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Abstract

Background: One of the most important goals for the rainbow trout aquaculture industry is to improve fillet yield
and fillet quality. Previously, we showed that a 50 K transcribed-SNP chip can be used to detect quantitative trait
loci (QTL) associated with fillet yield and fillet firmness. In this study, data from 1568 fish genotyped for the 50 K
transcribed-SNP chip and ~ 774 fish phenotyped for fillet yield and fillet firmness were used in a single-step
genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-
based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding
values (EBV).

Results: The genomic predictions outperformed the traditional EBV by 35% for fillet yield and 42% for fillet
firmness. The predictive ability for fillet yield and fillet firmness was 0.19–0.20 with PBLUP, and 0.27 with ssGBLUP.
Additionally, reducing SNP panel densities indicated that using 500–800 SNPs in genomic predictions still provides
predictive abilities higher than PBLUP.

Conclusion: These results suggest that genomic evaluation is a feasible strategy to identify and select fish with
superior genetic merit within rainbow trout families, even with low-density SNP panels.
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Background
Aquaculture has great potential to enhance food security
and meet the increasing consumer demand for seafood
[1, 2]. However, one of the challenges is the lack of gen-
etically improved strains of fish for aquaculture [3, 4].
Selective breeding programs can produce fish of im-
proved genetics for heritable traits that positively impact
aquaculture production [5, 6]. Breeding programs in
rainbow trout have focused on the growth rate, disease
resistance, and fat content [7–9].
Fillet yield has been ranked among the top traits

impacting the industry returns [10]. Also, quality

attributes can affect industry profitability and determine
consumer’s attitudes towards the product. For instance,
loss of fillet firmness contributes to fillet downgrading
and economic losses to the industry [11]. Even though
important for the industry, fillet yield and firmness have
not received much attention because they cannot be mea-
sured directly on breeding candidates, which makes gen-
etic selection for these traits hard to implement [12, 13].
Moderate levels of heritability estimates for fillet yield [12]
and fillet firmness [13] have been reported in rainbow
trout, allowing potential genetic improvement through se-
lective breeding programs [14].
Statistical models based on phenotypes and pedigree

information have been widely used in traditional genetic
improvement programs to estimate EBV and identify the
best selection candidates in animal populations [15].
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However, applying genomic approaches has the potential
to enhance and expedite genetic gains in breeding pro-
grams [16]. Although the implementation of genomic se-
lection (GS) in livestock animals started in 2008 [17], it
took more time to have this technology adopted in aqua-
culture species. The delayed incorporation of genomic
information in rainbow trout breeding programs was
mainly due to the lack of dense SNP arrays [18]. A re-
cently developed 50 K SNP chip revealed the complex
polygenic nature of fillet yield [19] and fillet firmness
[13], suggesting GS as a practical strategy for rainbow
trout breeding [20].
Selection based on GEBV can be performed at an early

age with high accuracy, once a DNA sample for selection
candidates is obtained [21]. The use of genomic infor-
mation has been shown to be effective in increasing the
gains in accuracy of GEBV for multiple traits in aquacul-
ture species, including Atlantic salmon [22, 23], catfish
[24], tilapia [20, 25], and rainbow trout [12, 26–29]. For
rainbow trout, the accuracy of GEBV was assessed for
body weight, carcass weight, fillet weight, fillet yield [12],
and resistance to diseases such as bacterial cold water
disease (BCWD) [26, 27], columnaris disease [28], and
infectious pancreatic necrosis virus [29]. GS will allow
within-family selection and hence increase the accuracy
of genomic predictions and selection response, especially
for lethally measured traits where within-family selection
relies on traits measured in sibs of breeding candidates
[25]. Additionally, GS has the potential to decrease the
rates of inbreeding by selecting non-sib candidates from
more families [26]. Genomic prediction can lead to
higher genetic gains relative to pedigree-based selective
breeding methods, which may, partially, cover the extra
cost of genotyping [30]. Furthermore, GS is particularly
advantageous in aquaculture species because the high fe-
cundities of these species allow for the rapid amplifica-
tion of elite genetics.
Although the use of genomic information generated

from high-density SNP arrays has been demonstrated to
expedite the rate of genetic gain in breeding programs,
the genotyping cost is still high and alternative strategies
are needed to reduce the cost of identifying elite breed-
ing candidates [25]. Cost-effective strategies were previ-
ously assessed, yielding higher genomic prediction
accuracies than those estimated using the pedigree-
based PBLUP model [23, 25, 26]. The cost-reducing
methods include using reduced-density SNP panels [26,
31, 32] and genotype imputation [21, 25, 33, 34]. How-
ever, imputations are prone to errors, which leads to less
reliable genomic predictions [33]. Recently, the impact
of low-density SNP panels on the accuracy of genomic
predictions has been increasingly studied [26, 31, 32, 35,
36]. In rainbow trout, a 500 SNP panel showed higher
genomic prediction accuracies for BCWD resistance

(0.50–0.56) than traditional EBV (0.36) [26]. The study
showed that the ssGBLUP model outperformed other
genomic models, yielding high accuracy of genomic pre-
dictions with the least bias when reducing SNP panel
density [26].
Recently, the accuracy of genomic prediction was

assessed for fillet yield in rainbow trout using a 57 K
genomic SNP panel [12]; however, the impact of redu-
cing the SNP panel density on the gains in accuracy for
fillet yield relative to the traditional PBLUP has not been
investigated. Additionally, there are no reports on the
benefits of using GS for quality traits such as fillet firm-
ness in rainbow trout. Therefore, the objectives of this
study were to utilize a recently developed 50 K tran-
scribed SNP chip [19] to 1) evaluate the predictive ability
of GS for fillet yield and fillet firmness in rainbow trout;
and 2) investigate the impact of reducing the SNP panel
density on the ability to predict fillet yield and fillet
firmness.

Results and discussion
Phenotypes and heritability estimates
The total numbers of phenotyped fish for fillet yield and
shear force were 775 and 772, respectively, and varied
per year-class (YC) with 471 fish in YC 2012, and 304
fish in YC 2010. Descriptive statistics of the data are
provided in Table 1. A slightly higher fillet yield and
shear force were observed for fish from the YC 2012
compared to that from YC 2010. A small phenotypic
correlation (R = 0.14) was observed between fillet yield
and shear force in this study.
A total of 1572 genotyped fish passed the quality check

(QC) and were available for this study (four samples
were removed due to fish ID conflicts). The total num-
ber of genotyped individuals from YC 2010 and 2012
were 400 and 558, respectively (Table 1). In addition,
380 fish were genotyped before YC 2010, whereas 234
were genotyped after YC 2012. No phenotypic data were
available for fish produced before YC 2010 or after YC

Table 1 Descriptive statistics and the number of genotyped
and phenotyped fish per year class

Year class Fillet yield (%) Shear force (g/g)

2010 2012 2010 2012

Mean 48.21 49.59 448.92 491.91

Median 48.45 49.68 450.91 487.01

Max 55.30 55.62 724.39 822.67

Min 34.77 39.22 166.98 234.24

SD 2.64 1.94 87.53 81.44

CV% 5.48 3.91 5.13 6.04

Phenotyped 304 471 301 471

Genotyped 400 558 400 558
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2012 (Table 1). All fish had complete pedigree informa-
tion dating back to YC 2002. Fig. S1 depicts a heatmap
of the pedigree (A22) and the genomic (G) relationship
matrices for data generated from the population used in
this study.
In this study, the heritability estimates were calculated

based on all data from YC 2010 and YC 2012 using
PBLUP and ssGBLUP models and are shown in Table 2.
Variance components are provided in Additional file 1
(Table S1). The estimated heritability values using both
methods were higher for fillet firmness than for fillet
yield (Table 2). Other studies reported a slightly higher
heritability (0.34–0.36) of fillet yield in other rainbow
trout populations [12, 37]. The estimated heritability
values indicate a moderate additive genetic component
for these traits. Garcia-Ruiz et al. (2016) showed that
genomic information can help to increase accuracy even
for lowly heritable traits. Additionally, increased accur-
acies in a trait with h2 = 0.14 was reported in Atlantic
salmon using GBLUP [22], which provides evidence for
the feasibility of GS in the current NCCCWA fish
population.

Genomic predictions using 50 K SNP panel
The predictive ability of the genomic model was evalu-
ated using a five-fold cross-validation scheme. Using five
replicates helps to minimize errors that could be gener-
ated due to a single-fold sampling [28]. Table 2 shows
the average predictive ability for fillet yield and firmness
under the five-fold cross-validation strategy. For both
traits, using genomic information through ssGBLUP en-
hanced the ability to predict fish performance relative to
PBLUP. Genomic information has a greater impact on
the predictive ability of lethally-measured traits than
traits that can be directly measured on fish [12, 24]. In
this study, genomic information increased predictive
ability by 35 and 42%, compared to PBLUP, for fillet
yield and firmness, respectively. Gonzalez-Pena et al.
[12] also reported higher accuracy of GEBV compared
to EBV; 0.55 and 0.13, respectively. Similar gains
through GS have been achieved in other aquaculture
species. For instance, a 29% increase in predictive ability,
relative to PBLUP, was reported for residual carcass
weight in channel catfish [24].

Variable gains of accuracy using genomic information
were reported in Atlantic salmon for lice resistance
(52%), fillet color (22%) [22], and growth traits (20%)
[23]. The considerable variation in the relative improve-
ment of accuracy between the traits is consistent with
the difference in predictive ability between fillet yield
and firmness in the current study. Even though high pre-
dictive abilities have been achieved by applying genomic
information in this study, using a higher number of fish
in the training population would help to achieve higher
prediction accuracies. Low predictive abilities (0.46–
0.49) for BCWD phenotypes in trout were observed
using ssGBLUP compared to PBLUP (0.50) when a small
training sample size (n = 583) was used [38]. Incorporat-
ing more genotyped and phenotyped fish in the analysis
improved the accuracy of the GEBVs by ~ 80% [27].
The regression coefficients (b1), representing inflation

for fillet yield and firmness, are shown in Table 2. For
fillet firmness, GEBV was less inflated than EBV. These
results are consistent with results reported for harvest
weight and residual carcass weight in catfish [24] and
BCWD resistance in rainbow trout [27], showing that
the genomic information provides not only more accur-
ate but also less biased evaluations. In this study, vari-
ance components estimated from the whole dataset were
used. Using the same variance components for a five-
fold cross-validation strategy yielded less inflated GEBV
for fillet yield, close to 1 (b1 = 0.97), than that of the
harvest weight (b1 = 0.92) and residual carcass weight
(b1 = 0.91) in catfish [24], and BCWD survival status in
rainbow trout (b1 = 0.86) [27]. On the other hand,
breeding values for fillet firmness were more inflated (b1
= 0.88) than those for fillet yield. Updating the variance
components for the training datasets in catfish have
been suggested to reduce the inflation of the genomic
evaluations [24].
Fish used in this study were sampled from a genetic

line selected for a high growth rate. Previously, when
fillet yield and shear force phenotypes were regressed on
body weight, coefficient of determination (R2) values of
0.56 and 0.01 were observed, respectively [39]. Selection
for growth in this population might have less representa-
tion of fish with low-ranked phenotype for fillet yield.
Fish with phenotypes used in the study were sampled in
a manner that captures between- and within-family

Table 2 Heritability, predictive ability, and regression coefficient of adjusted phenotype on (G) EBV for fillet yield and fillet firmness
using PBLUP and ssGBLUP

Fillet yield Fillet firmness

PBLUP (SE) ssGBLUP (SE) PBLUP (SE) ssGBLUP (SE)

Heritability 0.25 (0.073) 0.26 (0.073) 0.38 (0.082) 0.38 (0.082)

Predictive ability 0.20 (0.078) 0.27 (0.077) 0.19 (0.079) 0.27 (0.077)

Regression coefficient (b1) 0.96 0.97 0.79 0.88
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variation for growth performance although. In an
admixed population of Atlantic salmon, fish families
produced from selection lines showing extreme pheno-
types for lice resistance were over-represented among
the genotyped fish leading to inflation in the between-
family variation and less reliability of the GS model [22].

Linkage disequilibrium and effective population size
Long-range linkage disequilibrium (LD) and small effect-
ive population size (Ne) provided evidence of the possi-
bility to reduce the marker density needed for GS in
catfish and rainbow trout selectively-bred for BCWD re-
sistance [24, 26]. When the historical LD is weak, the ac-
curacy of genomic prediction decreases [40]. In addition,
higher genomic prediction accuracies are associated with
small Ne [24, 41, 42]. LD and Ne were estimated for the
rainbow trout population used in this study (Table 3).
The mean LD per chromosome ranged from 0.21 to
0.34, with an overall genome-wide average r2 of 0.26.
Twenty-two chromosomes showed a mean r2 ≥ 0.25.
The LD (r2 = 0.26) in the current fish population was
consistent with LD (r2 = 0.27) reported in a Troutlodge,
Inc., May-spawning, odd-year line [26]. Chromosomes 5
and 23 had the highest mean LD estimate (r2 = 0.34)
followed by chromosome 1 (r2 = 0.32). Conversely, chro-
mosomes 6 (r2 = 0.21) and 19 (r2 = 0.22) had the lowest
mean LD estimates. LD decay with distance was esti-
mated for all the rainbow trout chromosomes using only
high-quality anchored SNPs (Fig. 1). The LD decay plots
show a long-range LD in all chromosomes. Interestingly,
the strongest LD appeared on chromosome 5 and ex-
tended over 20Mb. In agreement with our results, Val-
lejo et al. [26] identified long-range LD spanning over 1
Mb in all chromosomes and over 25Mb on chromo-
some 5 in a commercial rainbow trout population. This
strong LD on chromosome 5 was likely due to a large
chromosomal double inversion, which prevents recom-
bination in heterozygous fish [26, 43]. Also, recent ad-
mixture events [22] and recombination interference on
the male chromosome were shown to contribute to
long-range LD in rainbow trout and other salmonids
[12]. The population structure analysis suggested nine
genetically different groups in the current population
(data not shown), thus supporting population admixture
as a contributor to the long-range LD observed in this
study. In contrast, a Tasmanian Atlantic salmon popula-
tion that was originated from a single founder strain
showed short-range LD [44].
The mean estimated effective population size based on

LD was Ne = 113 (Table 3). An average Ne of 145 was
reported in the early generations of the NCCCWA rain-
bow trout selective breeding program and was expected
to decline with selection [45]. The estimated Ne in this
population is comparable to that estimated in other

livestock species; Jersey cattle (Ne = 101), Angus cattle
(Ne = 113), Holstein cattle (Ne = 149) [46] and a com-
mercial rainbow trout population (Ne = 155) [26], and it
is considerably larger than the Ne estimated for catfish
(Ne = 27) [24], swine (Ne = 32), and chicken (Ne = 44)
[46]. Chromosome 22 had the largest effective popula-
tion size (Ne = 180) followed by chromosome 24 (Ne =
171). Chromosomes 5 (Ne = 18) and 4 (Ne = 80) had the
smallest effective population size. In the early genera-
tions produced at NCCCWA, an Ne range of 75.51–
203.35 was reported, and the authors suggested the pres-
ence of suites of genes on each chromosome that are
disproportionately under selection pressure [45]. The Ne

Table 3 Linkage disequilibrium and effective population size by
chromosome. Chromosome 5 had the highest mean LD
estimate (r2) and the smallest effective population size

CHR Number of SNPs Size (bp) Mean (r2) Ne

1 1298 80,480,703 0.32 81

2 1580 85,221,383 0.26 92

3 1409 84,915,088 0.25 104

4 1380 84,297,858 0.27 80

5 2060 91,890,047 0.34 18

6 1189 77,071,016 0.21 105

7 1278 79,714,361 0.24 91

8 1655 83,683,676 0.27 94

9 1339 68,350,947 0.30 110

10 1169 64,390,894 0.26 114

11 1119 79,489,160 0.26 87

12 1711 81,222,362 0.24 98

13 1069 47,531,856 0.25 128

14 1284 80,268,421 0.26 94

15 913 59,307,523 0.25 100

16 1572 70,790,504 0.27 113

17 1379 76,497,411 0.26 104

18 1133 61,193,526 0.25 125

19 872 58,039,566 0.22 147

20 677 40,981,438 0.26 105

21 783 51,606,644 0.23 165

22 792 48,370,041 0.25 180

23 602 48,805,734 0.34 97

24 633 40,198,439 0.25 171

25 1330 82,450,733 0.26 97

26 453 30,795,589 0.23 166

27 657 45,210,144 0.27 127

28 843 40,702,581 0.23 153

29 731 42,409,034 0.26 141

Average 1135 65,030,575 0.26 113

SD 389 17,941,345 0.031 34
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in this population may have limited the predictive
ability because only a small number of genotyped fish
were available for computing genomic predictions.
Based on the average effective population size (Ne =
113) and trout genome length (L = 32.3 M), the num-
ber of independent chromosome segments (Me) for
this population was ~ 14,600, according to the equa-
tion Me = 4NeL [47]. In a commercial rainbow trout
population, an Me = 20,026 was reported [26]. Over-
all, our results suggest the feasibility of reducing the
SNP panel size, which can reduce the genotyping
cost. In the next section, further investigation was
conducted to determine the impact of reducing the
SNP panel size on the predictive ability of GEBV in
the current rainbow trout population.

Impact of reducing the SNP panel density
There is an interest from the aquaculture industry to im-
plement GS in breeding programs. However, genome-
wide genotyping using high-density SNP chips may be
cost-prohibitive, especially for small and mid-size hatch-
eries and companies; therefore, a cost-efficient genotyp-
ing is necessary.
In the current study, two approaches have been

adopted to evaluate the effect of reducing the density of
the SNP panel on the genomic predictive ability for fillet
yield and firmness.

Reducing the SNP panel density based on LD
In the first approach, LD-based SNP pruning was used
to reduce the density of SNP panel throughout the

Fig. 1 Plot of LD decay estimated for all chromosomes using 50 K SNP panel in rainbow trout from the NCCCWA genetic line. Chromosome 5
showed a long-range LD extended over 20 Mb
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genome [48]. Five LD values were used to prune SNPs
(r2 > 0.7, > 0.4, > 0.1, > 0.05, and > 0.01). The predictive
ability for fillet yield, based on LD, was reasonably well
maintained with the reduction of the SNP panel density
down to ~ 11 K SNPs (Table 4). However, further reduc-
tion of the marker density, below 11 K SNPs, led to
lower predictive abilities than those estimated using the
PBLUP model (0.20). Similar results have been reported
in other aquaculture populations/species. For instance, a
moderate decrease in genomic accuracy was reported
when reducing the SNP density down to 10 K SNPs in a
trout population selected for BCWD resistance [26].
Also, increasing SNP density above ~ 10 K SNPs in At-
lantic salmon showed no improvement in genomic ac-
curacy for growth traits [23]. This can be related to the
theory of dimensionality of genomic information, where
the number of animals and SNP needed to achieve a rea-
sonable level of accuracy approaches 4NeL [49, 50],
which was 14,600 in our study.
In the case of fillet firmness, a reduction of the SNP

density down to 1153 K SNPs yielded the same predict-
ive ability (0.27) as the full 50 K SNP panel; however,
GEBV were more inflated. Interestingly, further reduc-
tion of the SNP density down to 497 SNPs yielded pre-
dictive abilities (0.24) that, although were lower than the
50 K panel, still outperformed the traditional PBLUP
model (0.19) (Table 4). Recently, gains of accuracy relative
to traditional PBLUP, using 500 SNP panel, were reported
for BCWD in rainbow trout. Such gains in accuracy with a
significantly reduced SNP panel was attributed to the long-
range LD in the studied population [26].

Reducing SNP density based on the percentage of additive
genetic variance explained by SNPs
The second approach involved reducing the density of
the panel based on the percentage of additive genetic
variance explained by SNPs for each trait, which were
already determined in our previous publications using
weighted single-step genomic best linear unbiased pre-
diction (wssGBLUP) analysis [13, 19]. Reduced SNP

panels with the percentage of additive genetic variance
between > 0.05% and > 1.8% were used to evaluate the
predictive ability using the five-fold cross-validation
strategy. Tables 5 and 6 show the predictive ability for
fillet yield and firmness using those reduced SNP panels.
For fillet yield, reduction of the SNP marker density
down to ~ 9K SNPs yielded the same predictive ability
(0.27) that was obtained using the 50K panel. Vallejo et al.
[26] reported that SNP panel densities less than 20K SNPs
are suitable for GS in rainbow trout. Simulation studies in
plants and livestock showed that marker densities higher
than ~ 10K SNPs had little or no improvement in genomic
accuracy [51, 52]. Interestingly, further reduction of the
number of SNPs down to ~ 800 SNPs caused a minimal de-
crease in the predictive ability for fillet yield (0.26). For fillet
firmness, reducing the number of SNPs down to 10K SNPs
had a small increase in predictive ability (0.30) compared to
the 50K SNP panel (0.27). Interestingly, the inflation of
GEBV greatly improved for firmness without a significant
change in fillet yield. For both traits, the predictive ability of
GEBV for all SNP panels down to ~ 800 SNPs was higher
than those estimated using the pedigree-based model. Over-
all, prioritizing SNPs based on their percentage of additive
genetic variance explained allowed a high reduction of the
SNP density, down to ~ 800 SNPs, while maintaining the po-
tential to enhance the accuracy of genomic predictions in
this population, but with a trade-off of increasing inflation.
Using the proportion of additive genetic variance ex-

plained by SNPs for pruning was more effective than the
LD approach for fillet yield. Conversely, the LD approach
for SNP pruning was more effective in predicting fillet
firmness with low-density SNP panels. This could be at-
tributed to the different genetic architecture between traits
combined with the number of SNPs retained for analysis.
Altogether, reducing the SNP density to about 10,000

SNPs would likely help to reduce the genotyping cost of
implementing GS in this population with no loss in pre-
dictive ability and no bias. A further reduction to around
1000 SNP would have a small impact on predictive abil-
ity, but GEBV may have an increased level of bias

Table 4 Predictive ability and regression coefficient of adjusted phenotype on (G) EBV for fillet yield and firmness with reduced-SNP
panel density based on LD

LD (r2) N of
SNPs

Predictive ability ± SE Regression coefficient (b1)

GEBV GEBV

Fillet yield Fillet firmness Fillet yield Fillet firmness

50 K chip 35,303 0.27 ± 0.077 0.27 ± 0.077 0.97 0.88

> 0.7 20,042 0.27 ± 0.077 0.27 ± 0.077 0.99 0.90

> 0.4 11,433 0.26 ± 0.077 0.26 ± 0.078 0.98 0.88

> 0.1 1153 0.19 ± 0.079 0.27 ± 0.077 0.71 0.79

> 0.05 497 0.17 ± 0.079 0.24 ± 0.078 0.57 0.67

> 0.01 128 0.07 ± 0.080a 0.02 ± 0.080a 0.21 0.04
aindicates a significant difference between the low-density SNP panel and the 50 K SNP panel in predicting the future performance of fish (t-test p-value < 0.05)
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depending on which method was used to reduce SNP
density.

Conclusions
This study reveals the impact of using genomic informa-
tion on progressing the rainbow trout breeding pro-
grams for fillet yield and firmness. Using genomic
information improves the ability to predict future per-
formance and reduces the inflation of breeding values.
The long-range LD detected in this study, partially due
to population admixture, is likely contributing to the
high genomic predictive ability in case of the reduced
density SNP panels. Reducing the SNP panel density to
approximately 10,000 SNPs is a feasible strategy to help
to reduce the cost of implementing GS in rainbow trout.

Methods
Fish population and phenotypes
The fish population and sample collection were previ-
ously described in detail [53]. The selective breeding
program has been established in 2004 and underwent
five generations of selection for body weight. Details on

how the population was formed and selected for growth
can be found in [8, 54]. Phenotypic records on fillet yield
and shear force were collected from the third and fourth
generations, comprising YC 2010 and 2012. A total of
775 fish representing 76 full-sib families from YC 2010
and 98 families from YC 2012, were used. To maintain
unique pedigree information, each family was kept in a
separate 200-L tank until they were tagged at ~ 5-month
post-hatching. Subsequently, fish were reared together in
800-L tanks and fed a commercial fishmeal-based diet.
For phenotyping, fish were harvested over five consecu-

tive weeks (one fish/family/week), yielding 5 harvest
groups. The YC 2010 fish were 410 to 437 days old at har-
vest with a mean body weight of 985 ± 239 (g). Fish from
the YC 2012 were 446 to 481 days old, with a mean body
weight of 1803 ± 305 (g). Head-on gutted carcasses were
manually processed into skinless fillet. The trimmed fillet
was weighed, and fillet yield was calculated as a percent of
whole-body weight. The fish (YC 2010 & YC 2012) had an
average fillet yield of 48.91 ± 2.42 (%). The shear force of a
cooked fillet section was used to measure the fillet firm-
ness as fully described in a previous publication [55].

Table 5 Predictive ability and regression coefficient of adjusted phenotype on (G) EBV for fillet yield with reduced-SNP panel density
based on the proportion of additive genetic variance explained by SNPs

%
Additive
Genetic
Variance
explained
by SNPs

N of
SNPs

Predictive ability ± SE Regression coefficient (b1)

GEBV GEBV

50 K 35,303 0.27 ± 0.077 0.97

> 0.05 16,381 0.25 ± 0.078 0.87

> 0.1 9493 0.27 ± 0.077 0.96

> 0.5 857 0.26 ± 0.077 0.85

> 1.0 232 0.19 ± 0.079 0.59

> 1.5 102 0.10 ± 0.080a 0.34

> 1.8 68 0.12 ± 0.080a 0.44
aindicates a significant difference between the low-density SNP panel and the 50 K SNP panel in predicting the future performance of fish (t-test p-value < 0.05)

Table 6 Predictive ability and regression coefficient of adjusted phenotype on (G) EBV for fillet firmness with reduced-SNP panel
density based on the proportion of additive genetic variance explained by SNPs

%
Additive
Genetic
Variance
explained

N of
SNPs

Predictive ability ± SE Regression coefficient (b1)

GEBV GEBV

50 K 35,303 0.27 ± 0.077 0.88

> 0.05 17,592 0.27 ± 0.077 0.91

> 0.1 10,533 0.30 ± 0.077 0.99

> 0.5 808 0.23 ± 0.078 0.70

> 0.8 273 0.17 ± 0.079 0.47

> 1.0 139 0.12 ± 0.080a 0.33
aindicates a significant difference between the low-density SNP panel and the 50 K SNP panel in predicting the future performance of fish (t-test p-value < 0.05)
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Genotyping data and quality control check
In the current study, we used a 50 K gene-transcribed
SNP chip that has recently been developed for rainbow
trout [19]. A total of 1728 fish were genotyped as previ-
ously described [13, 19]. Affymetrix SNPolisher software
was used at the default parameters to perform quality
control and filter out samples that did not meet the
threshold filtration criteria. In addition, about 5 K SNPs
that were not anchored to the newly assembled rainbow
trout genome were filtered out because LD calculation
(explained in the next sections) requires physically
mapped SNPs. Anchored SNPs were subjected to QC
analysis using PREGSF90 software, which belongs to the
BLUPF90 family [56]. After QC, 35,303 SNPs (70.6%)
were retained, those SNPs had minor allele frequency
(MAF) > 0.05, call rate for SNP > 0.90, and deviation
from the Hardy–Weinberg equilibrium (HWE) < 0.15.
The filtered SNPs were used both for GS and LD
analysis.

Model and analysis
Two single-trait mixed models were used for fillet yield
and shear force (fillet firmness) as follows:

y ¼ Xbþ Z1aþ Z2cþ e:

Where y is a vector of phenotypes (fillet yield or fillet
firmness), b is a vector of fixed effects of hatch-year and
harvest group, a is a vector of additive direct genetic ef-
fect, c is a vector of random of common environmental
effect (i.e., family effect), and e is the vector of residuals.
Incidence matrices for effect contained in b, a, and c are
represented by X, Z1, and Z2, respectively.
The BLUPF90 from the BLUPF90 family of programs was

used to perform both traditional PBLUP and ssGBLUP ana-
lyses [56]. The ssGBLUP model uses both pedigree and gen-
omic information to calculate GEBV. Those two sources of
information are combined into a realized relationship matrix
(H), where the inverse (H−1) replaces the inverse of the pedi-
gree relationship matrix (A−1) in the BLUP mixed model
equations. The H−1 was described in [57] as follows:

H − 1 ¼ A − 1 þ 0 0
0 G − 1 −A − 1

22

� �

Where A − 1
22 is the inverse of the pedigree relationship

matrix for genotyped animals.
G−1 is the inverse of the genomic relationship matrix,

constructed as we previously described [24].

G ¼ MDM0

2
P

pj 1 − pj

� �0

Where M is a matrix of genotypes centered by twice
the current allele frequencies (p); j is the jth locus; D is a

diagonal matrix of SNP weights with a dimension equal
to the number of SNPs. All SNPs were assigned to have
homogeneous weights, i.e., D was an identity matrix (I).
Variance components were estimated using single-trait

models with all data, with and without genomic informa-
tion for both traits, using AIREMLF90 [58]. However,
pedigree-based variance components, estimated with all
the data, were used in the validation study to have fair
comparisons between PBLUP and ssGBLUP. Heritabil-
ities were calculated as:

h2 ¼ σ2
a

σ2
a þ σ2c þ σ2e

where σ2a is the additive genetic variance, σ2c is the com-
mon environmental variance, and σ2e is the residual
variance.

Cross-validation
To evaluate predictive abilities of both traditional
pedigree-based and genomic evaluations, as well as the
impact of different SNP densities, five-fold cross-
validation was conducted [24, 28, 59]. The genotyped
animals with phenotypes (fillet yield N = 775; shear force
N = 772) were randomly split into five mutually exclu-
sive folds/groups. Then, phenotypes were removed from
the data, one group at a time from the validation groups
(fillet yield N = 155; shear force N = ~ 154). The
remaining animals (i.e., training group) were used to
predict the future performance of the validation group.
Results were presented as the overall mean of the 5 rep-
licates. This cross-validation approach was chosen given
the small number of genotyped animals with
phenotypes.
To calculate the predictive ability, phenotypes were

adjusted for fixed effects (y*) as we previously described
in [54]. Predictive ability was defined as the Pearson’s
correlation between adjusted phenotypes (y*) and
(G)EBV.
Predictive ability = cor [(G) EBV, y∗].
Further, inflation was assessed as the regression coeffi-

cient (b1) of adjusted phenotypes (y*) on (G) EBV as
follows:
y∗ = b0 + b1 × (G) EBV + e.
where b1 < 1 indicates inflation and b1 > 1 indicates

deflation of (G)EBV [24].

Linkage disequilibrium and effective population size
The LD was calculated using PREGSF90 [56] according
to the following equation:

r2 ¼ D2

PAPaPBPb

where PA, Pa, PB, andPb represent the allele frequencies;

Al-Tobasei et al. BMC Genomics           (2021) 22:92 Page 8 of 11



D = PAB − PAPB where PAB is the frequency of the geno-
type AB. The mean LD was estimated for each chromo-
some as the average estimate of r2 from all pairwise
SNPs [26].
For each chromosome, LD decay with the distance be-

tween SNP markers was calculated by fitting Sved’s
equation [60] as follows:

E r2t
� � ¼ 1

1þ 4Netdij
� 	

where dij is the distance between the SNP-marker pair i
and j; Net is the effective population size for chromo-
some t; Ne was calculated using the equation proposed
by Saura et al. [61]:

Net ¼ 4ð ⅆtÞ − 1 r2t − n − 1
� 	 − 1

− α
h i

where dt is the average length of chromosome t in Mor-
gan, r2 is the average LD of chromosome t, (n)−1 repre-
sents the adjustment term for the sample size, and α is a
fixed parameter that equals to 1 in the absence of muta-
tions or to 2 in the presence of mutations. In this study,
α = 2 was used.

Reducing SNP density based on LD
PLINK 1.9 [48] was used to generate reduced/pruned
SNP subsets based on variable LD values of 0.7, 0.4, 0.1,
0.05, and 0.01. SNP pruning was achieved using the
command line (plink –file data –indep-pairwise 50 5 r2).
In brief, LD was calculated between each pair of SNPs
within a genomic window of 50 SNPs. A pair of SNPs
was removed if the LD between the two pairs of SNPs
exceeded the LD value, e.g., 0.7. The window was shifted
5 SNPs forward, and the procedure was repeated. The
command line was re-executed using the four other r2

values. Each one of the five resulting pruned SNP sub-
sets with 20,042, 11,433, 1153, 497, and 128 SNPs were
used in genomic predictions.

Reducing SNP density based on the percentage of
additive genetic variance
The second approach used to reduce the density of the
SNP panel was based on the percentage of additive gen-
etic variance explained by SNPs in each trait. The SNP
variances were previously computed using wssGBLUP
for fillet yield and fillet firmness [13, 19]. In this ap-
proach, SNPs were clustered into five to six groups
based on the percentage of additive variance explained,
with clusters ranging from > 0.05% to > 1.0%. Accord-
ingly, the reduced number of SNPs of each group was
used to evaluate the predictive ability using the five-fold
cross-validation strategy.
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