ourmodel and the procedure
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for parameter estimation. The “Results” section contains
an evaluation of the accuracy of the estimator using syn-
thetic data. Additionally, BALSAMICO is applied to clin-
ical metagenomic data to detect bacterial communities
related to colorectal cancer (CRC). Through this content,
both the usefulness and accuracy of BALSAMICO are
confirmed.

Implementation
Calculations for this method are based on the assump-
tion that the microbiome consists of several communities.
BALSAMICO extracts the communities from the data,
using NMF. Suppose that we observe a non-negative inte-
ger matrix Y = (yn,k) (n = 1, . . . ,N , k = 1, . . . ,K), where
yn,k is the microbial abundance of k-th taxon in the n-th
sample. Our goal is to seek a positiveN ×LmatrixW and
an L × K matrix H, such that

Y ≈ WH . (1)

The (n, l)-element wn,l of matrix W can be interpreted
as contributing to community l of sample n. The (l, k)-
element hl,k of matrix H can be interpreted as the relative
abundance of the k-th taxon given community l. We thus
refer to W as the contribution matrix and to H as the
excitation matrix.
In addition, if covariate X = (xn,d) (d = 1, . . . ,D) is

observed (e.g. whether or not the n-th sample has a certain
disease), our aim is to investigate howW changes when X

is given. For this, BALSAMICO seeks the D×Lmatrix V ,
such that

W ≈ aw exp(XV ) (2)

where aw is a shape parameter of gamma distribution and
exp(·) is an element-wise exponential function. As shown
in Fig. 1, BALSAMICO approximates matrix Y using the
product of low-rank matrices.
In brief, we consider the following hierarchical model:

hl ∼ Dirichlet(α), (3)
B = exp(−XV ) (4)

wn,l ∼ Gamma(aw,Bn,l), (5)
tn,l ∼ Poisson(wn,lτn), (6)
sn,l ∼ Multinomial(tn,l,hl) (7)

yn,k =
L∑

l=1
sn,l,k . (8)

Bn,l is the (n, l)-element of matrix B, sn,l,k is the k-th ele-
ment of vector sn,l, τn is an offset term, V is a D × L
matrix, and S = {sn,l,k} are latent variables. The variable S
is introduced for inference to make the calculations more
smooth. In this study, we set τn = ∑K

k=1 yn,k . The total
read count τn is dependent on the setting of the DNA
sequencer, so it is not a reflection of an abundance of bac-
teria. The offset term then adjusts the setting-based effect
on the read counts to accurately estimate W . The (d, l)-
element vd,l ofmatrixV can be interpreted as contributing

Fig. 1 Conceptual diagram of matrix factorization in BALSAMICO
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to the community l of the d-th covariate. This Poisson
observation model is frequently used in Bayesian NMF
[17]. The Gamma distribution is a conjugate prior for the
Poisson distribution and the Dirichlet distribution is the
conjugate prior for the multinomial distribution.
Figure 2 shows a plate diagram of the data generating

process. BALSAMICO estimates parameters W , H, aw,
and V , using variational inference [18]. More details for
this parameter estimation procedure are listed in the sup-
plemental document. After estimating the parameters it
is possible to move on to analyzing real data, but first the
accuracy of the estimation should be confirmed.

Results
Simulation study using gamma distribution
Starting with the BALSAMICO estimated parameters
detailed in “Methods,” we can now evaluate these param-
eters for accuracy before moving on to an analysis of
real-world data. The following simulation experiments
evaluate the bias, the standard deviation (SD), and the
coverage probability (CP) of the estimators. The bias of
θ̂ is defined by the difference between the true value and
the estimated value (E[ θ̂ ]−θ). The coverage probabil-
ity is the proportion at which the 95% credible interval
contains the true value. The synthetic data was natu-
rally produced via the data generating process given by
Eqs. 3–8.
We estimated the parameters in 10,000 replicates of

the experiment. We set X = (1, x1, x2), where 1 is a

Fig. 2 Plate diagram of the data generating process in BALSAMICO.
The white nodes indicate latent variables and the gray nodes indicate
observed variables. The parameters represented by diamonds are
estimated by Laplace approximation

vector of ones. The variables x1 and x2 are sampled inde-
pendently from a standard normal distribution and a
Bernoulli distribution with a probability of 0.5, respec-
tively. When generating the synthetic data, we set N =
100, K = 100, L = 3, τn = 10, 000, and αk = 1
for all k. We also set αk = 1 for all k when estimat-
ing parameters, which is equivalent to a non-informative
prior distribution. To avoid the problem of label switch-
ing [19], the estimated parameters are rearranged as
v21 ≤ v22 ≤ v23.
The gamma distribution changes considerably when the

shape parameter aW is smaller than 1, which leads to
a heavier tail than an exponential distribution. Conse-
quently, we conducted two patterns of the simulation.
Table 1 shows these results. The first half of the table
shows the case of a heavy tail.
When the shape parameter aw is set to 0.5, the credible

intervals of vi1 (i = 1, 2, 3) have under-coverage. However,
this was only observed in intercept terms. In most cases,
the CP was almost equal to the nominal value. This result
indicates that there is no inconsistency when interpreting
the estimated coefficients.
Moreover, the parameters were estimated with small

biases. By this we know that the proposed method
produces reasonable estimates.

Table 1 Bias, SD, and CP of the estimates

True value Bias SD CP

aw 0.5 -0.01 0.10

v11 1.00 0.00 0.30 0.86

v12 -0.50 -0.00 0.15 0.95

v13 0.50 0.00 0.30 0.94

v21 1.00 0.01 0.30 0.86

v22 0.00 0.00 0.15 0.95

v23 0.00 0.00 0.30 0.94

v31 1.00 0.01 0.30 0.86

v32 0.50 0.00 0.15 0.95

v33 0.50 0.01 0.29 0.95

aw 2.00 0.06 0.17

v11 1.00 -0.04 0.13 0.93

v12 -0.50 -0.00 0.07 0.94

v13 0.50 0.00 0.15 0.94

v21 1.00 -0.04 0.13 0.92

v22 0.00 0.00 0.07 0.94

v23 0.00 0.00 0.15 0.94

v31 1.00 -0.03 0.13 0.94

v32 0.50 -0.00 0.07 0.94

v33 -0.50 0.01 0.15 0.95

The parameters in boldface is the intercepts
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Simulation study for model selection
Next, we evaluate model selection by cross-validation.
When generating the synthetic data, we set L = 3 and
aW = 1. Other settings were the same as the previous
sub-section. We select the number of communities by the
10-fold cross validation in each trial. In all 100 trials, L = 3
was selected for all 100 times. Figure 3 shows the dis-
tribution of the mean of the test log-likelihood n each
trial.

Simulation study under a more complicated situation
To investigate the behavior of the estimates in more com-
plex cases, we also conducted a simulation with a larger
number of explanatory variables and communities. We
estimated the parameters in 100 replicates of the exper-
iment. We set X = (1, x1, x2, x3), where 1 is a vector of
ones. The variables x1 are sampled from standard normal
distribution. The variables x2 and x3 are independent and
follow a Bernoulli distribution with a probability of 0.5.
When generating the synthetic data, we set L = 7. The
coefficients vd,l were generated independently following
from a standard normal distribution. Other settings were
the same as the previous sub-section.
Figure 4 shows the comparison between the estimates

and the true value of V . We found that the mean of
the estimates is close to the true values. The coverage
probabilities are shown in the Supplemental Table S1.

Simulation study using other distributions
We conducted two simulations to assess the sensitivity of
BALSAMICO.We generatedW from a distribution other
than the gamma distribution and evaluated the behavior
of the estimates of V . Since W is a non-negative matrix,
we use lognormal and Weibull distribution. In the log-
normal case, we set the log-mean parameters to XV and
the log-variance parameter to 1. In the Weibull case, we
set the shape parameter to 2, and the scale parameters
to exp(XV ). Other settings were the same as the sub-
section “Simulation study using gamma distribution”. We
estimated the parameters in 100 replicates of the exper-
iment. Tables 2-3 show these results. It can be seen that
the estimated values of the intercept terms have a large
bias, but the estimated values of the coefficients are close
to true values. This result indicates that our approach
is robust to the misspecification of the underlying
model.
This being confirmed, it is now possible to apply the

proposed method to real data to assess how well it con-
forms to current studies.

Results on real data
Zeller’s data
This section tests the usefulness of our results by
investigating the identification of gut dysbiosis asso-
ciated with the development of CRC. Zeller et al. [20]

Fig. 3Mean of test log-likelihood evaluated by 10-fold cross-validation. The x-axis corresponds to the number of communities L
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Fig. 4 The comparison true V and the mean of estimates V̂ . The error bars indicate standard deviation

studied gut metagenomes extracted from 199 per-
sons: 91 CRC patients, 42 adenoma patients, and 66
controls. The data is available in the R package “curat-
edMetagenomicData” (https://github.com/waldronlab/
curatedMetagenomicData). This analysis uses the
abundance of genus-level taxa.
We set αk = 1 and use the disease label, gender, and age

as covariates. The age variable is scaled by dividing by 100.
The number of communities L = 7 was selected using
leave-one-out cross-validation (Fig. 5).

Table 2 mean and SD of the estimates (using lognormal
distribution)

True Mean SD

aw 1.18 0.11

v11 1.00 1.27 0.22

v12 -0.50 -0.50 0.12

v13 0.50 0.55 0.28

v21 1.00 1.28 0.24

v22 0.00 -0.03 0.12

v23 0.00 -0.01 0.27

v31 1.00 1.33 0.22

v32 0.50 0.48 0.13

v33 -0.50 -0.49 0.27

The parameters in boldface is the intercepts

Figure 6 shows the estimatedWH and normalized abun-
dance (yn,k/{

∑L
k=1 yn,k}). The observed data matrix is

approximated byWH.
Figure 7 shows estimates of coefficient V . First, we

can see that the human microbiome is not significantly
dependent on gender as the absolute value of coefficients
for gender is small, and their credible intervals contain
zero. It can be seen that the coefficient of the variable
“age” has a large confidence interval. We examined the
results of removing the variable “age” and found that the

Table 3 mean and SD of the estimates (using Weibull
distribution)

True Mean SD

aw 3.28 0.28

v11 1.00 -0.31 0.10

v12 -0.50 -0.51 0.06

v13 0.50 0.50 0.11

v21 1.00 -0.31 0.12

v22 0.00 0.00 0.05

v23 0.00 -0.01 0.11

v31 1.00 -0.31 0.11

v32 0.50 0.49 0.06

v33 -0.50 -0.49 0.11

The parameters in boldface is the intercepts

https://github.com/waldronlab/curatedMetagenomicData
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Fig. 5Mean of test log-likelihood evaluated by leave-one-out
cross-validation (Zeller’s data). The x-axis corresponds to the number
of communities L

coefficients for the other variables did not change signif-
icantly (Supplementary Figure S1). Focusing on CRC, we
can see that the credible intervals of the coefficient for
community 6 do not contain zeros. Moreover the value
of coefficients for community 6 increases as adenoma

progresses to CRC. Community 6 is thus strongly sus-
pected of being associated with the disease.
Figure 8 shows the top five estimates of hl,k in each

community l. Arumugam et al. [21] reports that the
human gut microbiome can be classified into several
types, called enterotypes. Arumugam et al. [21] shows
that an enterotype is characterized by the differences in
the abundance of Bacteroides, Prevotella, and Ruminococ-
cus. Communities 1, 2, and 4 are characterized by an
abundance of Bacteroides, Prevotella, and Ruminococcus
respectively (Fig. 8). Communities 1, 2, and 4 may be
enterotype-like clusters.
Community 6, which is suspected of being associated

with CRC, is characterized by abundant Akkermansia.
This is markedly different from the other communi-
ties and deserves further examination. We examined the
results of changing the number of communities L to 6 or 8,
and found that major genus of Community 6, which is sus-
pected of being related to CRC is not significantly changed
(Supplementary Figures S2–S4))
To detect the bacteria that exist exclusively in commu-

nity 6, we use the following quantity:

ηl,k = hl,k∑
l=1 hl,k

. (9)

Fig. 6 Comparison betweenWH (fitted) and normalized abundance (observed)
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Fig. 7 Estimated coefficients V for the environmental factors (Zeller’s data). The each panel corresponds to community, the x-axis corresponds to
the value of coefficients and the y-axis corresponds to the variable name. Where the term of “intercept” means constants not depends on
explanatory variables. The bars indicate 95%-credible intervals

ηl,k is the ratio of the relative abundance of bacteria k in
community l to that of other communities.
The bacteria belonging to community 6 are suspected

of being associated with CRC. Table 4 shows esti-
mates of η6,k greater than 0.95. This result indicates
that these bacteria are related to CRC. These bacteria
that characterize community 6 are Akkermansia, Desul-
fotomaculum, Mucispirillum, Methanobacterium, Hahel-
laceae, Nakaseomyces, Fretibacterium, Alphabaculovirus,
Synergistes, and Enhydrobacte. The connection between
these bacteria and CRC is further supported by current
studies.

• Akkermansia: Weir et al. [22] reports that
mucin-degrading bacteria, Akkermansia muciniphila,

was present in a significantly greater proportion in
the feces of colon cancer patients. This is consistent
with our result.

• Desulfotomaculum: Desulfotomaculum belongs to
sulfate-reducing bacteria, which obtains energy by
oxidizing organic compounds or molecular hydrogen
while reducing sulfate to hydrogen sulfide. Hydrogen
sulfide is toxic to intestinal epithelium cells and
causes DNA damage in human cells [23].

• Mucispirillum: Similar to Akkermansia,
Mucispirillum is a mucus-resident bacteria and may
coexist with Akkermansia. If so, these bacteria are
distributed in the mucus layer that covers the
mucous membrane of the intestine [24].



Abe et al. BMC Genomics          (2021) 22:104 Page 9 of 17

Fig. 8 Estimated excitation matrixH (Zeller’s data). Five most frequently occurring genus in each community

• Methanobacterium: Patients with CRC contain a
higher proportion of breath methane excreters than
the control group [25]. Methanobacterium is a
methanogenic bacterium.

• Enhydrobacter: Xu & Jiang [26] apply linear
discriminative analysis to biomarker discovery. The
result suggests that Enhydrobacter can be a
biomarker for CRC.

The information found in the above studies strongly sup-
ports the results returned by applying our method to real

Table 4 Estimates of η6,k greater than 0.95

Genus η

Synergistes 1.000

Methanobacterium 1.000

Desulfotomaculum 1.000

Nakaseomyces 1.000

Fretibacterium 1.000

Akkermansia 1.000

Alphabaculovirus 0.999

Enhydrobacter 0.999

Mucispirillum 0.998

Hahellaceae_unclassified 0.998

data. This suggests that BALSAMICO is able to success-
fully and accurately analyze communities of bacteria and
their environmental interactions.
Finally, we compare results for L = 5, L = 6 and

L = 7. Supplemental Figures S2 and S3 show the the
results for L = 5. Figure S4 and S5 show the the results
for L = 5. When L = 5, the community 1 is positively
correlated with CRC. The major genera of community 1
include Akkermansia and Alistipes. This trend is consis-
tent with the result for L = 7. When L = 6, the major
genera of community 6 include Akkermansia and Alis-
tipes and the community 6 is positively correlated with
CRC.

David’s data
David et al. [27] studied longitudinal fecal metagenome
from two Donors A and B. Donor A went on a trip abroad
in days 71 to 122 and donor B has enteric infection in
days 151 to 159. The data is available in the R pack-
age “themetagenomics”. We analyze David’s dataset using
BALSAMICO to investigate the bacteria associated with
food poisoning and the changes in microbiome after food
poisoning. In this analysis, we regard donor A as a base-
line. This analysis uses the abundance of genus-level taxa.
We set αk = 1 and use the donor label, date, and the inter-
action of these as covariates. The date variable is coded
as intervals (0,50], (50, 100], (150,200], and (200, 364].
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Fig. 9Mean of test log-likelihood evaluated by leave-one-out cross-validation (David’s data). The x-axis corresponds to the number of communities L

Although BALSAMICO could treat date as a continuous
predictor, the effect of time is likely to be non-linear, so we
prefer to treat time as a categorical variable. Results for an
analysis where we treat time as a continuous variable are
in Supplemental Figures S6–S8.
The number of communities L = 6 was selected

using 10-fold cross-validation (Fig. 9). Figure 10 shows
estimates of coefficient V . We observed that, in the
period of (150,200] corresponding to the period when
donor B suffered food poisoning, the abundance of com-
munity 6 in Donor B increased (the coefficient for
“DonorB:T(150,200]” at the community 6 is large and
its credible interval does not contain zero). Furthermore,
Donor A was exposed to a novel diet and environment
while traveling and had diarrhea on days 80 to 85 and 104
to 113. Corresponding to this fact, the coefficient of the
baseline of community 6 is large in the periods (50, 100]
and (100, 150].
Figure 11 shows the top five estimates of hl,k in each

community l. Community 6 is characterized by abun-
dant EscherichiaShigella and Salmonella. These bacteria
cause food poisoning. David et al. reported that donor B
had a Salmonella infection and reads from the Enterobac-
teriaceae (which include EscherichiaShigella) increased
during donor B’s infection [27]. Our result is consistent
with this diagnosis.

Next, the abundance of community 3 at donor B
increases in (150,200] and (200, 364] corresponding to
the period after the treatment of food poisoning. Com-
munity 3 is characterized by abundant Lachnospiraceae.
The results show that food poisoning and its treatment
changed the composition of the microbiome.

Fig. 10 Estimated coefficients V for the environmental factors
(David’s data). The each panel corresponds to community, the x-axis
corresponds to the value of coefficients and the y-axis corresponds to
the variable name. Where the term of “intercept” means constants
not depends on explanatory variables. The bars indicate 95%-credible
intervals
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Fig. 11 Estimated excitation matrixH (David’s data). Five most frequently occurring genus in each community

Fig. 12 Estimated coefficients V for the environmental factors (Gajer’s data). The each panel corresponds to community, the x-axis corresponds to
the value of coefficients and the y-axis corresponds to the variable name. Where the term of “intercept” means constants not depends on
explanatory variables. The bars indicate 95%-credible intervals
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Fig. 13 Estimated excitation matrixH (Gajer’s data). The x-axis corresponds to the community, and the y-axis corresponds to the genus. The black
parts indicate high abundance, and the white parts indicate zero

Comparison with other state-of-the-art methods
Comparisonwith bioMiCo
We also compared the results of BALSAMICO with those
of BioMiCo [13] using Gajer’s data [28] which they ana-
lyzed. This dataset consists of vaginal microbiome sam-
ples from 32 women at different time points (a total of 889
samples), together with the Nugent score [29], which is a
measure of bacterial vaginosis for each sample. We used
this Nugent score, age, and race (Black=0, White=1, His-
panic=5, and others=4). The age variable was scaled by
dividing by 10. We set αk = 1. To simplify comparison
with those of BioMiCo, we set the number of communities
to 2.
Figures 12 and 13 show the estimates of V and

H, respectively. Figure 12 shows the samples with the

categories “intermediate” and “high” have a high propor-
tion of community 1 and a low proportion of commu-
nity 2. Although the result of BALSAMICO is very close
to that of BioMiCo, BALSAMICO provides more use-
ful sample-level information compared with BioMiCo. For
example, BALSAMICO shows that the samples with the
race “Hispanic” have a low proportion of community 1
and community varies greatly by sample age.

Comparisonwith supervised NMF
We evaluated the performance of BALSAMICO with
other state-of-the-art methods on the real data.
We first compared the results of BALSAMICO with

those of the supervised NMF [16] using Zeller’s data. We
used the R package SpNMF with default settings. Since

Table 5 Five most frequently occurring genus in each community and each response (Zeller’s data)

Label CRC Control

Community 1 2 1 2

Bacteroides Akkermansia Bacteroides Ruminococcus

Eubacterium Prevotella Eubacterium Bifidobacterium

Subdoligranulum Escherichia Faecalibacterium Streptococcus

Ruminococcus Methanobrevibacter Ruminococcus Eubacterium

Faecalibacterium Butyrivibrio Subdoligranulum Blautia
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Fig. 14 Accuracy with 10-fold cross validation by logistic regression (Zeller’s data)

SpNMF can only handle binary responses, we exclude
adenoma samples and coded 0 for healthy controls and
1 for CRC patients. The number of communities was
selected by Cai’s proposed method which is implemented
as an R function “chty”.
As a result, SpNMF detected two microbial communi-

ties related to CRC. Table 5 shows the five most abundant
genera in each community and each response. As can be
seen from the table, community 1 for CRC is quite simi-
lar to community 1 for control. SpNMF is not a method
of calculating the importance or significance of variables.
Thus, in order to interpret this results, we should per-
form another analysis such a logistic regression using the
obtained feature quantitiesW .

Table 6 Regression coefficients by logistic regression using
BALSAMICO (Zeller’s data)

Variable Estimate P-value

(Intercept) 0.023 0.972

Wn,1 2.002 0.082

Wn,2 1.180 0.384

Wn,3 1.057 0.357

Wn,4 -2.493 0.053

Wn,5 -3.234 0.048

Wn,6 5.144 0.007

To compare the goodness of feature extraction, logis-
tic regression was performed using the contribution
matrix W obtained by BALSAMICO and SpNMF as
the explanatory variable. However, because the matrix
W from BALSAMICO is constrained by

∑L
l=1 wn,l ≈

1 for all n, wn,7 is removed as an explanatory variable.
We classified CRC or healthy and evaluate the accuracy
with 10-fold random cross validation. The results are
shown in Fig. 14. The mean accuracy was 0.71 for both
methods.
Tables 6–7 show the regression coefficients of logis-

tic regression and these p-values of Wald test. From the
Table 7, community 2 for control in the Table 5 are nega-
tively correlated with CRC. The community 2 for “CRC” in
SpNMF is a little similar to community 6 in BALSAMICO.

Table 7 Regression coefficients by logistic regression using
SpNMF (Zeller’s data)

Variable Estimate P-value

(Intercept) 0.246 0.572

Wn,1 (CRC 1) 1.24 × 10−8 0.051

Wn,2 (CRC 2) 3.37 × 10−8 0.061

Wn,3 (control 1) − 6.72 × 10−9 0.235

Wn,3 (control 2) − 3.30 × 10−8 0.011
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However the p-value of this variable in logistic regres-
sion is not significant at the 5% level. On the other hand,
from the Table 6, community 6 in BALSAMICO is posi-
tively correlated with CRC. This result is consistent with
previous sub section.
Next, we compare between supervised NMF and BAL-

SAMICO on David’s data. In the David’s data, we con-
ducted two analyses. First, we coded donor A and B as 0
and 1, respectively. Next, we exclude donor A and coded
0 for pre-infection term (days 0 to 150) and 1 for post-
infection term (days 151 to 364). As a result of first anal-
ysis, SpNMF detected four microbial communities which
characterized donor A and two communities which char-
acterized donor B. Table 8 shows the five most abundant
genera in each community and each response.
As the same manner above, we perform logistic regres-

sion using the contribution matrix W obtained by BAL-
SAMICO and SpNMF as the explanatory variable. We
classified donor A or B and evaluate the accuracy with 10-
fold random cross validation. Themean accuracy was 0.96
for both methods.
Tables 9–10 show the regression coefficients of logistic

regression and these p-values of Wald test.
In the second analysis, SpNMF detected two micro-

bial communities related to post-infection term. Table 11

Table 8 Five most frequently occurring genus in each
community and each response (first analysis of David’s data)

label Donor B

community 1 2

Bacteroides Bacteroides

Faecalibacterium Faecalibacterium

Lachnospiraceae Alistipes

Anaerostipes Butyrivibrio

Phascolarctobacterium Coprococcus_2

label Donor A

community 1 2

Faecalibacterium EscherichiaShigella

Anaerostipes Bacteroides

Blautia Salmonella

Subdoligranulum Clostridium_sensu_stricto_1

Erysipelotrichaceae_UCG-003 Veillonella

label Donor A

community 3 4

Bacteroides Erysipelotrichaceae_UCG-003

Faecalibacterium Blautia

Parabacteroides Anaerostipes

Phascolarctobacterium Faecalibacterium

Ruminiclostridium_5 Subdoligranulum

Table 9 Regression coefficients by logistic regression using
SpNMF (first analysis of David’s data)

Variable Estimate P-value

(Intercept) -0.902 0.016

Wn,1 (donor B) 1.14 × 10−4 0.000

Wn,2 (donor B) 1.60 × 10−4 0.000

Wn,3 (donor A) − 5.70 × 10−5 0.010

Wn,4 (donor A) − 1.51 × 10−5 0.488

Wn,5 (donor A) − 8.04 × 10−6 0.361

Wn,6 (donor A) − 4.14 × 10−4 0.024

shows the five most abundant genera in each community
and each response. We perform logistic regression using
the contributionmatrixW obtained by BALSAMICO and
SpNMF as the explanatory variable. We classified pre or
post infection and evaluate the accuracy with 10-fold ran-
dom cross validation. The mean accuracy was 0.98 for
both methods.
Tables 12–13 show the regression coefficients of logistic

regression and these p-values of Wald test. The commu-
nity 1 for “post” in SpNMF is a little similar to community
6 in BALSAMICO. However the p-value of this variable in
logistic regression is not significant at the 5% level. Thus,
if we have no prior knowledge, we may not noticed that
this community associated with food-poisoning.
Finally, linear regression was performed using the

contribution matrix W obtained by BALSAMICO and
SpNMF as the explanatory variable. We predict sample
days and evaluate the root mean squared error (RMSE)
with 20-fold random cross validation. As above, in apply-
ing SpNMF, we set the pre-infection term as 0, and the
post-infection term as 1. The means and standard devia-
tions of the RMSE were 43.2 and 11.2 for BALSAMICO
and 48.3 and 10.7 for SpNMF, respectively. To compare
the RMSE of the twomethods, we performed paired t-test
and paired Wilcoxon test and the p-values were 0.026 and
0.044, respectively.
To confirm the affect of the sequencing depth, we have

sampled yn,k from the empirical distribution, set total read
count τn to 10000, and performed the same regression on

Table 10 Regression coefficients by logistic regression using
BALSAMICO (first analysis of David’s data)

Variable Estimate P-value

(Intercept) 5.690 0.000

Wn,2 -23.724 0.000

Wn,3 0.925 0.652

Wn,4 -7.061 0.000

Wn,5 -10.113 0.000

Wn,6 -6.457 0.000
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Table 11 Five most frequently occurring genus in each community and each response (second analysis of David’s data)

Label Post Pre

Community 1 2 1 2

EscherichiaShigella Bacteroides Bacteroides Bacteroides

Bacteroides Faecalibacterium Butyrivibrio Faecalibacterium

Anaerostipes Lachnospiraceae Alistipes Coprococcus_2

Blautia Anaerostipes Faecalibacterium Alistipes

Salmonella Phascolarctobacterium Ruminococcus_2 Ruminococcus_2

David’s data. The means and standard deviations of the
RMSE were 42.7 and 8.1 for BALSAMICO and 48.3 and
10.7 for SpNMF, respectively. To compare the RMSE of
the two methods, we performed paired t-test and paired
Wilcoxon test and the p-values were 0.022 and 0.083,
respectively.
The results of these analyses indicate that BALSAM-

ICO has an advantage over other state-of-the-art meth-
ods, SpNMF, when investigating the relationship between
multiple explanatory variables and bacterial communities.

Conclusions
We proposed a novel hierarchical Bayesian model to dis-
cover the underlying microbial community structures and
the associations between microbiota and their environ-
mental factors based on microbial metagenomic data.
One of the most important features of our model is to
decompose the contribution matrix into observed envi-
ronmental factors and their coefficients. The parameters
for this model were estimated using variational Bayesian
inference, as described in “Methods”. In terms of com-
putation, this parameter-estimation procedure offers two
advantages over existing methods. First, in an algorithm
that uses Gibbs sampling, the computational cost is large
due to the large number of samples required. The Gibbs
sampler requires directly sampling latent variables sn,l,k .
Therefore, the per-iteration computational complexity of
the Gibbs sampling procedure is O(NK). By contrast,
our procedure involves a matrix operation that substi-
tutes for this requirement, helping to reduce the com-
putational cost. The variational inference can directly
update sufficient statistics

∑
k sn,l,k and

∑
n sn,l,k (see

Table 12 Regression coefficients by logistic regression using
SpNMF (second analysis of David’s data)

Variable Estimate P-value

(Intercept) -2.388 0.009

Wn,1 (post) 8.29 × 10−4 0.635

Wn,2 (post) 2.04 × 10−4 0.003

Wn,3 (pre) − 4.05 × 10−5 0.102

Wn,4 (pre) 2.85 × 10−5 0.066

Supplemental materials). This reduced practical calcula-
tion time. In the analysis of Zeller’s data, with L = 7,
the calculation time in our Mac book (processor; 3.5 GHz
Intel Core i7 and memory; 16 GB 2133 MHz LPDDR3)
was 9.378 seconds.
Second, our procedure involves hyper-parameter tun-

ing. The parameters of the gamma prior distribution are
estimated from the data. The parameters of the Dirichlet
prior distribution can be non-informative, and the num-
ber of communities L can be selected by cross-validation.
The results of our simulations suggest that the estima-

tors of the effects of environmental factors V are con-
sistent. Generally, other NMF methods lack consistency
because they may not have a unique solution [16]. Indeed,
the consistency of our method increases the reproducibil-
ity of the analysis. Moreover, the credible intervals of
coefficient V are easily computed and help to identify
notable bacteria.
From the perspective of data analysis, BALSAMICO has

useful properties. Using the Dirichlet prior distribution,
the excitation matrix H is easily interpreted as a relative
abundance of species in communities. As shown in Fig. 13,
hl,k obtains a value that is often close to zero. This prop-
erty thus expresses data sparsity. Furthermore, the Pois-
son observation model may be applicable to other count
data (for example, gene expression data). The hierarchical
structure of our model allows it to capture (i) dependen-
cies between environmental factors and the community
structure (represented by coefficient V ), and (ii) the indi-
vidual differences in microbial composition (represented
by the contribution matrix W ). Thus, BALSAMICO can

Table 13 Regression coefficients by logistic regression using
BALSAMICO (second analysis of David’s data)

Variable Estimate P-value

(Intercept) -9.842 0.002

Wn,2 51.729 0.038

Wn,3 18.012 0.006

Wn,4 12.686 0.005

Wn,5 20.053 0.132

Wn,6 8.936 0.007
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be used to find latent relationships between bacteria. As
discussed in “Results,” BALSAMICO’s findings from real
data are supported by previous studies. This demonstrates
that BALSAMICO is effective at knowledge discovery.
This research has possibilities for expansion and may

provide positive contributions to future studies. In many
situations, microbiome data is obtained as time series
with repeated measurements for each sample. To han-
dle the time series data, our model could be expanded
so the contribution matrix W is extended from a matrix
to a tensor. This facilitates the analysis of time-varying
bacterial composition during the progression of a dis-
ease. Furthermore, although this research was limited to
the study of the human microbiome, BALSAMICO will
prove useful to other studies seeking to find relationships
between various microbiomes and environmental factors.
This will allow for a better understanding of the cause of
disease and how disease is impacted by the microbiome
environment.
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