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Abstract

Background: It is still challenging to predict interacting enhancer-promoter pairs (IEPs), partially because of our
limited understanding of their characteristics. To understand IEPs better, here we studied the IEPs in nine cell lines and
nine primary cell types.
Results: By measuring the bipartite clustering coefficient of the graphs constructed from these experimentally
supported IEPs, we observed that one enhancer is likely to interact with either none or all of the target genes of
another enhancer. This observation implies that enhancers form clusters, and every enhancer in the same cluster
synchronously interact with almost every member of a set of genes and only this set of genes. We perceived that an
enhancer can be up to two megabase pairs away from other enhancers in the same cluster. We also noticed that
although a fraction of these clusters of enhancers do overlap with super-enhancers, the majority of the enhancer
clusters are different from the known super-enhancers.
Conclusions: Our study showed a new characteristic of IEPs, which may shed new light on distal gene regulation
and the identification of IEPs.
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Background
Enhancers are short genomic regions that can boost
the condition-specific transcription of their target genes
[1, 2]. They directly interact with the promoters of their
target genes via chromatin looping to control the tempo-
ral and spatial expression of target genes [3–7]. Enhancers
can be several dozens to a couple of thousand base pairs
(bps) long and can be located in the distal upstream
or downstream of their target genes [1]. Although the
longest distance between enhancers and their targets val-
idated by low-throughput experiments is about one mega
bps (Mbps) [3, 4], recent high-throughput experiments
showed that the distance can be larger than two Mbps in
many cases [8, 9]. Because of such a long distance, it is still
challenging to identify interacting enhancer-promoter
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pairs (IEPs). In this study, an IEP refers to an enhancer-
promoter pair that physically interacts, although such an
interaction may or may not have any functional effect
observed yet.
Many methods are available to identify enhancers. Early

experimental studies identify enhancers by“enhancer
trap”, which has established our rudimentary understand-
ing of enhancers in spite of its low-throughput and time-
consuming nature [10, 11]. Early computational methods
predict enhancers through comparative genomics, which
are cost-effective but may produce many false positives.
With the next-generation sequencing (NGS) technologies,
enhancers are identified through a variety of experimen-
tal methods such as chromatin immunoprecipitation fol-
lowed by massive parallel sequencing (ChIP-seq), DNase
I hypersensitive sites sequencing (DNase-seq), global run-
on sequencing (GRO-seq), cap analysis gene expression
(CAGE), etc. [12–17]. In ChIP-seq experiments, genomic
regions enriched with H3K4me1 and H3K27ac modifica-
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tions are widely considered as active enhancers, and those
with H3K4me1 andH3K27me3modifications are taken as
repressed enhancers [14]. In DNase-seq, distal open chro-
matin regions are considered as potential enhancers for
gene regulation studies [18–21]. In GRO-seq and CAGE
experiments, bidirectional transcripts are employed to
identify active enhancers [15, 22, 23]. Correspondingly,
computational methods based on NGS data are devel-
oped to predict enhancers on the genome-wide scale
[14, 24–26]. These methods range from the early ones that
are based solely on H3K4me3 and H3K4me1 ChIP-seq
experiments to the later ones that are based on various
types of epigenomic and genomic signals and have been
applied to predict enhancers in different cell lines.
A large number of enhancers have been discovered

so far. For instance, about 2900 enhancers from com-
parative genomics were tested with mouse transgenic
reporter assay and stored in the VISTA database [27].
The Functional Annotation of the Mouse/Mammalian
Genome (FANTOM) project identified 32,693 enhancers
from balanced bidirectional capped transcripts [15]. This
set of enhancers is arguably the largest set of mammalian
enhancers with supporting experimental evidence [28].
There are also hundreds of thousand computationally
predicted human enhancers, such as those predicted by
ChromHMM and Segway [24, 25]. This set of enhancers
represents themost comprehensive set of computationally
predicted human enhancers currently available although
they are much less reliable. In addition to individual
enhancers, super-enhancers are identified, each of which
is a group of enhancers in a genomic region that col-
lectively control the expression of genes involved in cell-
identities [29, 30].
Despite this relatively effortless discovery of enhancers,

the identification of IEPs is still nontrivial. Early exper-
imental procedures to identify IEPs are expensive and
time-consuming [31, 32]. Recent Hi-C experiments hold
a great promise to identify IEPs on the genome-scale,
while are still are not cost effective in order to generate
high-resolution Hi-C interactions [8, 9, 33]. To date, these
experiments have only been carried out on a few cell lines
or cell types. Although computational methods, from the
early ones defining the closest genes as target genes, to
the later ones considering the correlation of epigenomic
signals in enhancers and those in promoters, to the cur-
rent ones based onmore sophisticated approaches [15, 19,
34–40], have shown some success in predicting enhancer
target genes, they either do not consider or have low–
performance on cell-specific IEP prediction [36]. Through
these experimental and computational studies, megabase
size self-interacting genomic regions called topologically
associated domains (TADs) are also discovered in mam-
malian genomes, where IEPs usually fall within the TADs
instead of crossing different TADs [41].

All existing computational methods almost always con-
sider one enhancer-promoter pair at a time to determine
whether they interact. We hypothesized that when two
enhancers interact with a common target gene, these two
enhancers may be spatially close to each other and may
thus interact with all target genes of both enhancers. In
other words, if two enhancers share a target gene, they
may share all of their target genes as well. If this hypothe-
sis is true, we should consider the interactions of multiple
enhancers and multiple target genes simultaneously to
predict IEPs, which may improve the accuracy of the
computational prediction of the IEPs, especially that of
cell-specific IEPs.
To test this hypothesis, we collected experimentally sup-

ported IEPs determined in five previous studies [6, 8, 9, 33,
42] and investigated how different enhancers may share
their target genes in different cell lines and cell types
(Methods). We considered both experimentally annotated
enhancers from FANTOM and computationally predicted
enhancers by ChromHMM in different samples [15, 24].
We observed that two enhancers are likely to either share
almost all of their target genes or interact with two com-
pletely disjoint sets of target genes, in a cell line or a cell
type. This observation implies an interesting character-
istic of IEPs, which has not been considered by existing
studies to predict IEPs. Our study may also shed new light
on the underlying principles of chromatin interactions
and facilitate the more accurate identification of IEPs.

Results
Two enhancers are likely to interact with either exactly the
same set or two completely different sets of genes
In order to study IEPs, we calculated the bipartite clus-
tering coefficient (BCC) of enhancers in each cell line
or cell type, with two sets of enhancers and five sets of
experimentally supported IEPs (Methods, Fig. 1a). BCC is
commonly used to measure how nodes share their neigh-
boring nodes in a bipartite graph. Note that every set of
IEPs corresponds to a bipartite graph, where the enhancer
set and the gene set correspond to the two disjoint sets
of nodes, and their interactions correspond to the edges
(Fig. 1b). The neighboring nodes of an enhancer are the
target genes of this enhancer. With the goal to investi-
gate how different enhancers share their target genes, the
BCC is a perfect measurement, which can measure the
percentage of target genes pairs of enhancers may share
in a given set of IEPs (Fig. 1b). We observed that the BCC
of enhancers was usually larger than 0.90. This indicates
that when any pair of enhancers interact with one com-
mon target gene, both enhancers are likely to interact with
all target genes of these two enhancers.
First, we studied the IEPs based on the looplists from

Rao et al. [9], with the annotated FANTOM enhancers
[15] and the GENCODE promoters [43] (Fig. 1a). We

http://FANTOM.gsc.riken.jp/5/datafiles/latest/extra/Enhancers
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Fig. 1 a The process of generating IEPs using the chromatin interaction data from five studies, enhancer regions from FANTOM and ChromHMM
and promoters defined around the GENCODE annotated gene TSSs. b An toy interaction network between three enhancers (e1, e2 and e3) and

three promoters (p1, p2 and p3). The average BCC of the enhancers in this example is
1
2 + 7

12 + 5
12

3 = 0.5

noticed that the BCC of enhancers was no smaller than
0.97 in all cell lines with enough IEPs (Table 1 and
Supplementary Table S1). We further calculated the aver-
age BCC of the enhancers interacting with more than one
gene. We found that their average BCC was no smaller
than 0.96 in all cell lines, suggesting that two enhancers are
likely to interact with either the same set or two disjoint
sets of target genes. In other words, the target genes of any
pair of enhancers usually are either the same or completely
different.
To assess the statistical significance of the above obser-

vation, we studied the BCC of enhancers in randomly
generated IEPs (Supplementary Table S1). These random
lEPs were constructed using the same set of enhancers and
promoters but randomized interactions, where we ran-
domly chose promoters to interact with an enhancer so
that the same enhancer had the same number of inter-
actions as it had originally. We generated five different
sets of random IEPs in this way with five different ran-
dom seeds. With these random IEPs in the eight cell
lines, we barely had a handful of enhancers sharing pro-
moters with other enhancers in any cell line, suggesting
that it is not by chance that multiple enhancers inter-
act with a common set of target genes in the Rao et
al.’s looplists (Supplementary Tables S1). For all four cell
lines we could calculate the BCC, the BCC of enhancers
was 0.51, 0.37, 0.33 and 0, respectively, which was much
smaller than the BCC of enhancers in the above sets of
real IEPs (p-value = 0, Supplementary Table S1). When we
considered the BCC of enhancers interacting with mul-
tiple genes, the BCC values were no larger than 0.34 for
random IEPs, while it was no smaller than 0.96 for the
real IEPs, also suggesting that the observation that the

BCC of enhancers being close to 1 was not by chance
(Supplementary Table S1).
Second, we studied IEPs defined by different cutoffs in

seven cell lines (Methods). Compared with the IEPs from
the above Rao et al.’s looplists, these IEPs defined by cut-
offs were likely to include many more bona fide IEPs and
more false positives as well. Under the cutoffs 30, 50 and
100, the BCC of enhancers in all seven cell lines except
GM12878 was no smaller than 0.85, 0.89 and 0.92, respec-
tively (Supplementary Table S1). Since GM12878 had a
much higher sequencing depth than other cell lines, it
was understandable that a stringent cutoff for other cell
lines was still loose for GM12878. We thus tried the cut-
offs 150, 200, 300, and 400 for GM12878. We noticed that
the BCC of enhancers was 0.97 in GM12878 with the cut-
off 400. Coincidently, the number of IEPs in GM12878
defined at this cutoff was similar to that in other cell lines
defined at the cutoff 100 (Supplementary Table S1). We
thus considered the cutoff 400 in GM12878 and the cut-
off 100 for other cell lines. Note that in HMEC, HUVEC,
KBM7 and NHEK, the BCC of enhancers was no smaller
than 0.92 even under the cutoff 100. Moreover, the BCC
of enhancers was increasing with more stringently defined
IEPs, suggesting that the BCC of enhancers is close to 1 if
it is not 1 (Supplementary Table S1).
In order to assess the statistical significance of the

observed BCC of enhancers in IEPs from different cutoffs,
similarly, we compared the above BCC of enhancers with
that from randomly generated IEPs (Supplementary Table
S1). Again, for every cutoff in every cell line, the BCC of
enhancers for random IEPs was much smaller than the
BCC of enhancers for real IEPs (p-value = 0). For instance,
under the cutoff 50, the BCC of enhancers was no larger
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than 0.78 for random IEPs, while the corresponding num-
ber was no smaller than 0.89 for real IEPs. If we considered
only enhancers interacting with multiple target genes, the
BCC of enhancers for random IEPs was about two times
smaller than that for real IEPs. For instance, under the cut-
off 50, the largest BCC value was 0.40 for random IEPs,
while the smallest BCC value for real IEPs was 0.69.
Third, to see how this observation might change if we

used the data from other labs or other experimental pro-
tocols, we studied the IEPs from four additional studies
(Fig. 1a, Methods) [6, 8, 33, 42]. When we calculated the
BCC of enhancers using the IEPs defined by Jin et al.
themselves [33], it was 0.94. When considering the IEPs
defined by Jin et al. based on the FANTOM enhancers and
the annotated promoters by GENCODE, it was 0.90. In
terms of the ChIA-PET datasets [6], it was 0.80 in K562
and 0.89 in MCF7 (Table 1). For the nine cell types from
Javierre et al. [8], it was no smaller than 0.96 in all cell
types. For the SPRITE data from Quinodoz et al. [42], it
was 0.92, 0.92 and 1 for the cutoffs 30, 50 and 100, respec-
tively (Supplementary Table S1). Although the IEPs were
from different labs and from different experimental pro-
cedures, in all cases, the BCC of enhancers was larger
than 0.80 and the majority of enhancers interacting with
multiple promoters had their individual BCCs larger than
0.90, suggesting that the BCC of enhancers is likely to
be 1 in these samples. Again, for the corresponding ran-
domly generated IEPs for these datasets, on average, the
BCC value was 0.48, much smaller than the correspond-
ing ones from original IEPs, which was 0.96 (p-value = 0,
Supplementary Table S1).
Finally, we repeated the above analyses with the

ChromHMM enhancers instead of the FANTOM
enhancers, because the number of the FANTOM
enhancers was relatively small compared with the esti-
mated number of enhancers and there were much more
ChromHMM enhancers than FANTOM enhancers [24].
We had similar observations in all cases (Table 1, Supple-
mentary Table S1). That is, the BCC of enhancers for IEPs
in a cell line was close to 1. For instance, for IEPs based
on the looplists, it was almost a perfect 1 in all cell lines.
For the Hi-C data from Rao et al. under the cutoff 400 for
GM12878 and 100 for other cell lines, it was no smaller
than 0.93. For the Hi-C data from Jin et al. [33], it was
0.93. For the ChIA-PET data from Li et al. [6], it was 0.86.
For the nine cell types from Javierre et al. [8], it was no
smaller than 0.97. For the SPRITE data on GM12878 cell
line [42], the BCC values were 0.9, 0.95 and 0.99 for the
cutoffs 30, 50 and 100, respectively. In almost all cases,
the majority of enhancers with multiple promoters had
their individual BCCs larger than 0.90.
In summary, the BCC of enhancers was likely to be

close to 1 for different sets of IEPs, data from different
labs, different experimental protocols, different cell lines

and cell types, and different enhancer sets. The analy-
ses based on IEPs from different cutoffs suggest that the
BCC of enhancers is quite robust, although it is smaller
when more loosely defined IEPs are used. It is close to 1
or becomes 1 when the IEPs are defined more and more
stringently (with fewer false positive IEPs). These analyses
suggest that what we observed may be an intrinsic prop-
erty of enhancers. That is, if two enhancers interact with
one common gene, they are likely to interact with each of
their individual target genes.

Two target genes tend to interact with exactly the same set
or two completely different sets of enhancers
We studied the BCC of promoters in each set of the afore-
mentioned IEPs to see whether the similar hypothesis was
true for the BCC of promoters. Our data showed that the
BCC of promoters was likely to be 1 as well, although this
was not so evident as the BCC of enhancers in certain
cases.
First, we studied the BCC of promoters with IEPs based

on the looplists [9]. It was close to 1 no matter whether
we used the FANTOM enhancers or the ChromHMM
enhancers (Table 1). We also calculated the BCC of pro-
moters in randomly simulated IEP datasets, where we
kept the same sets of enhancers and promoters but ran-
domly selected enhancers to interact with promoters so
that every promoter had the same number of interacting
enhancers as it had in the original set of IEPs. The BCC of
promoters was 0.52 at best in any cell line in these random
datasets, suggesting that it was not by chance that the BCC
of promoters was close to 1 in all cell lines (Supplementary
Table S2).
Second, we studied the BCC of promoters based on lEPs

defined with different cutoffs [9] (Supplementary Table
S2). When we used the FANTOM enhancers, the BCC
of promoters was often close to 1. For instance, with the
cutoff 400 for GM12878 and the cutoff 100 for other cell
lines, the BCC of promoters was no smaller than 0.91 in
all the cell lines . For different cutoffs, it was usually no
smaller than the BCC of enhancers, which was close to 1
inmost cases.Whenwe used the ChromHMMenhancers,
however, it was not as large as those from the FANTOM
enhancers. For instance, with the cutoff 400 for GM12878
and the cutoff 100 for other cell lines, the BCC of pro-
moters varied from 0.64 to 0.91 in different cell lines. The
BCC values got smaller with smaller cutoffs, which might
be due to the much lower quality of the enhancers pre-
dicted by ChromHMMcompared with the experimentally
defined FANTOM ones.
Although the BCC of promoters was not as large as

the BCC of enhancers when the ChromHMM enhancers
were used, the actual BCC of promoters could also be
close to 1. This was because the computationally predicted
ChromHMM enhancers might result in predicting false
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interactions and thus a low BCC of promoters. Moreover,
the BCC of promoters was always increasing with more
and more stringently defined IEPs. Although we did not
observe that the BCC of promoters was close to 1 at the
cutoff 100 we tried, it was indeed close to 1 when the
looplists defined by Rao et al. were considered. In addi-
tion, the BCC of promoters for random IEPs in every cell
line and under every cutoff was much smaller than that
for the real IEPs, indicating that the observed much larger
BCC of promoters was not by chance (Supplementary
Table S2).
Third, we studied the BCC of promoters based on lEPs

from other studies (Fig. 1a, Table 1 and Supplementary
Table S2) [6, 8, 33, 42]. For the original IEPs from Jin et al.,
it was 0.11. However, when the IEPs were defined from the
overlap of these original IEPs with the GENCODE pro-
moters and the two types of enhancers, it was 0.77 and
0.68, respectively (Table 1). The low BCC of promoters
for the original IEPs may be partially due to the promot-
ers Jin et al. used, which had 11,313 promoters inferred
by Jin et al., compared to the 57,820 promoters annotated
by GENCODE [33]. In terms of the ChIA-PET data [6],
when we used the FANTOM enhancers, the BCC of pro-
moters was 0.86 in K562 and 0.86 in MCF7; when we
used the ChromHMM enhancers [8], it was 0.67 in K562.
ChromHMM did not have annotated enhancers in MCF7.
For the nine cell types from Javierre et al., it was no smaller
than 0.98 and 0.91 when the FANTOM enhancers and
the ChromHMM enhancers were used, respectively. For
the SPRITE data on the GM12878 cell line [42], the BCC
values of promoters were no smaller than 0.89 and 0.71
in the IEPs defined with the FANTOM and ChromHMM
enhancers, respectively. Overall, although it was not as
large as the BCC of enhancers, because of the imper-
fectness of all these collected IEPs, and the fact that the
majority of promoters interacting withmultiple enhancers
had their individual BCC larger than 0.90, and they were
much larger than the corresponding BCC of promoters for
random IEPs (Supplementary Table S2), the BCC of pro-
moters was likely to be close to 1 as well. In other words,
a gene usually interacts with all enhancers of another gene
or interacts with a completely different set of enhancers
from this second gene.

Enhancers form clusters that have special characteristics
Since the BCC of enhancers is close to 1, we can orga-
nize enhancers into clusters, where every enhancer in the
same cluster is likely to interact wtih the same set of tar-
get genes. We thus built an enhancer graph by connecting
enhancers that share at least one common target. We then
grouped enhancers into clusters based on such a graph in
each cell line (Methods, Fig. 2). Here we only considered
the looplists and the IEPs obtained from the most strin-
gent cutoff (400 in GM12878 and 100 in other cell lines) to

obtain enhancer clusters, as they were more reliable than
other sets of IEPs.
We obtained 1 to 2134 clusters in different cell lines.

The number of clusters in a cell line and across different
cell lines varied dramatically, depending on the IEPs and
the enhancers used (Supplementary Table S3). When the
ChromHMMenhancers were used, there weremanymore
clusters and 67% to 96% of all enhancers were included
in clusters. When the FANTOM enhancers were used,
fewer clusters were identified and about 16% to 67% of
the total enhancers were in clusters. The average number
of enhancers in a cluster varied from 2 to 5 in different
cell lines. Enhancers in the majority of clusters interacted
with only one gene, while on average, enhancers in 18.36%
clusters interacted with at least two different genes.
We studied the distance between the consective

enhancers in a cluster, the distance between their con-
secutive targets and the distance between enhancers and
their target genes (Fig. 3 and Supplementary Table S4).
On average, about 84% of the enhancers in a cluster
were within 10 kbps. However, there was a small frac-
tion of enhancers in a cluster that were more than
50 kbps away from each other. For instance, when the
looplists and the FANTOM enhancers were considered,
there were more than 8% enhancers in a cluster that were
more than 50 kbps away from each other in GM12878,
HMEC and IMR90. Although enhancers in a cluster were
often close to each other, their distances to each other
were not significantly smaller than the distances of ran-
dom enhancer pairs (Supplementary Table S5, almost all
p-values>0.2). In terms of the target genes, the major-
ity of them were within 10 kbps, with a small fraction far
from each other. For instance, when the looplists and the
FANTOM enhancers were considered, we found 25.93%,
21.43% and 33.33% of the target genes of an enhancer
cluster that were more than 50 kbps away from each
other in GM12878, HMEC and IMR90, respectively. It
was also worth pointing out that the enhancers in a clus-
ter were normally consecutive and active enhancers while
their target genes were normally not consecutive. In all
cell lines, on average, more than 90% of the enhancers in
a cluster were consecutive active enhancers while fewer
than 17% of the target genes of an enhancer cluster were
consecutive.
Since enhancers in a cluster were consecutive in the

genome and the majority of enhancers in a cluster were
close to each other, they seemed like the super-enhancers.
We thus compared the enhancer clusters with known
super-enhancers (Supplementary Table S6). On average,
29.77% of enhancer clusters overlapped with the corre-
sponding super-enhancers in a cell line while the majority
of enhancer clusters did not overlap with the known
super-enhancers (Fig. 4a), which may represent new
super-enhancers. On the other hand, a large proportion of
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Fig. 2 Clusters of enhancers with Hi-C reads. Here all ChromHMM active enhancer clusters in GM12878 are shown within the region
Chr1:161,060,000-161,175,000. Total five clusters belong to this region. The bottom half of the figure shows the five enhancer clusters (grey, yellow,
green, purple and brown on the two sides) interacting with the common gene promoter regions (in the middle), arranged from left to right
according to their relative genomic locations. The top half of the figure shows the same interactions of the five clusters (same color codes) with Hi-C
reads. For example, the yellow cluster of enhancers interact with NIT1 and PFDN2 gene promoters with 687 Hi-C reads. The unmarked enhancer
(blue) and gene promoter (UFC1) did not belong to any cluster. The location of the enhancers relative to each other and to the target genes are
shown in the middle

known super-enhancers did not overlap with the enhancer
clusters in the corresponding cell lines (Fig. 4b). Inter-
estingly, when a super-enhancer overlapped an enhancer
cluster, more than 80% of the genomic regions that
contain all enhancers in this enhancer cluster were within
this super-enhancer.
We also studied how the enhancers in a cluster

located relative to a TAD (Supplementary Table S7). The
enhancers in a cluster were usually within the same TAD,
with no smaller than 98.08% of enhancers in a cluster
within a TAD in every cell line, independent of IEPs
and enhancers used. In most cell lines, for all clusters,
all enhancers in a cluster were within a TAD. The slight
deviation from the 100% in certain cases may be due to the
imperfectness of the IEPs, enhancers, and TADs, mostly
due to the computationally predicted enhancers, as the
percentage was always 100% in almost all the cell lines
when the FANTOM enhancers were used.

We studied how the enhancer clusters were shared by
different cell lines as well (Supplementary Table S8). That
is, for an enhancer cluster in a cell line, how likely was
the same cluster identified in another cell line. We found
that on average no more than 12% enhancer clusters
were identified in two cell lines. Moreover, the percent-
age was smaller when the looplists were used than when
the stringent cutoffs were used to define IEPs, implying
that the looplists were too strict to include many bona fide
IEPs. The small percentage of shared enhancer clusters
suggested that most enhancer clusters were cell-specific,
which is consistent with the properties of super-enhancers
[29, 30].

Discussion
We observed that two enhancers either do not share any
target gene or share almost all of their target genes. This
observation was true when different sets of IEPs, two
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Fig. 3 The distance distribution between consecutive enhancers in the same cluster for each cell line. The X-axis represents the distance and the
Y-axis represents the average percentage of consecutive enhancer pairs in an enhancer cluster

sets of enhancers, and a variety of cell lines and cell
types were considered. Moreover, the BCC of enhancers
became closer and closer to 1 when the criteria to define
IEPs became more and more stringent. In addition, the
same observation did not hold to be true for randomly
generated IEPs. These analyses suggested that the BCC of
enhancers in a cell line or a cell type was likely to be close
to 1 if it is not 1.

Similarly, we observed that two promoters were likely
to interact with either the same set of enhancers or
two disjoint sets of enhancers. This observation about
promoters was not as evident as that about enhancers.
However, it was pervasive in all cases when the FAN-
TOM enhancers were used. It was also evident when
the looplists and the IEPs defined by the most stringent
cutoffs were used. Although it seemed not compelling

Fig. 4 The overlap of the enhancer clusters with the super-enhancers. a The percentage of the enhancer clusters overlapping with the
super-enhancers. b The percentage of the super-enhancers overlapping with the enhancer clusters
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when the ChromHMMenhancers and the sets of IEPs that
were defined with loose criteria were used, this might be
due to the imperfectness of enhancers and IEPs we had.
More importantly, the fact that the BCC of enhancers was
close to 1 implied that the BCC of the promoters should
be close to 1 as well based on the definition of the BCC.
The BCC of enhancers being close to 1 suggested

that enhancers form clusters to interact with the target
genes. As shown above, these clusters are different from
the known enhancer clusters such as super-enhancers,
although they do overlap in certain regions. Enhancers in
the clusters here were likely to interact with the same set
of genes, while enhancers in a super-enhancer do not nec-
essarily interact with multiple target genes. Moreover, the
enhancers in a cluster here could be far from each other
while the enhancers in a super-enhancer are quite close to
each other.
The BCC of enhancers was not 1 sometimes, which

implied that when a group of enhancers interacts with a
set of target genes, the majority of target genes interact
with each enhancer in this group while the rest interact
with only a subset of enhancers in this group. We called
the former the fully shared target genes and the latter the
partially shared target genes. The percentage of the par-
tially shared target genes by a group of enhancers varied
from 0% to 6.57%. We compared these two types of target
genes in terms of TAD, tissue specificity, and correlations
with the enhancers, with the IEPs from the looplists and
the IEPs from the most stringent cutoff (400 in GM12878
and 100 in other cell lines) (Methods). We did not observe
any difference between the two types of target genes.
In practice, several aspects may prevent the BCC of

enhancers and the BCC of promoters from being 1.
First, the resolution of the interaction data prevents from
obtaining accurate IEPs. The two interacting regions in
the interaction data are often long, which is around 5 kbps
in most of the cases we studied. We defined IEPs by over-
lapping enhancers and promoters with pairs of interacting
regions, which might be prone to errors, given the fact
that many known enhancers were much shorter [44, 45].
Second, the IEPs defined imperfectly might have pro-
duced “false” interactions and thus decreased the BCCs.
Third, the enhancers were not perfectly defined either.
The FANTOM enhancers are still far from complete while
the computationally predicted ChromHMM enhancers
may contain many “false” enhancers.
We also studied the functional similarities between

the targets of enhancers in the same clusters. With the
GREAT tool [46], we found the cluster targets associated
with DNA packaging complex, DNA binding, nucleo-
some, immune response etc. (Supplementary Table S9,
p-value<1e-5). We measured the sequence similiarity of
enhancers within clusters in a cell line as well (Methods).
We found that the pairs of enhancers in the same clusters

did not share more sequence similarity compared with
enhancer pairs randomly chosen in the same cell lines
(Supplementary Table S10, p-value>0.5).
There are other measurements to study bipartite

graphs. We chose BCC because we intended to inves-
tigate how enhancers (promoters) shared their target
genes (enhancers). In this sense, the BCC value perfectly
reflected what we hoped tomeasure. In the future, wemay
explore other measurements to study other characterisitcs
of IEPs. Moreover, we focused on enhancers interacting
with multiple targets. There is no doubt that a proportion
of enhancers only interacting with individual target genes.
These enhancers and their target genes were not consid-
ered here, as they did not share target genes with each
other. In the future, the characteristics of these enhancers
may be worth studing as well.

Conclusion
In a cell line or cell type, both active enhancers and active
promoters form their own clusters. When an enhancer
interacts with a promoter, consistent with the transcrip-
tional factories proposed previously [47, 48], almost all
enhancers in the same enhancer cluster interact with
almost all promoters in the corresponding promoter clus-
ter. It is thus important to consider the relationship among
enhancers and among promoters when studying their
interactions, which may help improve our understanding
of the distal gene regulation and the chromatin structures.

Methods
Enhancers and promoters
To study IEPs, we considered two sets of enhancers
(Fig. 1a). The first set contained the 32,693 enhancers
annotated by FANTOM, which had been obtained from
the balanced bidirectional capped transcripts [15]. The
second set was the computationally predicted enhancers
by ChromHMM [24] in the following seven cell lines:
GM12878, HMEC, HUVEC, K562, NHEK, IMR90 and
HeLa. ChromHMM is widely used to partition genomes
into different functional units including enhancers.
The FANTOM enhancers are not cell-specific, while

the ChromHMM predicted enhancers are specific for the
seven different cell lines mentioned. We thus defined
cell-specific “active” FANTOM enhancers, by overlapping
the enhancers with the H3K27ac ChIP-seq peaks in the
corresponding cell lines obtained from the Encyclopedia
of DNA Elements (ENCODE) project [49]. When there
was no H3K27ac ChIP-seq data available for a cell line
such as KBM7, we considered the enhancers that over-
lapped with the chromatin interacting anchors in this cell
line as “active” enhancers [9].
We used the gene transcriptional start sites annotated

in the GENCODE V19 [43] to define promoters. The
upstream region of 1 kbps to the downstream region of



Talukder et al. BMC Genomics          (2021) 22:163 Page 10 of 13

100 bps of each transcriptional start site was considered
as a promoter. In total, we obtained 57,820 promoters in
the human genome. To obtain cell-specific active promot-
ers, we considered the available RNA-Seq data in different
cell lines (GM12878, HeLa, HUVEC, IMR90, K562 and
NHEK) [43]. In a cell line, a promoter was considered
“active” if the corresponding gene had at least 0.30 reads
per kbps of transcript per million mapped reads with the
irreproducible discovery rate of 0.1, similarly as previ-
ously [37, 50]. For samples without RNA-Seq data (HMEC
and KBM7), all promoters were considered as active
promoters [50].

IEPs from five studies
To learn new characteristics of IEPs, we collected exper-
imentally supported IEPs from five previous studies
[6, 8, 9, 33, 42] (Fig. 1a). These IEPs arguably represent the
intra-chromosomal chromatin interactions defined with
the highest resolutions by the corresponding techniques.
The first set of IEPs was from the Hi-C dataset GSE63525
in the Gene Expression Omnibus (GEO) database, where
Rao et al. extracted significant intra-chromosomal chro-
matin interactions called “looplists” in the following eight
cell lines: GM12878, HeLa, HMEC, HUVEC, IMR90,
K562, KBM7 and NHEK [9]. These looplists were defined
with stringent criteria and weremost likely to be true pairs
of interacting genomic regions, each of which was about 5
kbps long (Supplementary Table S1). In every cell line, we
overlapped each looplist with the aforementioned two sets
of active enhancers and with the annotated active promot-
ers to obtain IEPs. In other words, an obtained IEP con-
sisted of an enhancer and a promoter, where the enhancer
overlapped with one region specified in a looplist and the
promoter overlapped with the other region specified in
the same looplist. Since we had two sets of enhancers, we
obtained two sets of IEPs for each of the eight cell lines
(Fig. 1a). Note that the enhancer and promoter in an IEP
are always from the same chromosome.
The number of IEPs obtained from the above looplists

was small, especially when we considered the FANTOM
enhancers (Supplementary Table S1). The reason might
be, the criteria Rao et al. used to define looplists was
quite stringent andmany true interacting genomic regions
might therefore be missed [50]. To capture more IEPs in
these cell lines, we also defined alternative sets of IEPs
with three cutoffs: 30, 50, and 100, from the normalized
Hi-C contact matrices with 5 kbps resolution defined by
Rao et al. [9]. Given a normalized read cutoff, say x, if an
enhancer-promoter pair overlapped with a pair of inter-
acting genomic regions that were supported by at least x
normalized Hi-C reads, we considered this EP-pair as an
IEP. The cutoff 30 was used since this cutoff was likely
to include of almost all known IEPs in K562 and IMR90
from other studies [6, 33] without allowing too many false

positives [50]. The two other cutoffs were used to see how
the observed enhancer characteristics may change with
more stringent cutoffs. Intuitively, the larger the cutoff
was, the more likely that the two genomic regions inter-
acted. Based on our previous studies [38, 51], we believed
that themajority of the IEPs defined by these cutoffs in the
eight cell lines except HeLa and GM12878 were likely to
be bona fide IEPs and considered the IEPs defined by the
cutoff 100 as highly reliable. We could not define IEPs in
HeLa by cutoffs because Rao et al. did not provide a Hi-C
contact matrix in HeLa. Since the sequencing depth was
much higher in case of GM12878 than that in other seven
cell lines, we considered the IEPs defined by the cutoff
400 in GM12878 as highly reliable after testing different
cutoffs.
We also obtained 57,578 IEPs in IMR90 from another

Hi-C study [33]. To our knowledge, this was the only Hi-C
dataset for human samples with a comparable sequencing
depth as that in GSE63525. In this study, Jin et al. defined
active enhancers with H3K4me1 and H3K27ac ChIP-seq
peaks and active promoters with H3K4me3 ChIP-seq
peaks together with the known genes from the University
of California, Santa Cruz genome browser. In addition to
using the original IEP dataset which was provided in the
hg18 version [33], we also converted it into the hg19 ver-
sion and overlapped with the aforementioned enhancers
and promoters used in this study to define IEPs.
We used the IEPs defined by the ChIA-PET exper-

iments in K562 and MCF7 as well for this study [6].
ChIA-PET datasets for other cell lines have much lower
sequencing depth than the two cell lines used here.
Using the interacting regions in these datasets we found
2,923 and 2,190 IEPs with the FANTOM enhancers
for K562 and MCF7, respectively. When we considered
the ChromHMM enhancers, there were 33,598 IEPs for
K562. There were no ChromHMM enhancers available in
MCF7.
We obtained additional IEPs based on active enhancer

and promoter links defined by Javierre et al. from
promoter capture Hi-C experiments in nine cell types
(Supplementary Table S1 in [8]). Javierre et al. did the
experiments on seventeen primary cell types while the
active enhancer and promoter links were provided for
nine cell types. Each link defined a pair of interacting
regions, with the average length of 5,709 and 8,599 bps,
respectively. Since Javierre et al. did not explicitly spec-
ify the enhancers and promoters, we overlapped these
links with the two sets of enhancers and the GEN-
CODE promoters to define two sets of IEPs. In total, we
obtained 20,764 and 607,274 IEPs with FANTOM and
ChromHMM enhancers, respectively.
Finally, we considered the chromatin interaction data

detected using a newly developed method named
“SPRITE” by Guttman lab [42]. This dataset was
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downloaded from GEO database of NCBI with the acces-
sion number GSE114242. Among the available SPRITE
datasets, the only human dataset was on GM12878 cell
line with the lowest resolution of 25 kbps. We considered
this dataset with three different read cutoffs; 30, 50 and
100 to obtain IEPs.
We applied a distance filter on all the IEP sets found

above. For every IEP, if the distance between the corre-
sponding enhancer and promoter is less than 2.5 kbps, we
filtered that IEP out from our analysis. The number of fil-
tered IEPs for all the datasets are shown in Supplementary
Table S1.

Other data used
Rao et al. annotated chromatin contact domains in each
of the eight cell lines [9]. We downloaded these domains
from GSE63525 and considered them as the topologi-
cally associating domains (TAD)s. We also downloaded
the annotated TADs in IMR90 by Dixon et al., which were
generated by the same lab that generated the Jin et al. data
[41].
We downloaded the super-enhancers in GM12878,

HeLa, HMEC, HUVEC, K562 and NHEK from dpSuper
database. We could not find the known super-enhancers
in KBM7. The super-enhancers in a cell line were com-
pared with the clusters of enhancers that interact with the
same set of target genes in the same cell line identified in
this study.

BCC (Bipartite clustering coefficient)
All IEPs in a cell line form a bipartite graph, where the
enhancers on one side connect with the target genes on
the other side. We thus applied the BCC [52] to character-
ize how enhancers share their target genes and how genes
share their enhancers (Fig. 1b).
For a pair of enhancers (or a pair of genes), say u and v,

their BCC is defined as,

BCC(u, v) = |n(u) ∩ n(v)|
|n(u) ∪ n(v)|

Here n(u) and n(v) are the set of genes (or enhancers)
interacting with u and v, respectively. Intuitively, if u and
v are a pair of enhancers, BCC(u, v)measures the percent-
age of target genes both u and v interact with among all of
their target genes. Similarly, if u and v are a pair of genes,
BCC(u, v) measures the percentage of enhancers both u
and v interact with among all the enhancers they interact
with. Correspondingly, the BCC of an individual enhancer
(or gene), say u, is defined as,

BCC(u) =
∑

v∈n(n(u)),v�=u BCC(u, v)
|n(n(u))| − 1

Here n(n(u)) is the set of enhancers (or genes) that share
at least one target gene (or enhancer) with u. Under a

given condition, for all the enhancers (or target genes)
sharing at least one target gene (or an enhancer) with the
other enhancers (or target genes), we averaged their indi-
vidual BCCs to obtain the BCC of enhancers (or target
genes) under this condition.

Clusters of enhancers that interact with the common set of
genes
We built an enhancer graph, with nodes representing
enhancers and edges representing pairs of enhancers
interacting with at least one common target gene. We
applied the Bron-Kerbosch algorithm [53] to this graph
to find all maximal cliques. Enhancers in a clique
formed a cluster of enhancers that interact with the
same set of genes (Fig. 2). Different clusters may share
enhancers.

Statistical tests
To assess the statistical significance of the observed BCC
values in a given set of IEPs, we compared the observed
BCC of enhancers (promoters) in this original set of IEPs
with that in random IEPs, respectively. In every compari-
son, the BCC values of individual enhancers (promoters)
that interacted with multiple promoters (enhancers) from
the original IEPs were pooled together and compared with
those from the random IEPs, respectively. In brief, we cal-
culated the frequency of the enhancers (promoters) with
BCC >0.9 in the random IEPs as the Binomial proba-
bility parameter (p). Assume there are n such individual
enhancers in the original IEPs and k of them have their
BCC >0.9, the p-value is calculated using the following
formula.

p − value = 1 −
k−1∑

i=0

(
n
i

)

pi(1 − p)n−i

Additional analyses
To assess whether enhancers within a cluster have more
sequence similarity to each other, we aligned every pair of
enhancers within a cluster for every cluster in a cell line.
We then measured the similarity of a pair of enhancers
as the percentage of identities in the corresponding align-
ment [54]. In this way, we obtained the similarity scores
of pairs of enhancers with clusters in a cell line. Similarly,
we obtained the similarity scores of pairs of enhancers
that are randomly selected in the same cell line. We
then compared the two sets of similarity scores by the
Mann-Whitney test [55]. To assess whether enhancers in
a cluster tend to be close to each other in a cell line, We
also compared the relative distance of pairs of enhancers
within clusters in a cell line with pairs of enhancers ran-
domly chosen in the same cell line by the Mann-Whitney
test. In addition, we measured the function similarity of
enhancers in clusters by the GREAT tool [46], with the

http://asntech.org/dbsuper/download.php
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input of the targets genes of enhancers in clusters in a
cell line. This gave us the significant functional terms
(p-value<1e-05) associated with the target genes of the
enhancer clusters.
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