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Abstract

Background: Cell-to-cell variation in gene expression strongly affects population behavior and is key to multiple
biological processes. While codon usage is known to affect ensemble gene expression, how codon usage
influences variation in gene expression between single cells is not well understood.

Results: Here, we used a Sort-seq based massively parallel strategy to quantify gene expression variation from a
green fluorescent protein (GFP) library containing synonymous codons in Escherichia coli. We found that sequences
containing codons with higher tRNA Adaptation Index (TAI) scores, and higher codon adaptation index (CAI) scores,
have higher GFP variance. This trend is not observed for codons with high Normalized Translation Efficiency Index
(nTE) scores nor from the free energy of folding of the mRNA secondary structure. GFP noise, or squared coefficient
of variance (CV2), scales with mean protein abundance for low-abundant proteins but does not change at high
mean protein abundance.

Conclusions: Our results suggest that the main source of noise for high-abundance proteins is likely not
originating at translation elongation. Additionally, the drastic change in mean protein abundance with small
changes in protein noise seen from our library implies that codon optimization can be performed without
concerning gene expression noise for biotechnology applications.
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Background
Gene expression can vary significantly from cell to cell
in an isogenic bacterial population, giving rise to pheno-
typic variation that affects population survival and fit-
ness, ensemble performance, persistence, bacterial-host
interaction, and probabilistic differentiation [1–5]. The
underlying causes of gene expression variation are of
particular importance to the fundamental understanding
of cellular processes, which may enable the development

of methods to control such variation, leading to more ef-
fective antibacterial treatments and more efficient
bacteria-based biotechnology [6–10].
Cell-to-cell variation in protein abundance can arise

from transcriptional, translational, and other processes
that govern gene expression. How transcriptional pro-
cesses affect the variability of gene expression between
single-cells has been extensively studied [11–13]. Pro-
moter strength, transcriptional bursting, transcription
factor binding strength, as well as the copy number of
RNA polymerase and mRNA degradation rate have all
been shown to affect variability in mRNA copy numbers,
which further affect the variability of protein abundance
[14–16]. Parameters in translational processes such as
mean translational rate and cell-to-cell variability in
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translational rate could both, in theory, contribute to
variation in single-cell protein abundance [17]. Mean
translational rate can be affected by multiple genetic ele-
ments, including the strength of ribosome binding sites,
mRNA secondary structures, and codon usage, as well as
growth-related factors such as charged tRNA concentra-
tions and the copy number of free ribosomes [18]. These
genetic elements and growth-related factors may also
affect the variability of translational rate between single
cells, which further influence variability of protein abun-
dance. Due to this complexity, it is difficult to isolate
how each individual parameter affects the variability of
protein abundance. Codon usage, for example, has been
shown to influence both translational efficiency and
transcript stability, with suboptimal codons hindering
translation and affecting mRNA stability [18–28]. Codon
usage and bias also affect translational dynamics with
low abundance tRNA isoacceptors pausing ribosomes
[29] and controlling ribosomal traffic [30], particularly at
the start of a gene sequence [31]. Despite significant
knowledge on the effects of codon usage on mean gene
expression, how and to what extent codon usage affects
cell-to-cell variability in protein abundance is poorly
understood. With codon optimization used as a popular
method for enhancing and controlling expression [32],
determining any additional consequences, such as on the
variability, is important.
In this work, we constructed a library of green fluores-

cent protein (GFP) reporters with different synonymous
codons at their 5′ coding sequence and expressed this li-
brary in Escherichia coli growing in defined glucose
medium. We developed a high-throughput method that
involves fluorescence activated cell sorting followed by
sequencing (Sort-seq) [33] to analyze protein variabilities
of 219 different GFP coding sequences within one ex-
periment. Multiple methods were employed to validate
the Sort-seq for high-throughput variability measure-
ment. We found that codon usage has a large influence
on the mean and variance of GFP abundance. Mean-
while, the squared coefficient of variance (CV2, also
called noise) varies with GFP mean abundance but
shows little difference for sequences with high mean
protein abundance. Similar trend was also observed
when analyzing variability of E. coli native proteins.
These results illuminate the influence of codon usage to
variations in protein abundance and can be potentially
extended to study protein variations in other growth
conditions and from other microorganisms.

Results
Design of a Synthetic Gene Library with synonymous
codons
To systematically study the influence of codon usage in
cell-to-cell protein variability, a GFP library was

designed with the first 8 codons after the start codon
(ATG) randomly mutated to synonymous codons, result-
ing in a library of 4096 GFP coding sequences. All GFP
coding sequences were placed to the 3′ of a red fluores-
cent protein (RFP) with fixed codon usage in a polycis-
tronic structure under the control of the same promoter
(Fig. 1a). RFP was used as an internal control to ensure
all analyzed cells have transcribed RFP, thus eliminating
cells that have lost their plasmid. The synonymous co-
dons were placed at the N-terminal of GFP coding se-
quence because mean protein abundance is more
sensitive to codon usage in this region due to its poten-
tial to influence translation initiation, therefore allowing
us to analyze protein variabilities across a wide range of
protein abundance [22]. The fluorescent reporters were
expressed in E. coli from a low copy number plasmid
(SC101 origin, approximately 5 copies) to minimize bur-
den from gene overexpression [5].

Sort-Seq for high throughput protein variability analysis
Protein variability was previously measured by quantify-
ing single-cell fluorescence of a fluorescent protein using
either microscopy or flow cytometry. These methods
can measure variability for only one protein sequence at
a time. Such low throughputs are insufficient for charac-
terizing large reporter libraries. To solve this problem,
we aimed to use Sort-seq [34] to quantify the variations
of the GFP library in a massively parallel fashion (Fig.
1b). In this method, single cells are first sorted into dif-
ferent bins based on their GFP fluorescence. Sorted cell
mixture in each bin is then sequenced using a distinctive
barcode to indicate the bin. The number of reads for
each unique GFP sequence is mapped to each bin that
represents a corresponding fluorescence intensity. From
the distribution of reads, protein variability for each GFP
sequence can be calculated.
To validate the method, we first tested the number of

bins that allow accurate determination of protein vari-
ability. A total of 10 testing strains from the library were
randomly selected and their single-cell fluorescence dis-
tribution was measured using flow cytometry (Supple-
mentary Figure S1). An increasing number of virtual
bins were applied to each sample based on single-cell
fluorescence intensity using either linear or exponential
fluorescence scales to simulate the bins used in Sort-seq.
The mean fluorescence for cells in each virtual bin was
applied to all cells within that bin and the GFP variabil-
ities for each strain were computed as the CV2

binned.
These values were compared to the variability directly
calculated using the un-binned raw fluorescence distri-
bution (CV2

real). We found a consistent lower error rate
when cells were binned using log-spaced fluorescence
scales compared to those using linear fluorescence scales
(Supplementary Figure S2) and is consistent with
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previous work that used log-spaced bins [35]. The per-
cent error of CV2

bin to CV2
real also decreases as the

number of bins increases (Supplementary Figure S2).
With 20 bins, 8 out of 10 randomly selected strains had
errors less than 5%. The other two strains with greater
than 5% error at 20 bins showed less than 5% error
when using fewer than 20 bins due to flow-cytometer
measurement noise. Therefore, to obtain accurate quan-
tification of protein variability, we sorted our library into
20 bins divided using an exponential fluorescence scale
(Supplementary Figure S3A, S4). Compared to previous
Sort-seq work for measuring mean protein abundance, a
much higher number of bins are used here, reflecting
the challenge in accurate quantifying of gene expression
variations [34].
After sorting, plasmids from each bin were extracted,

PCR-amplified using primers containing bin-specific
barcodes, and sequenced. The Sort-seq experiment was
performed three times to examine consistencies between
experiments. A total of 5.7 million reads from 3421
unique GFP coding sequences (out of 4096 possible

members in the designed library) were sequenced, repre-
senting 83% coverage of the library. For each unique
GFP sequence, the number of cells distributed across
different bins is calculated and fitted to a Gamma distri-
bution based on the linearly scaled GFP fluorescence,
from which mean, variance, and CV2 in GFP abundance
was calculated (Methods). Here we calculated variabil-
ities from a fitted Gamma distribution, instead of dir-
ectly from the binned distribution, to reduce the error
caused by treating fluorescence as a discrete value at
each of the individual bins. The number of cells sorted
per unique GFP sequence varies broadly (Supplementary
Figure S3B) potentially because different GFP sequences
led to different cell growth rates and thus different li-
brary member representation prior to cell sorting. We
hypothesized that for sequences with too few cells-per-
sequence (CPS), its variation calculation may not be ac-
curate due to small sampling sizes. To identify the mini-
mum CPS that provide accurate variability
measurements, we grouped GFP sequences using differ-
ent CPS cut-offs and compared calculated GFP

Fig. 1 Sort-seq for massively parallel measure of protein variability. a Eight codons on the 5′ end of GFP are synonymously mutated. b
Experimental procedure for massively parallel measurement of gene expression variation using Sort-seq. The plasmid library containing the
synonymously mutated GFP was transformed to E. coli to create a pooled library. Fluorescence activated cell sorting (FACS) is used to sort the
library into 20 bins based on GFP fluorescence. Plasmids are isolated from the sorted cells in each bin and are subjected to high-throughput
sequencing. The number of reads for each unique GFP sequence is mapped back to each bin that represents a corresponding fluorescence
intensity. Protein variability for each GFP sequence is calculated from a fitted Gamma distribution

Schmitz and Zhang BMC Genomics          (2021) 22:149 Page 3 of 12



fluorescence from independent Sort-seq measurements
(Supplementary Figure S5). With a minimum CPS cut-
off of 20, we obtain good correlation between two separ-
ate Sort-seq measurements for both mean GFP fluores-
cence (R2 > 0.94), variance (R2 > 0.81), and CV2 (R2 >
0.68). As the CPS cut-off drops below 20, both mean
GFP fluorescence and CV2 correlation decrease dramat-
ically (Supplementary Figure S5). Gating based on the
CPS value excluded 92% of available GFP sequences be-
cause many GFP sequences have less than 20 cells de-
tected. Additionally, for sequences with CPS greater
than 20, we examined GFP mean and CV2 values mea-
sured from three independent Sort-seq experiments.
GFP sequences with large percent error in either GFP
mean or CV2 were treated as inaccurately measured and
were excluded from further analysis (Supplementary Fig-
ure S6). Gating based on percent error in GFP mean and
CV2 removed an additional 1.4% of available GFP se-
quences. The gating resulted in a total of 219 unique
GFP sequences used in our analysis.
The reconstructed Gamma distribution of the

remaining sequences overlaps closely with Sort-seq mea-
sured fluorescence distribution across replicates (Fig. 2a
and b) (Supplementary Figure S7). Additionally, we com-
pared the mean GFP fluorescence measured from Sort-
seq with those measured from flow cytometry for 16
randomly-selected individual GFP sequences which
showed strong correlation (R2 = 0.94) for mean GFP
fluorescence, further validating our method (Fig. 2c).

Codon usage correlates with mean and variance but not
CV2

To understand how codon usage affects protein variabil-
ity, GFP sequences were analyzed based on a few com-
monly used quantitative metrics of the 8 variable
codons, including the tRNA Adaptation Index (TAI), the
Codon Adaptation Index (CAI), the Normalized Transla-
tion Efficiency Index (nTE) scores and the folding free
energy of the mRNA secondary structure (Fig. 3) [36–
38]. The measured mean GFP abundance, variance, and
CV2 are compared for each scored group. The mean
GFP level correlates weakly with either TAI (R2 = 0.23,
p < 0.001) or CAI scores (R2 = 0.10, p < 0.001), consistent
with previous measurements from GFP codon libraries
[39]. However, we did not observe significant correlation
with the nTE score (p > 0.1). Because the nTE score is a
measure of cellular competition for tRNAs, the lack of
correlation suggests that tRNAs are likely not the rate-
limiting factor for GFP translation under our experimen-
tal condition (minimal medium with 1% glucose as car-
bon source). We also did not observe significant
correlation between mean GFP fluorescence and the
folding energy of 5′ GFP mRNA (p > 0.1) as previously
suggested [39, 40] This is potentially because GFP is the

second coding sequence on the mRNA. In our construct,
the GFP start codon is located 22 base pairs after the
RFP stop codon, and the ribosome is known to prevent
mRNA folding for a region 21 base pairs away from the
ribosome A site [41]. Thus, it is likely that the folding
energy of GFP mRNA is affected by ribosome translation
of the 5′ RFP sequence. Similar weak positive correla-
tions are observed between variance of GFP levels with
TAI (R2 = 0.22, p < 0.001) and CAI scores (R2 = 0.08, p <
0.001), but not with the nTE score nor folding energy of
5′ GFP mRNA (p > 0.05). CV2 correlates weakly with ei-
ther TAI (R2 = 0.07, p < 0.001) or CAI score (R2 = 0.07,
p < 0.001), likely due to the fact that CV2 is large at low
GFP levels (Fig. 2d).
Altering the codon usage has a significant effect on

the mean expression level, which in turn affects variance
and CV2. To isolate the influence of codon usage
through mean expression level, GFP variance and CV2

are plotted against mean GFP level. While GFP variance
increases with GFP mean (Fig. 4a), GFP CV2 generally
decreases with mean at low GFP abundance and levels
off at high GFP abundance (Fig. 4b), consistent with pre-
vious observations from genome-wide E. coli native gene
expression [17]. At high GFP abundance, several se-
quences with the same mean displayed different CV2

values, but the differences are within experimental error
(Fig. 2d). At high protein abundance, codon usage has
little effect on protein CV2. Thus, codon usage affects
CV2 mostly via affecting mean GFP level. Meanwhile,
codon usage affects protein variance at all gene expres-
sion levels. Codons with high TAI or CAI scores in-
creased both GFP mean and variance (Figs. 3 and 4).

Codon usage Bias in the E. coli genome
In addition to testing a synonymous codon library of
a synthetic gene, we also examined whether similar
trends exist for native genes in the E. coli genome.
Using protein variability of native genes measured
from previous work [17], we calculated the TAI, CAI,
and nTE scores of their coding sequences for 735
genes for which we had both noise information pro-
vided by a previous study [17] and sequence informa-
tion provided by UniProt [42] (E. coli strain K-12)
(Fig. 5). From the analyzed genes, weak positive cor-
relations (p < 0.001) between mean expression level
and TAI or CAI scores was observed, consistent with
previous works [37, 38, 43]. No significant correlation
(p > 0.05) between protein CV2 with any of the used
codon metrics was observed (Fig. 5a). The observa-
tions from analyzing E. coli native genes are in agree-
ment with results from Sort-seq analysis of our GFP
library. Therefore, we conclude that codon usage only
influences protein noise by affecting their mean
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expression levels, with little influence on highly abun-
dant proteins.

Discussion
The analyses performed in this study show that codon
usage has a strong influence on the mean protein
abundance and variance, with little influence on cell-

to-cell protein variation under the same mean. The
altered mean protein expression does not arise from
changes in GC content (Supplementary Figure S8) or
from mRNA secondary structure (Fig. 3) that could
alter translation initiation. For high-abundance pro-
teins, the lack of change in protein variability suggests
that cell-to-cell variation in translational rate is not

Fig. 2 Validation of protein distribution reconstructed from Sort-seq. a Distributions of single-cell fluorescence as measured by flow cytometry for
six randomly isolated library members. b Sort-seq-reconstructed single-cell fluorescence (pink columns) and the fitted curves (black) to a Gamma
distribution from three independent Sort-seq experiment (from top the bottom) for the same six library isolates as shown in (a). c The correlation
on mean fluorescence measured from Sort-seq and flow cytometry for another sixteen randomly isolated library members. d Mean GFP
fluorescence and CV2 for all 219 library members passing our filters. Error bars represent standard deviation across the three experiments. The six
isolated library members shown in (a) and (b) are highlighted in purple
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changed significantly when swapping synonymous co-
dons. Rare codons (codons with low CAI scores) tend
to decrease the mean protein abundance but only
have a small effect on CV2. For proteins with codons
requiring low-abundant tRNAs (codons with low TAI
scores), their overexpression can deplete the availabil-
ity of charged tRNAs. The lack of change in protein
CV2 when swapping to codons with low TAI scores
suggests that the decreased availability of tRNAs does
not lead to an increase in cell-to-cell variation of
charged tRNAs. This is potentially caused by the tight
feedback regulation of tRNAs that would maintain
tRNA levels [44]. Furthermore, our results also sug-
gest that the main source of protein noise for high-
abundance proteins is likely not translational in origin
but rather due to variations in transcription, such as

cell-to-cell variation in RNA polymerase as previously
suggested [45].

Conclusions
We observe that synonymously mutation of just eight
codons on the GFP changed mean protein abundance by
as much as five-fold (Fig. 4) with little to no change in
protein noise. The drastic change in protein abundance
with small changes in variation indicates that for bio-
technology applications, codon optimization can be per-
formed to control gene expression levels without
concerning gene expression noise [46].
Our Sort-seq based method represents a high-

throughput strategy for measuring gene expression vari-
ability. A key parameter to obtain high accuracy in vari-
ability measurement is to sort cells into a large enough

Fig. 3 GFP fluorescence distribution parameters with various sequence metrics. GFP protein mean abundance, variance, and CV2 were calculated
based on data measured from Sort-seq experiment. A total of (N = 219) library members are compared on the mean, variance and CV2 against
sequence metrics including the TAI score, CAI score, nTE score, and free-energy difference from mean of the secondary structure of the transcript
(ΔΔG). Error bars represent standard deviation
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number of bins to increase distribution resolution. This
method can be potentially extended to other libraries,
such as libraries of different promoters or RBSs, and to
other organisms, illuminating genetic mechanisms that
control cell variability.

Methods
Materials
All primers were synthesized by Integrated DNA Tech-
nologies (Coralville, IA, U.S.A.). Eco31l and T4 DNA lig-
ase were purchased from Thermo Scientific (Waltham,
MA, U.S.A.). All other reagents were purchased from
Sigma Aldrich (St. Louis, MO, U.S.A). All M9 medium
was supplemented with 75 mM MOPS, 2 mM MgSO4, 1
mg/L thiamine, 10 μM FeSO4, 0.1 mM CaCl2 and micro-
nutrients including 3 μM (NH4)6Mo7O24, 0.4 mM boric
acid, 30 μM CoCl2, 15 μM CuSO4, 80 μM MnCl2, and
10 μM ZnSO4. Plasmid DNA purification kits and frag-
ment DNA purification kits were purchased from iN-
tRON Biotechnology (Seoul, South Korea). High-
throughput sequencing was conducted using a MiSeq
2 × 250 standard flow cell from Illumina Inc. (San Diego,
CA, U.S.A.). Sanger sequencing was conducted by Euro-
fins Scientific (Luxembourg). Flow-cytometry was con-
ducted on a Guava easyCyte HT system (Luminex Corp.,
Austin, TX, U.S.A.) using a 488 nm laser in combination
with a 525/30 filter for GFP and a 532 nm laser in com-
bination with a 583/26 filter for RFP. Cell libraries were
sorted using a BD FACS Ariall-2 cell sorter (BD Biosci-
ences, Franklin Lakes, NJ, U.S.A.) equipped with a 488
nm laser and a 530/30 nm filter for GFP and a 561 nm
laser and a 582/12 nm filter for RFP.

Library construction
To ensure that all library members are synonymously
mutated rather than randomly mutated, degenerate
primers that allow specific base mutations were used to
amplify a super-folder GFP (sfGFP) (Supplementary
Table 1A). Both primers contain a Eco31l site for clon-
ing purposes. Plasmid pS5c-RFP-sfGFPlibrary was con-
structed using one-step Golden-Gate DNA assembly
[47]. The GFP library was inserted to the 3′ of a RFP
coding sequence in a BglBrick plasmid pS5c-RFP [48],
which contains a p15A replication origin, a chloram-
phenicol resistance marker, and a PLacUV5 promoter
driving the expression of RFP. To do so, the vector back-
bone was PCR amplified with primers containing Eco31l
sites (Supplementary Table 1B). The two PCR amplicons
were digested with Eco31l, followed by ligation with T4
ligase following the Golden-Gate protocol [47]. The li-
gated plasmid library was then chemically transformed
into E. coli DH10β competent cells. The transformed li-
brary was recovered in 5 mL Luria-Bertani (LB) medium
for 2 h at 37 °C and then supplemented with chloram-
phenicol at 30 mg/mL and grown at 37 °C until reaching
OD600 0.08. The culture was then divided into 500 μL al-
iquots, mixed with 500 μL of 50% glycerol, and stored at
− 80 °C until use.

Optimizing sorting parameters
The number of bins used for the Sort-Seq protocol was
determined using the flow-cytometer data from the ten
individual library members. The distribution of GFP
fluorescence was divided into different number of virtual
bins, and the CV2 was calculated from the both the bins

Fig. 4 GFP Variance and CV2 with Mean GFP fluorescence. From the Sort-seq experiment, the variance (a) and CV2 (b) are compared to mean
GFP protein abundance and different codon metrics including the TAI score, CAI score, nTE score and ΔΔG of the transcript for (N = 219) library
members. Higher codon scores are represented by green and lower codon scores are represented by purple
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and the flow-cytometer data to determine the percent
error between the two calculations (Supplementary Fig-
ure S2).

Library sorting
Cell libraries were cultivated and treated with ice and ri-
fampicin to halt growth and transcription and additional
time was given to allow translated fluorescent protein to
mature. Cells were then sorted based on both GFP and
RFP fluorescence values. Gates were applied to exclude
cells that did not fluoresce at the RFP channel above
background, which was set using the fluorescence of

wild type E. coli cells. Cells are only included that fluo-
resced RFP above the maximum RFP fluorescence of the
wild type E. coli cells. Cells from the GFP library were
sorted into 20 bins spaced based on their logarithm of
GFP fluorescence. The cells were sorted for a total of
eight hours during the second Sort-seq experiment, until
a total of 2.16 million cells had been sorted across all 20
bins (Supplementary Figure S3). Fewer cells were sorted
during the first and third Sort-seq experiments due to
sorting time constraints. 269,000 cells were sorted dur-
ing the first experiment and 1.89 million were sorted
during the third experiment.

Fig. 5 Genome analysis of codon usage for 735 genes. a The mean protein abundance and CV2 are compared to different codon metrics
including the TAI score, CAI score and nTE score for (N = 735) native genes using all codons in the gene. b Protein CV2 compared to mean
protein expression and different codon scores
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High-throughput sequencing
Cells from each bin were subjected to plasmid extraction.
Using plasmid DNA from each bin as templates, PCR was
performed to amplify the GFP coding sequence containing
the variable synonymous codons using primers containing
both the Illumina Multiplex sequences (Supplementary
Table 2A) with a specific index for each bin (Supplemen-
tary Table 2B). PCR was performed for 16 cycles, and the
PCR products were gel purified. Purified DNA samples
were combined at equal concentrations to produce a 10
nM sample that was then subjected to high-throughput
sequencing using a MiSeq system 2 × 250 standard flow
cell. A total of 3.9 million reads were generated on the
second Sort-seq experiment.

Examining of individual library members
To examine individual library members, 1 μL of the li-
brary aliquots was plated onto an agar-LB plate contain-
ing 30mg/mL of chloramphenicol. From the overnight
plate, 10 colonies were randomly-selected and cultivated.
Their plasmid DNA were then extracted, followed by
Sanger sequencing. All 10 plasmids contained the cor-
rect GFP coding sequences with non-identical synonym-
ous codons at the expected sites. The 10 overnight
cultures were also used to inoculate M9 minimal media
containing 1% glycerol and 30mg/mL chloramphenicol
with a starting OD600 of 0.0025 and grown at 37 °C.
After 2 h, the cultures were induced with 1 mM IPTG
and grown until OD600 reached 0.08. A low OD is used
to prevent clogging the flow-cytometer. Cells were then
transferred to ice and incubated for 10 min followed by
adding 2 μL of 50 mg/mL rifampicin to halt transcrip-
tion. The culture was then moved back to 37 °C and in-
cubated for 1 h to allow synthesized fluorescent proteins
to fold and mature before flow-cytometry.

Library quality testing
The quality of the library was confirmed by high-
throughput sequencing prior to sorting to ensure proper
library construction and transformation. In detail, an ali-
quot of the library culture was grown in 5 mL LB
medium overnight. The overnight culture was then used
to inoculate10 mL of minimal M9 medium containing
1% glycerol and 30mg/mL chloramphenicol with a start-
ing OD600 of 0.0025 and grown at 37 °C. After 2 h of
growth, the culture was induced with 1 mM of isopropyl
β-D-1-thiogalactopyranoside (IPTG). When the culture
reached an OD600 of 0.08, cells were harvested and
treated with ice and rifampicin in a similar way as de-
scribed above. After sorting, the cells are subjected to
plasmid extraction. The GFP coding sequence contain-
ing the variable synonymous codons was PCR amplified
from the plasmid DNA mixture using primers contain-
ing both the Illumina Multiplex sequences and a unique

index for each bin. The Primers used are listed in (Sup-
plementary Table 2A), and the index used is a 9 base
pair region in the forward primer and listed in (Supple-
mentary Table 2B). Index 1 was used for the initial li-
brary confirmation. PCR was performed for 16 cycles,
and PCR products were gel purified. The gel extracted
DNA samples were diluted to 10 nM and subjected to
high-throughput sequencing. High-throughput sequen-
cing produced 2 million reads with 85% of reads as cor-
rect members of the library. From 2 million reads, all
possible library members were observed, representing
100% coverage and validating the library construction.

Data processing
Using the index of each read, GFP sequences were
sorted into their respective bins. For each unique GFP
sequence, the number of reads found in a bin was first
normalized by the total number of reads in that bin. The
fraction of per unique GFP sequence in each bin was
then multiplied by the number of cells sorted into that
bin to obtain the number of cells in each bin. GFP se-
quences that were distributed into less than 2 bins or
with less than 20 cells per sequence (CPS) (Supplemen-
tary Figure S3B) were removed without analysis. Using
all three Sort-seq experiments, error bars are calculated
for each library member for both mean GFP fluores-
cence and CV2 of GFP fluorescence. Any library mem-
bers with above 30% error in mean GFP fluorescence
and with above 40% error CV2 of GFP fluorescence are
excluded from further analysis. Cut-offs in percent error
were determined by natural cut-offs in the distribution
of the percent error (Supplementary Figure S6). Finally,
a total of 219 different GFP sequences were used for
protein variability analysis.
To calculate protein variability, each of the 20 bins

was assigned a relative protein abundance value based
on the fluorescence of each bin. The bins are sorted on
their logarithm scale and so are converted to linear scale
before fitting. For each GFP sequence, its distribution
across 20 bins were fitted to a continuous Gamma distri-
bution using eq. 1.

P xð Þ ¼ xα − 1e − x
β

βαΓ αð Þ ð1Þ

where x is the fluorescence of each bin, α is the shape
parameter and β is the scale parameter representing a
gamma distribution. The mean, variance, and CV2 of
each GFP sequence were calculated from the fitted α
and β values using eqs. 2, 3, and 4 respectively.

Mean xð Þ ¼ αβ ð2Þ

Var xð Þ ¼ αβ2 ð3Þ
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CV 2 xð Þ ¼ αβ2

αβð Þ2 ¼
1
α

ð4Þ

Codon metrics and mRNA folding energy calculations
The CAI score for each GFP sequence was calculated
from the eight variable codons using eq. (5) as described
previously [36]:

CAI sequenceð Þ ¼
YL

k¼1
wk

� �1=L
ð5Þ

where L represents the length of the sequence in the
number of codons, and wk is the weight of the k th
codon in the gene sequence. The weight for each codon
was obtained from previous work [36]. The TAI score
was calculated for the same region using eqs. 6, 7, and 8
as previously described [37]. Specifically, utilizing tRNA
gene copy as an approximation for tRNA abundance and
assuming the tRNA usage of a gene is a measure of how
well that gene is adapted to the available tRNA pool. Wi,
the absolute adaptiveness value, was first calculated as:

Wi ¼
Xni

j¼1
1 − sij
� �

tGCNij ð6Þ

where ni is the number of tRNA isoaccceptors that
recognize the ith codon. tGCNij is the gene copy number
of the jth tRNA that recognizes the ith codon and sij is a
selective constraint on the efficiency of codon-anticodon
coupling as reported previously [37].

wi ¼
Wi

Wmax
if Wi≠0

wmean else

(
ð7Þ

where Wmax is the maximum Wi value and wmean is the
geometric mean of all wi with Wi ≠ 0.

TAI Sequenceð Þ ¼
YL

k¼1
wik

� �1
L ð8Þ

where L is the length of the sequence in number of co-
dons and wik is the weight of the kth codon.
The nTE score was calculated for the same region for

each library member using the method described [38]
and is shown in eqs. 9, 10, 11, 12 and 13:

Ui ¼
Xg

j¼1
ajcij ð9Þ

cui ¼ Ui

Umax
ð10Þ

where cij is the sum of the counts of codon i in gene j
and aj is the transcript abundance of gene j considering
all genes in genome g. cui is the relative estimate of how
often each codon is translated in the genome.

nTE0
i ¼ wi

cui
ð11Þ

nTEi ¼ nTE0
i

nTE0
max

ð12Þ

nTE Sequenceð Þ ¼
YL

k¼1
nTEik

� �1
L ð13Þ

where wi is the same as calculated by eqs. 6 and 7. L is
the length of the sequence in number of codons and
nTEik is the weight of the kth codon. These same
methods were used to calculate the CAI, TAI and nTE
for the E. coli genome analysis utilizing all codons in
each gene (Fig. 5). The free energy of folding for the sec-
ondary structure of the transcript was calculated using
NUPACK [40] for a region 42 base pairs before and after
the codon library. The difference was calculated for each
library member compared to the mean free energy of
folding of all the library members analyzed. This compu-
tation is the same as previously described [39].
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