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Abstract

Background: Isoprenoids are the most ancient and essential class of metabolites produced in all organisms, either
via mevalonate (MVA)-and/or methylerythritol phosphate (MEP)-pathways. The MEP-pathway is present in all
plastid-bearing organisms and most eubacteria. However, no comprehensive study reveals the origination and
evolutionary characteristics of MEP-pathway genes in eukaryotes.

Results: Here, detailed bioinformatics analyses of the MEP-pathway provide an in-depth understanding the
evolutionary history of this indispensable biochemical route, and offer a basis for the co-existence of the cytosolic
MVA- and plastidial MEP-pathway in plants given the established exchange of the end products between the two
isoprenoid-biosynthesis pathways. Here, phylogenetic analyses establish the contributions of both cyanobacteria
and Chlamydiae sequences to the plant's MEP-pathway genes. Moreover, Phylogenetic and inter-species syntenic
block analyses demonstrate that six of the seven MEP-pathway genes have predominantly remained as single-copy
in land plants in spite of multiple whole-genome duplication events (WGDs). Substitution rate and domain studies
display the evolutionary conservation of these genes, reinforced by their high expression levels. Distinct phenotypic
variation among plants with reduced expression levels of individual MEP-pathway genes confirm the indispensable

intermediates.

function of each nuclear-encoded plastid-targeted MEP-pathway enzyme in plant growth and development.

Conclusion: Collectively, these findings reveal the polyphyletic origin and restrict conservation of MEP-pathway
genes, and reinforce the potential function of the individual enzymes beyond production of the isoprenoids
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Background

With over 55,000 molecules, isoprenoids are the most
ancient group of structurally and functionally diverse
metabolites essential for all kingdoms of life [1].
Isoprenoid-derived compounds in free-living organisms
range from hormones, lipids, pigments, vitamins, electron
transport chain and defense compounds, and as such of
industrial interests for drugs, agrochemicals, rubber and
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fragrances [2]. However, despite their diversity, isoprenoids
are derived from two universal five-carbon precursors,
isopentenyl diphosphate (IPP) and its isomer dimethylallyl
diphosphate (DMAPP) [3]. These precursors are synthe-
sized either by mevalonate (MVA)-pathway [4] and/or by
the alternative route methyl erythritol phosphate (MEP)-
pathway [5]. Almost all eukaryotes, archae and some gram-
positive bacteria employ the MV A-pathway, whereas most
gram-negative bacteria, cyanobacteria and green algae
exclusively use MEP-pathway (Fig. 1a) [6]. Plastid-bearing
eukaryotes however are unique as they have retained both
pathways compartmentalized in the cytosol (MVA) and
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Fig. 1 Distribution of isoprenoid biosynthesis-pathways across lineages. a Distribution of mevalonate (MVA) and/or methylerythritol dicyclophosphate
(MEP) pathways, the two isoprenoid biosynthesis-pathways across linages of eukaryotes, Achaea, and eubacteria. The rectangular boxes display the
presence (filled) or absence of (blank) MVA- or MEP-pathway in each of the lineages. b Schematic presentation of the seven enzymes of the MEP-
pathway producing the two universal five-carbon precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). DXS: 1-
deoxy-D-xylulose-5-phosphate synthase. DXR: 1-deoxy-D-xylulose 5-phosphate reductoisomerase. CMS: 4-Diphosphocytidyl-2C-methyl-D-erythritol
synthase. CMK: 4-(cytidine 5-diphospho)-2-C-methyl-D-erythritol kinase activity. MDS: 2C-methyl-d-erythritol 2, 4-cyclodiphosphate synthase. HDS: 4-
hydroxy-3-methylbut-2-enyl diphosphate synthase. HDR: and 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase

plastids (MEP) [2]. It is suggested that retention of the two
pathways in the two different subcellular compartments of
the plastid-bearing eukaryotic cell is to regulate isoprenoid
biosynthesis according to the availability of carbon and
energy currencies, and as a strategy to balance resource
allocation between growth and adaptive responses to un-
favorable environmental inputs [7]. Given the established
metabolic exchanges between MVA- and MEP-pathway in
higher plants [8—10], the biological grounds for the indis-
pensable function of each of these pathways in plants has
remained an enigma.

One of the most profound outcome of evolution is the
emergence of plastids through a single endosymbiotic
event accompanied by a complex mix of loss, movement
and replacement in the ancestor of eukaryotes [11]. The
endosymbiotic events that led to the origination of plas-
tids were ensued by the transfer of genetic material from
the endosymbiont to the nuclear genome of the host,
followed by the evolution of protein import machinery
for transferring nuclear-encoded plastid-targeted proteins
and by extension the inevitable establishment of plastids-to-
nucleus (retrograde signaling) signaling cascades [12, 13].
The retrograde signaling cascade is instrumental for
coordination of vital activities between the two subcellular
genomes in plastid-bearing eukaryotes.

One essential plastidial biochemical route is the MEP-
pathway, responsible for catalyzing glyceraldehyde 3-
phosphate and pyruvate into isopentenyl diphosphate (IPP)

and dimethylallyl diphospahte (DMAPP), the central inter-
mediates in the biosynthesis of isoprenoids (Fig. 1b). The
MEP-pathway is comprised of seven nuclear genes encoding
plastid-localized enzymes. Intriguingly, one of the MEP-
pathway intermediates, MEcPP (2-C-methyl-D-erythritol-2,
4-cyclopyrophosphate), is found to be a bi-functional entity
severing as a precursor of isoprenoids and as a stress-
specific retrograde signaling metabolite coordinating expres-
sion of selected stress-response nuclear genes [14, 15].

Given the antiquity and essential function of isopre-
noids, the evolutionary history of the MVA-pathway in
eukaryotes is extensively examined [2, 6] whereas, the
characteristics of MEP-pathway genes is thus far re-
stricted to limited species and as such incomplete [16].
Understanding the evolutionary history of the MEP-
pathway across a wide range of species offers a novel
insight into their contribution to the evolution of pri-
mary plastids.

Here, extensive and integrated phylogenetic analyses
identify alpha-proteobacteria, cyanobacteria and Chla-
mydiae as the bacterial lineages that have contributed to
the evolution of MEP-pathway genes in plastid-bearing
eukaryotes. Syntenic analyses establish the predominant
presence of MEP-pathway genes as single-copy resulted
from the loss of duplicated copies post whole genome
duplication (WGD) events in land plants. Inter-species
syntenic block and substitution rate analyses reveal the
evolutionarily conservation of the MEP-pathway genes.
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Moreover, genetics analyses establish essential but differ-
ential functions of the MEP-pathway enzymes in plant
growth and development.

In summary, the finding uncovers the evolutionary
history and characteristics of plastidial isoprenoid
biosynthesis-pathway genes, and reinforces the uniqueness of
the MEP-pathway for unmasking the origins and evolution
of plastids.

Results

MEP-pathway genes in plastid-bearing eukaryotes are
derived from different bacteria lineages

To gain insight into the evolution of the MEP-pathway
genes, we constructed phylogenetic trees for individual
genes by using protein sequences of a wide range of
species from eukaryotes, cyanobacteria, PVC (Planctomy-
cetes, Verrucomicrobia and Chlamydiae) group bacteria,
and other non-cyanobacteria and non-PVC group bacteria
(hereafter named them as ‘other-eubacteria’). These ana-
lyses reveal the multiple origins of MEP-pathway genes in
plastid-bearing eukaryotes (Figs. 2 a-f, 3 and S1-57).

The phylogenetic tree analyses show DXS and MDS in
plastid-bearing eukaryotes and other-eubacteria are sister
groups. It is of note that while DXS in plastid-bearing
eukaryotes is clearly derived from alpha-proteobacteria
(Figs. 2a and S1), the specific inheritance source for MDS
remains unclear (Figs. 2b and S2). The maximum likeli-
hood tree of MDS moderately supports Aquifex Aeolicus
and Leptospira interrogans as the closest relatives of
plastid-bearing eukaryotes (Fig. S2A), whereas, the Bayes-
ian tree clusters Deinococcus-Thermus bacteria (Thermus
thermophiles, Deinococcus radiodurans) with plastid-
bearing eukaryotes (Fig. S2B).

The phylogenetic trees of DXR and HDR group
eukaryotes sequences with cyanobacteria (Figs. 2 c-d,
and S3-S4), and eukaryotic CMS and CMK in cluster
with Chlamydiae (Figs. 2 e-f and S5-S6).

Interestingly, the phylogenetic tree of HDS separates
the plastid-bearing eukaryotes into two clades; one clade
clusters with Chlamydiae and the other is closest to the
cyanobacteria homologue (Figs. 3a and S7). Moreover,
protein structure analyses show that depending on the
organism, HDS enzymes have two different types of
gcpE domains. Eubacteria HDS contain type I gcpE
domain comprised of two N- and C-terminal parts,
whereas the type II domain present in plants contains an
additional domain between the N- and C-terminal parts
of the protein, thought to enable the enzyme to function
as a monomer (Fig. 3b) [17]. Domain analyses identify
red algae HDS as an eubacteria-like type I-enzyme rather
than the expected type II-enzyme in eukaryotes, while
Chlamydiae HDS possesses the type II domain instead of
the expected eubacterial type I domain (Fig. 3b).
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Collectively the results display contributions of different
bacterial lineages to the origins of MEP-pathway genes in
plastid-bearing eukaryotes.

Duplicated DXS copies are not functionally redundant
Among the seven MEP-pathway enzymes, DXS catalyzes
the first step in isoprenoid biosynthesis [18] (Fig. 1b).
Phylogenetic analyses of DXS show the presence of one
gene copy in examined algae and eubacteria, and its
expansion into three subfamilies (I to III) in land plants
(Figs. 2a and S1).

In the subfamily I, gene duplications in each common
ancestor of Brassicaceae (Cruciferae, e.g. cabbage and
turnip) and Fabaceae (legume, e.g. soybean) resulted in
the presence of two genes (DXSI and DXS?2). In the sub-
family II, there is only one DXS copy, designated DXS3
in Arabidopsis thaliana, Brassicaceae and the ancestor
of Fabaceae. Moreover, the subfamily II is absent in
gymnosperms, but duplicated copies are present in sev-
eral moss and lycophyte species. Strikingly, the subfamily
III branch is lost in Brassicaceae family, whereas Faba-
ceae and grape display species-specific duplication(s),
and gymnosperms maintain two copies of subfamily III
in their ancestor.

Interestingly, despite of the presence of three DXS
subfamilies in land plants, only one is reported to
function as a housekeeping MEP-pathway gene, such as
DXS1 in A. thaliana that encodes the functional MEP-
pathway enzyme [19]. This is supported by plastidial
localization of DXS1 in Fabaceae species Medicago and
soybean, in line with the function of the enzyme catalyz-
ing the first step of the MEP-pathway [20, 21]. The
DXS2, which has no DXS activity, is assumed to
synthesize specific isoprenoids related to mycorrhiza in
Medicago [22]. DXS3, as the most divergent member of
the family, has the expected DXS enzyme activity, but is
expressed at very low levels, provoking the idea of its in-
volvement in the synthesis of phytohormones in maize
[23]. 1t is of note that in Escherichia coli DXS is respon-
sible for production of vitamin B6, but this synthesis in
plants utilizes intermediates of the glycolytic and pen-
tose phosphate pathways rather than that of DXS [24].
This information eliminates the possible function of
plant’s additional DXSs in vitamin B6 production.

In summary, despite the preservation of duplicated
DXS copies in land plants, only one copy has retained
the ancestral function of catalyzing the first step of the
MEP-pathway, alluding to a possible loss or neo-
functionalization of additional copies.

MEP-pathway genes are predominantly single copies

WGD events are most prevalent during angiosperm’s
diversity and are found in the common ancestors of seed
plants [25]. However in spite of gene duplication events
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Fig. 2 Origin of plastid-bearing eukaryotes MEP-pathway genes. The cladograms display clustering of plastid-bearing eukaryotes DXS (a), MDS (b), DXR
(©), HDR (d), CMS (e) and CMK (f) with other-eubacteria, obtained from RAXML using amino acid sequences. Taxa in various major groups are shown in
different colors. Species in eukaryotes, PVC groups and Cyanobacteria are shaded with light green, light yellow and light blue, respectively. Numbers
associated with branches are bootstrap (BS) values obtained from RAXML and posterior probability obtained from MrBayes. The dash associated with
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there are ~ 3124 nuclear-encoded single-copy genes,
comprising ~ 11% of Arabidopsis genome, shared by other
angiosperms [26]. Excluding DXS, and with exception of
few species that experienced a recent WGD, such as soy-
bean and Brassica oleracea (Figs. S2-S7), the remainder
six MEP-Pathway genes are among the single-copy genes
in all algae and most land plants. Even in exceptional cases
of soybean and Brassica oleracea, the MEP-pathway gene
such as CMS remained as single copy (Fig. S5).

Despite multiple WGD events, the predominant pres-
ence of MEP-pathway genes as single-copy in most land
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plants leads to the question of when the duplicated
copies were lost. To address this, we constructed intra-
species conserved syntenic blocks of MEP-pathway
genes for A. thaliana and Oryza sativa, the model eudi-
cot and monocot species respectively. Both species are
current diploids even though their most recent common
ancestors experienced two WGDs. Except for the DXS
in A. thaliana, the MEP-pathway genes in both species
are single-copy, separately positioned in a syntenic block
surrounded by pairs of paralogs retained after WGD(s)
(Fig. 4 and Data S1). This data supports the notion of
loss of MEP-pathway genes post WGD.

To gain insight into the fate of the ‘lost’ copy of MEP-
pathway genes, we searched for remnants of duplication
events, but found no evidence such as the presence of a
pseudogene for any of the MEP-pathway genes in A.
thaliana genome.

MEP-pathway genes are evolutionarily conserved

To investigate the evolutionary characteristics of MEP-
pathway genes, we examined the evolutionary rate, and
domain architectures of the encoded proteins.

The evolutionary divergence of DNA can be estimated
by the ratio of substitution rates at non-synonymous
(dN; amino acid altering) and synonymous (dS; silent)
sites, a measure of the dynamics of molecular evolution
[27]. That is, a significantly low ratio of dN/dS marks
slow evolution and as such the conserved nature of the
protein. To investigate the MEP-pathway genes’ evolu-
tionary rates we examined their respective dN/dS ratios
in selected species from represented lineages of plastid-
bearing eukaryotes. The markedly low dN/dS median
values ranging 0.04—0.14 suggests a strong purification
selection for all the seven MEP-pathway genes, thereby
supporting their evolutionary conservation (Fig. 5a and
Table S1).

Moreover the analyses of the protein domain(s) struc-
ture of MEP-pathway enzymes establishes that, with the
exception of HDS, an enzyme with two different types of
gcpE domains (Fig. 3b), the protein structures of the re-
mainder of MEP-pathway enzymes are universally con-
served [28].

MEP-pathway genes are highly expressed

There are two theories regarding gene conservation as
the result of evolutionary rate of proteins; i) an inverse
relationship between the expression levels and the evolu-
tionary rate [29]; and ii) a slow evolution of functionally
critical genes as opposed to less critical ones [30]. To
test the potential contribution of these two scenarios to
the high conservation of the MEP-pathway genes, we ob-
tained and ranked expression levels of all MEP-pathway
genes by analyzing the publicly available genome-wide
transcriptomic datasets of representative land species,



Zeng and Dehesh BMC Genomics (2021) 22:137 Page 6 of 12

mm Chr1
mmm Chr2
mmm Chr3
mmw Chr4
El Chr5

Arabidopsis thaliana Oryza sativa
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such as eudicots (A. thaliana and soybean), monocots
(O. sativa and Zea mays), gymnosperm (Picea abies),
moss (P. patens) and lycophyte (S. moellendorffii). The
data illustrate high expression levels for most MEP-
pathway genes with the exception of the three duplicated
copies of DXS and two duplicates of HDS in P. patens,
and one duplicated copy of CMK in soybean (Fig. 5b
and Table S2). Notably, in most species, expression-
ranking data places the first two genes (DXS and DXR)
and the last three genes (MDS, HDS and HDR) amongst
the top 5-10% most abundant transcripts.

To compensate for the absence of transcriptomic data-
sets for several lineages, we recruited a widely used
quantitative method, Codon Adaptation Index (CAI), to
predict the expression level of a gene based on its codon
sequence. The rationale of CAI is based on codon degen-
eracy, and that the highly expressed genes are biased to-
wards the codon decoded by the most abundant tRNA
species [31]. We therefore calculated CAls of all MEP-

pathway genes from represented species with and without
transcriptomic datasets in all life lineages. In most ana-
lyzed species, the MEP-pathway genes have a CAI value
higher than 0.7 (Table S3). The median CAI values for the
MEP-pathway genes (0.76—0.80), denote their high expres-
sion levels in all life lineages analyzed (Fig. 5c).

In summary, the high expression levels of the MEP-
pathway genes support their evolutionary conservation.

MEP-pathway genes are indispensable for plant growth
Except green algae, plants possess both the cytosolic
MVA- and the plastidial MEP-pathways, despite the
established exchanges of the end products between the
two isoprenoid producing routes [10]. Given the indis-
pensable function of MEP-pathway genes in eubacteria
[32, 33], we employed genetic approaches to test the
likelihood of the essentiality of the MEP-pathway genes
in plants.
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Fig. 5 MEP-pathway genes evolved slowly and are highly expressed. a The dN/dS ratios of MEP-pathway genes. b The relative expression ranking of MEP-
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Unavailability of T-DNA insertion lines for the MEP-
pathway genes, led us to employ the previously generated
RNAI lines that were maintained as segregating popula-
tion for individual MEP-pathway genes in A. thaliana
[15]. Homozygous RNAi lines, each with 92-95% reduced
expression levels of the corresponding MEP-pathway
genes [15], displayed seedling size and variegation leaf
phenotypes distinct from each other and from those of the
wild type plants transformed with an empty vector (EV).
These visibly altered phenotypes include dwarfed stature
of asDXR, asMDS and asHDS lines; in concert with pale-
yellow leaves phenotype of the asMDS seedlings, and an
albino phenotype of true leaves in all the other six RNAi
lines (Fig. 6).

In summary, the phenotypes of RNAi lines confirm
the indispensable function of MEP-pathway enzymes in
plant growth and development, and that the markedly
different size and phenotypic characteristics of each line
suggest the involvement of these enzymes in distinct
functions in addition of their role as intermediates in
isoprenoids biosynthesis pathway.

Discussion

The MEP-pathway is comprised of seven nuclear-
encoded plastid-localized enzymes, essential for plant
growth and key to stress-specific retrograde signaling as
evidenced by the function of the MEP-pathway inter-
mediate, methylerythritol cyclodiphosphate (MEcPP) as
a retrograde signaling metabolite [15]. The retrograde
signaling function of MEcPP offers an exciting justifica-
tion regarding the necessity of the MEP-pathway exist-
ence, not only for the production of the isoprenoids but
also for retrograde signaling function of each of interme-
diates essential for coordinated action of the two organ-
elles. This possibility could also explain the coexistence
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of MVA- and MEP-, the two isoprenoid producing path-
ways in plants.

MEP-pathway genes are resistant to duplication

In land plants, all the MEP-pathway genes with the
exception of DXS, are present as single-copy in all the
analyzed diploid plants in spite of ancient WGD events.
In fact, although DXS experienced duplications, only one
copy maintained the MEP-pathway-based enzyme activ-
ity [19-21]. The critical nature of gene duplication as a
source of evolutionary innovation and adaptation [34],
raises the question of why the MEP-pathway genes have
remained single-copies. One explanation might be that
under the relaxation of selective pressure, the duplicated
copy is inclined to accumulate deleterious mutations
[35], which in turn could result in a dominant negative
inhibition of the other functional copy. Indeed this is in
stark contrast with the existence of multiple copies of
the cytosolic MVA-pathway genes, such as functionally
redundant AACT1 and AACT?2 (anthocyanin-5-aromatic
acyl transferase-like) both of which encode the initial
enzyme of the MVA-pathway [36], or HMGI and
HMG?2 encoding the HMGR (3-hydroxy-3-methylgluta-
ryl CoA reductase) [37], and MVDI and MVD2 encod-
ing the MVD (mevalonate diphosphate decarboxylase)
[38]. Plants lacking AACT1 or HMG?2 are viable with no
apparent phenotypes, in contrast to indispensability of
MEP-pathway genes.

The polyphyletic origin of MEP-pathway genes

Among seven MEP-pathway genes, DXS and MDS have
originated from ‘other-eubacteria’. The closest sister
clade of plastid-bearing eukaryotes DXS is alpha-
proteobacteria, also the known ancestor of mitochondrion
[39]. This suggests that plastid-bearing eukaryotes DXS

transformed with empty vector (EV)

Fig. 6 The MEP-pathway genes are indispensable for plant growth. Representative images of 2-weeks-old seedlings of RNAI lines and wild type




Zeng and Dehesh BMC Genomics (2021) 22:137

might have originated directly from alpha-proteobacteria
via horizontal gene transfer (HGT), or indirectly via endo-
symbiotic gene transfer (EGT) from the mitochondrion
genome.

We were unable to place the origin of eukaryotic
MDS, but through expanded phylogenetic analyses we
determined notable homology between Chlamydiae and
eukaryotes sequences of three (CMS, CMK, and HDS) of
the seven MEP-pathway genes. Specifically, the phylogen-
etic trees of CMS and CMK, show that eukaryotes lineage
form a sister cluster with the corresponding Chlamydiae
gene, suggestive of HGTs between Chlamydiae and the
common ancestor of eukaryotes. In addition, phylogenetic
analyses of HDS depict clustering of red algae with cyano-
bacteria as opposed to other plastid-bearing eukaryotes
that form a sister group with Chlamydiae. One potential
explanation for this bifurcated clustering is that the
ancestral plastid-bearing eukaryotes acquired HDS from
Chlamydiae, but in red algae ancestor, the chlamydial
HDS was lost as the result of two major phases of genome
reduction [40], but later it was replaced by the second
HGT event from cyanobacteria.

The necessity of Chlamydiae like HDS enzyme in plas-
tid bearing organisms potentially could be justified as a
response to the changing environmental conditions over
time. Based on the oldest eukaryotic algae fossils
findings in conjunction with the molecular clock data,
plastids are predicted to have originated in Mesoprotero-
zoic era ~0.9-1.7 billion years ago [41]. During the
Proterozoic era, oxygen began to rise and built up to
above 10% of the levels existed in the atmosphere at
Mesoproterozoic era [42, 43]. Simultaneously, the earth
entered a warm period ending glaciations and raising the
tropical mean sea surface temperatures from ~ 19.4—
28.7 °C [44].

It is well established that HDS, a [4Fe-4S]-protein
reactive to oxygen species, is hypersensitive to high
radiation and supra-optimal temperatures. Under these
unfavorable conditions inhibition of HDS results in
accumulation of its substrate, MEcPP, that in turn pro-
tects MEP-pathway activity by restricting oxidative stress
[45—-47]. Plastid-bearing eukaryotes are frequently and
simultaneously exposed to reactive oxygen species, high
light irradiance and hot temperatures, and one could
consider HDS enzyme as the gatekeeper maintaining the
MEP-pathway’s functionality.

Accordingly, we propose that the evolutionary
pressures resulted from high oxygen and higher temper-
atures at the era of plastid establishment may have led
to acquisition of a monomeric Chlamydiae like HDS in
plastid-bearing organisms. The presence of a middle do-
main in the monomeric enzyme would have provided a
higher ratio of protein/ labile [Fe-S]-iron cluster, thereby
a functionally more efficient enzyme than the dimeric
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form in a high oxygen and high temperature environ-
ment. As such, plastid-bearing eukaryotes, acquired
the more efficient monomeric HDS donated by
Chlamydiae.

Our overall finding poses the question of how multiple
donors could have contributed to the MEP-pathway.
The simplified schematic (Fig. 7) depicts the three
potential scenarios addressing the question. Scenario I
proposes inherited chimerism by EGT, and that the
occurrence of prokaryotic HGT to the cyanobacteria
genome happened prior to endosymbiosis event leading
to plastid formation [48]. If so, cyanobacteria must have
acquired chlamydial MEP-pathway genes through HGT
before EGT in plants (Fig. 7). In such a case, one would
expect the presence of chlamydial type CMS, CMK and
HDS sequences in Gloeomargarita lithophora genome,
the prime candidate for extant relative of the cyanobac-
terial plastid progenitor [49]. However, clustering of the
three genes in G. lithophora with cyanobacteria and not
with Chlamydiae (Figs. S3-S4, and S6), diminishes the
probability of scenario 1.

Scenario II suggests that CMS, CMK and HDS in
eukaryotes are the result of HGT from Chlamydiae after
the endosymbiosis (Fig. 7). But, the inability of Chla-
mydiae to infect current photosynthetic eukaryotes or
plastid-containing organisms renders this scenario less
plausible.

Scenario III supports co-contribution of cyanobacteria
and Chlamydiae to the origin of the primary plastid (Fig.
7), once proposed as the ‘tripartite (ménage-d-trois-
‘household of three’) symbiotic relationship between the
extant order Chlamydiales, a cyanobacterium, and an
eukaryotic host for the establishment of the eukary-
otes lineages [50-53]. The tripartite endosymbiosis
supported by phylogenomic analyses of a considerable
number of nuclear genes in eukaryotes related to chla-
mydial homologues, proposes that the chlamydial partner
injected effector proteins into the ancestral eukaryotes as
a strategy to manipulate host cell carbohydrate metabol-
ism to the parasite’s advantage [50, 51, 54]. However,
counter arguments question the correct evolutionary
models of phylogenomic analyses, the high frequency of
HGTs among prokaryotes and among prokaryote-to-
eukaryote [55-58]. Our analyses based on the best-fitting
evolutionary models for constructing phylogenetic trees of
individual MEP-pathway genes support the chlamydial
origination for three of seven MEP-pathway genes in
plastid-bearing eukaryotes, even though the evolutionary
pressure(s) that led to plastid-bearing eukaryotes harbor-
ing a chimera MEP-pathway remains an enigma.

Our data clearly presents contribution of both cyano-
bacteria and Chlamydiae to plastid-bearing eukaryotes
MEP-pathway and by extension to the origin of the
primary plastid.
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Conclusion

The MEP-pathway genes are highly conserved and are
essential for the survival of plastid-bearing eukaryotes.
The plastid-bearing eukaryotes MEP-pathway genes
originated from both cyanobacteria and Chlamydiae
indicating their co-contributions to the evolution of
primary plastids. The nuclear-encoded plastid-destined
MEP-pathway enzymes enable the host eukaryotes to
control plastids in a stable endosymbiosis system, while
in return MEcPP, the plastid-produced intermediate of

the MEP-pathway, coordinates expression of selected
nuclear stress-response genes and the corresponding
physiological ramifications. These bilateral controls me-
diated by MEP-pathway may also shed light on the basis
of the co-existence of cytosolic and plastidial isopreneoid
biosynthesis pathways in eukaryotes.

In summary, these findings uncover the evolutionary
history and characteristics of the plastidial isoprenoid
biosynthesis-pathway genes and its implications in origin
and evolution of primary plastid.
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Methods

Identification the homologues of MEP-pathway

Plant genome sequences were downloaded from the
Phytozome v12 (https://phytozome.jgi.doe.gov/pz/portal.
html), Amborella Genome Database (http://amborella.
huck.psu.edu/data), Spruce Genome Project (http://
congenie.org/start) and JGI Genome portal (https://
genome.jgi.doe.gov/). Algea genomes were downloaded
from Phytozome and Greenhouse (https://greenhouse.
lanl.gov/greenhouse/organisms/). Annotated genome
sequences of Chara braunii [59)], Klebsormidium nites
[60] are downloaded. Genome sequences of selected
eubacteria were downloaded from Ensembl (release 90)
(ftp://ftp.ensembl.org/pub/).

The names and IDs of MEP-pathway genes in A. thaliana
are DXS (1-deoxy-D-xylulose-5-phosphate synthase): AT4
G15560; DXR (1-deoxy-D-xylulose 5-phosphate reductoi-
somerase): AT5G62790; CMS (4-Diphosphocytidyl-2C-me-
thyl-D-erythritol synthase): AT2G02500; CMK (4-(cytidine
5’-diphospho)-2-C-methyl-D-erythritol kinase activity): AT2
G26930; MDS (2C-methyl-d-erythritol 2,4-cyclodiphosphate
synthase): AT1G63970; HDS (4-hydroxy-3-methylbut-2-enyl
diphosphate synthase): AT5G60600; and HDR (4-hydroxy-
3-methylbut-2-en-1-yl diphosphate reductase): A74G34350.
The protein domain information for each MEP-pathway
gene in A. thaliana was obtained from Phytozome v12,
which are 1-deoxy-D-xylulose-5-phosphate synthase as
PF13292 for DXS, 1-deoxy-D-xylulose-5-phosphate reduc-
toisomerase as PF02670 and 1-deoxy-D-xylulose-5-phos-
phate reductoisomerase C-terminal as PF08436 for DXR,
MobA-like NTP transferase as PF12804 for CMS, GHMP
kinases N terminal as PF00288 and GHMP kinases C ter-
minal as PF08544 for CMK, YgbB as PF02542 for MDS,
GcpE as PF04551 for HDS, and LytB protein as PF02401 for
HDR, respectively. Hidden Markov Models (HMM) [61]
matrix presenting each domain of MEP-pathway enzymes
was downloaded from Pfam (https://pfam.xfam.org/). Then,
hmmsearch and fastacmd were used to obtain protein se-
quences in selected whole-genome sequenced species. And
protein sequences of MEP-pathway genes in PVC bacteria
were retrieved from PVCbase (http://pvcbacteria.org/
pvcbase/) using BLASTP. All the identified proteins were
examined on Pfam website to confirm the presence of the
corresponding protein domain.

Multiple sequence alignment and phylogenetic tree
construction

The MEP-pathway protein sequences were aligned using
MUSCLE [62] v3.8.31 with default parameters. Prottest
[63] was used to select out the best-fitting evolutionary
model for each aligned protein matrix of MEP-pathway
gene. Then the evolutionary model of WAG + G was
specified for DXS, LG +1+G was specified for DXR,
HDS and HDR, and VT + 1+ G was specified for CMS,
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CMK and MDS. Phylogenetic trees were constructed by
RAXML [64] v7.1.0 and MrBayes [65] v3.2.7. As an
exception to the MEP-pathway genes, the CMK belongs
to the GHMP gene family with 13 copies in A. thaliana.
All protein sequences of this family in each species were
firstly retrieved and preliminary ML tree using aligned
sequences was constructed. Lastly, members of CMK
and MVK (mevalonate kinase in the MVA-pathway)
were selected out for constructing the final phylogenetic
tree. The MVK branch was set as outgroup.

Synteny analysis

The Locus search function in PGDD [66] (http://chibba.
agtec.uga.edu/duplication/), a public database for cluster
identification of plant genes based on intra- or cross-
genome syntenic relationships, was implemented for
identifying the intra-species duplication blocks around
500 kb region of each MEP-pathway genes in A. thaliana
and O. sativa.

dN/dS analyses

Nucleotide sequences for represented species in each
lineage, namely A. thaliana a eudicot, O. sativa a mono-
cot, A. trichopoda an early-diverging angiosperm, P. abies
a gymnosperm, P. patens a moss, S. moellendorffii a lyco-
phyte, Volvox carteri a green algae and Cyanidioschyzon
merolae a red algae, were retrieved to calculate the nonsy-
nonymous to synonymous rate ratio (w = dN/dS) between
A. thaliana and all other species. The w was calculated by
ynO00 contained in the software PAML v4.5 [67] using the
Yang & Nielsen method, wehre 0 < w < 1 indicates purify-
ing selection, @ =1 corresponds to neutral selection, and
> 1 implicates positive selection. The distributions of all
dN/dS values for each MEP-pathway gene were drawn by
the boxplot function in the R [68] program.

Expression levels, codon adaption index (CAI)

The sources of the RPKM values of all expressed genes in
wild type plant in represented species were listed as follow-
ing: A. thaliana [69], Z. mays [70] (2 replicates of mock
treated wild type), G. max (SoyBase Soybean Genome An-
notation Page: https://soybase.org/soyseq/tables_lists/index.
php), O. sativa (Rice Genome Annotation Project: http://
rice.plantbiology.msu.edu/expression.shtml, use four librar-
ies of four-leaf stage seedling), P. abies (Spruce Genome
Project: ftp://plantgenie.org/Data/ConGenlE/Picea_abies/
v1.0/Expression/), P. patens [71] and S. moellendorffii [72].
Genes with RPKM >1 were retained for further analyses.
The relative expression ranking of each gene was calculated
using the formula: 1- (order of the gene) / (total number of
all expressed genes). The relative expression ranking of all
represented species for each gene were presented as
scatter-boxplot in the R program.
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Nucleotide sequences for each MEP-pathway gene in se-
lected species were retrieved in corresponding datasets.
Codon usage table for each selected species was obtained
from Condon Usage Database (http://www.kazusa.or.jp/
codon/). Lastly, fasta format of each nucleotide sequence
and codon usage table of each species were inputted to cal-
culate the CAI on the CAlcal SERVER [73] (http://ppuigbo.
me/programs/CAlcal/).

Plant material and growth conditions
We employed the RNAI lines for all MEP-pathway genes
in A. thaliana that were previously generated [15]. Ster-
ilized seeds sowed on 1/2 MS medium were maintained
for 48 h at 4 °C. Two-week-old seedlings were grown at
22 °C under 16/8 h light/dark period.
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