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Abstract

Background: Protein synthesis is a cellular process that takes place through the successive translation events within
the ribosome by the event-specific protein factors, namely, initiation, elongation, release, and recycling factors. In
this regard, we asked the question about how similar are those translation factors to each other from a wide variety
of bacteria? Hence, we did a thorough in silico study of the translation factors from 495 bacterial sp., and 4262
amino acid sequences by theoretically measuring their pl and MW values that are two determining factors for
distinguishing individual proteins in 2D gel electrophoresis in experimental procedures. Then we analyzed the
output from various angles.

Results: Our study revealed the fact that it's not all same, or all random, but there are distinct orders and the pl
values of translation factors are translation event specific. We found that the translation initiation factors are mainly
basic, whereas, elongation and release factors that interact with the inter-subunit space of the intact 70S ribosome
during translation are strictly acidic across bacterial sp. These acidic elongation factors and release factors contain
higher frequencies of glutamic acids. However, among all the translation factors, the translation initiation factor 2
(IF2) and ribosome recycling factor (RRF) showed variable pl values that are linked to the order of phylogeny.

Conclusions: From the results of our study, we conclude that among all the bacterial translation factors, elongation
and release factors are more conserved in terms of their pl values in comparison to initiation and recycling factors.
Acidic properties of these factors are independent of habitat, nature, and phylogeny of the bacterial species.
Furthermore, irrespective of the different shapes, sizes, and functions of the elongation and release factors,
possession of the strictly acidic pl values of these translation factors all over the domain Bacteria indicates that the
acidic nature of these factors is a necessary criterion, perhaps to interact into the partially enclosed rRNA rich inter-
subunit space of the translating 70S ribosome.
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Background

The translation is a complex universal biological process
that takes place in a large macromolecular machine
called ribosome in all living organisms. It is an energy-
exhaustive cellular process. In Escherichia coli, 40% of
the total cellular energy is utilized by the translation sys-
tem [1]. With the help of specific protein factors and
aminoacyl tRNAs, ribosomes carry out protein synthesis
following the decoding of the genetic information from
mRNA in successive events, namely, initiation, elong-
ation, and termination (release and recycling). The pro-
tein factors that are involved in the successive events are
initiation factors (IF), elongation factors (EF), release fac-
tors (RF), and ribosome recycling factors (RRF). Here,
the accurate coordination of every participant protein
factor is necessary to perform the process successfully.
Based on several years of biochemical and structural bio-
logical studies worldwide, fairly detailed knowledge of
the mechanisms of cellular protein synthesis is now
known [2-4]. However, in the broad aspect, which char-
acteristics of the translation factors ie., IF, EF and RF
are necessary to be conserved for the accuracy of the
universal process of protein synthesis among the differ-
ent kinds of organisms need to be investigated.

In this study, we focused on the charge distribution (in
terms of acidic and basic properties) of the translation
factors throughout the domain Bacteria to comprehend
the importance of the influence of the charge distribu-
tion of these factors on their accommodation on the
ribosome and thus in their functions during this process
of translation. For this, we made use of the principle of
the 2D gel electrophoresis [5], whereby, we computed
the pI values using the “Compute pI/Mw tool -
ExPASy” (https://web.expasy.org/compute_pi/) online
webserver. This web server calculates the pl values of
proteins using pK values of amino acids as defined in
[6-8], which were determined by examining polypeptide
migration in an immobilized pH gradient (between pH
4.5 to 7.3) gel environment with 9.2 M and 9.8 M urea at
15°C or 25°C. In that study, the authors determined the
focusing positions of 29 polypeptides of known amino
acid sequence within a narrow range of immobilized pH
gradients i.e., between pH4.5 to 7.3 under denaturing
conditions with 9.2 M and 9.8 M urea at 15°C or 25°C,
respectively. They separately calculated the pl values of
those proteins from their amino acid sequences. The
comparison of isoelectric points of the proteins calcu-
lated from their amino acid sequences showed reliably
good accuracy with the experimentally determined pl
values. The reliability of the tool is broad, except for the
study of highly basic proteins and small proteins. As the
translational factors are not highly basic and also not too
small, we believed our study was within the scope of the
above mentioned web-based method. Our study revealed
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that the bacterial translational elongation and release
factors have similar plI value distribution, and that was
strictly acidic throughout the domain Bacteria. Irrespect-
ive of the habitat, nature, or the phylogeny of the bacter-
ial species as well as irrespective of the different shapes,
sizes, and functions of the elongation and release factors,
these factors had strictly acidic pl values. We believe,
our study indicates that the charge distribution of these
factors might play important roles in the fidelity of the
process of translation.

Results

We studied 495 bacterial species throughout the domain
of Bacteria. The habitats of these bacteria are very differ-
ent from each other. The nature of these bacteria in
terms of cell shape (coccus or bacillus), intracellular
metabolic reactions (aerobic or anaerobic), and even the
way they respond to the external environments (meso-
philic or thermophilic or psychrophilic) are distinct [9].
Here, we studied the following bacterial phyla, such as
Deinococcus-Thermus, Chlorobi, Actinobacteria, Firmi-
cutes, Chlamydiae, Fusobacteria, Spirochaetes, Chloro-
flexi,  Tenericutes, Cyanobacteria, = Bacteroidetes,
Thermotogae, Acidobacteria, Aquificae, Caldiserica,
Chrysiogenetes, Deferribacteres, Elusimicrobia, Fibrobac-
teres, Gemmatimonadetes, Lentisphaerae, Nitrospirae,
Planctomycetes, Thermodesulfobacteria, Verrucomicro-
bia, and Proteobacteria [10].

pl and molecular weight value distribution of translation
protein factors

In the process of translation, we found a unique pattern
of pl value distribution as depicted in Fig. 1a, (see Add-
itional file 1; Table S1). The initiation factors, IF1, and
IF3 were strictly basic except IF2. Conversely, the elong-
ation and release factors were strictly acidic. On the
other hand, like IF2, RRF also showed a broad range of
pI value distribution ranging from acidic to basic. All the
four quartiles of initiation factor 1 (IF1) and initiation
factor 3 (IF3) were above pl 7. The elongation factor Tu
(EF-Tu), elongation factor G (EF-G), elongation factor 4
(EF-4), & elongation factor P (EF-P) and the release fac-
tor 1 (RF1), release factor 2 (RF2), & release factor 3
(RF3) had all the four quartiles in the acidic range. For
the comprehensive in silico study, along with the pl
values, we also studied the molecular weight (MW)
value distribution of these translation protein factors
(Fig. 1b), (see Additional file 1; Table SI1). Like pI
value distribution, the protein IF2 showed a wide range
of variations in MW value distribution as well (Fig. 1b).
All the other proteins showed precise MW value distri-
bution. A surprising observation is to be noted here that
although RRF proteins showed a highly variable pI value


https://web.expasy.org/compute_pi

Jana and Datta BMC Genomics (2021) 22:220 Page 3 of 11
p

A B

14

140000 -
124
120000 4 n
104
+ + 100000

d 80000 - -

= ol . ) s . wte i
++++**+ = 60000 +

44 40000 - -~ -

2 20000 - - -

0 T T T T T T T T T T T 0 T T T T T T T T T T T

QLIS S LU LI DLHLS
\\\Qg.é“,éq.@@‘zs- \\\ééééee%é"

Fig. 1 Box plot diagram of pl values and MW values of the translation factors. a pl value distribution of translation factors. b MW value
distribution of translation factors. In both the cases, a and b, of the box plot diagrams, the lower hinge showed the first quartile (25%), whereas
the upper hinge represented the third quartile (75%). The sign (—) above and below the box diagrams represented the maximum and minimum
values respectively. The upper and lower solid triangles represented 99 and 1% values of the data set respectively. The horizontal line and the
box inside the box plot represented the median and mean values of samples respectively

distribution, their MW value distribution was quite
narrow.

Statistical analysis of pl values of translation factors

We further performed asymptotic tests [11] for 5%
quantile and 95% quantile (Table 1) of these translation
factors. We found that the p values corresponding to the
null hypotheses (HO: q05 =7, and HO: q95 < 9.95) for the
5 and 95% quantiles, respectively, for both the initiation
factors, IF1 and IF3 to be more than 0.05, from which

we inferred that 90% data lied in basic pI values, i.e., be-
tween 7 to 9.95. On the contrary, in the case of elong-
ation (EF-Tu, EF-G, EF-4, and EF-P) and release factors
(RF1, RF2, and RF3), 90% of data lied in completely
acidic pI values i.e., between 4.635 and 6.225 (p values
corresponding to HO: q05>4.635 and HO: 95 < 6.225
turned out to be more than 0.05, respectively). But we
found a different scenario in the case of initiation factor,
IF2, and ribosome recycling factor, RRF. In both these
cases, 90% of data stretched in between acidic 5.1 to

Table 1 Asymptotic tests for 5% quantile and 95% quantile for translation factors

Translation
Factors (IF1 & IF3)

IF1
IF3

Translational
Factors (IF2)

IF2

Translational Factors
(Elongation and Release Factors)

EF-Tu
EF-G
EF-4
EF-P
RF1
RF2
RF3

Translational
Factors (RRF)

RRF

5% sample quantiles

6.82
8.87

5% sample quantiles

5.09

5% sample quantiles

4.81
4.78
4.99
4.77
481
462
503

5% sample quantiles

5.063

p-values
(Ho: Gos 27)

0.2839
0.5

p-values
(Ho: dos 2 5.1)

04173

p-values
(Ho: gos 2 4.635)

0.9861
0.9573
0.5337
0.9978
0.9746
0.1005
0.6555

p-values
(Ho: gos 2 5.1)

0.1999

95% sample quantiles

9.98
9.94

95% sample quantiles

931

95% sample quantiles

5.77
554
6.36
5.75
6.06
547
6.14

95% sample quantiles

9.028

p-values
(Ho: qos < 9.95)

0.1684
0.6444

p-values
(Ho: Qos <9.25)

0.1198

p-values
(Ho: qos < 6.225)

0.7839
0.7272
0.0909
0.5473
0.8042
05

0.8347

p-values
(Ho: qos £9.25)

0.9905
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basic 9.25 (p values are more than 0.05 for HO: q05 > 5.1
and HO: q95 < 9.25, respectively).

Amino acid frequency distribution of elongation and
release factors

Interestingly, when we randomly chose 60 amino acid
sequences (representing 60 bacterial species) of each of
the elongation and release factors and calculated their
amino acid frequencies, we found the occurrence of a
high frequency of glutamic acid in all of those factors,
(Fig. 2). In 2001, Schwartz et al. [12] also observed that
the cytosolic acidic proteins were also found to have a
high frequency of glutamic acid.

Surface charge distribution of the elongation and release
factors

To further understand our observation, in the viewpoint
of physiological context, we focused on the surface
charge distribution of the atomic coordinates of these
elongation and release factors; EF-Tu (PDB ID: 2FX3)
[13], EF-G (PDB ID: 3JOE) [14], EF-4 (PDB ID: 3DEG)
[15], EF-P (PDB ID: 30YY) [16], RF1 (PDB ID: 4V7P)
[17], RF2 (PDB ID: 5MGP) [18], and RF3 (PDB ID: 4
V85) [19]. We used online APBS-PDB2PQR software
[20, 21], which employs Poisson-Boltzmann electrostat-
ics calculations to analyze the surface charge of the
translation protein factors mentioned above. We found
out that though there are some patches of positive
charges (blue) on the surface, the overall charge of all
these factors (Fig. 3) is negative (red). We provided all
the PDB IDs, studied here, in Table 2.

Relation of pl values of IF2 and RRF proteins with
phylogeny

Since IF2 had a wide range of pI value distribution from
acidic to basic, we performed phylogenetic analysis
(Fig. 4a) of the IF2 proteins (Additional file 1; Table S1)
to investigate the relation of its pI value distribution with
the phylogeny. In the case of the phylum Proteobacteria,
we found that the class of Gammaproteobacteria (blue)
and Betaproteobacteria (verdigris) were acidic (with only
a few exceptions). Whereas the class Alphaproteobac-
teria (brown) had few genera as acidic (i.e., Ehrlichia
spp.) and some genera as basic (i.e., Brucella spp. and
Bartonella spp.), and others had both acidic and basic
(i.e., Rickettsia spp.) pl values. In the case of other phyla,
Chlorobi (cyan), Cyanobacteria (red), Thermotogae (yel-
low), and Deinococcus-Thermus (light grey), they had
mostly acidic pI values, whereas the Chlamydiae (saf-
fron) and Spirochaetes (light green) had basic pl values.
The pl values of the IF2 protein in phyla Firmicutes
(pink) and Actinobacteria (light blue) and Tenericutes
(purple) had both the acidic and basic pl values.
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The phylogenetic analysis of RRF (which had a wide
range of pl value distribution) showed that the pI value
distribution of RRF (Fig. 4b), (Additional file 1; Table
S1) like IF2 (Fig. 4a) also linked to the phylogeny. We
found that different classes of Proteobacteria had differ-
ent pl value distribution. The Gammaproteobacteria
(blue), and Alphaproteobacteria (brown) (with a few ex-
ceptions e.g., Genus; Salmonella spp. of Gammaproteo-
bacteria and Genus; Rickettsia spp. and Ehrlichia spp. of
Alphaproteobacteria) had acidic pl values. However,
Betaproteobacteria (verdigris) (i.e., Bordetella spp. -
acidic, Burkholderia spp. - basic) and Deltaproteobac-
teria (apple green) (i.e., Desulfococcus spp. — acidic, Geo-
bacter spp. — basic,) had acidic and basic pl values as
well. In the case of other phyla, Chlamydiae (safron),
Chlorobi (cyan), and Spirochaetes (light green), they had
basic pI values. In contrast, the phylum, Actinobacteria
(light blue), and the phylum Firmicutes (pink) had both
the acidic and basic pI values.

Discussion

Our study revealed that irrespective of external environ-
ments or bacterial phylum, all the translation factors (ex-
cept IF2 and RRF) are conserved throughout the domain
Bacteria in terms of isoelectric point value distribution.
Along with the translation process, we did additional
studies on the pl value distribution of the two other uni-
versal processes of central dogma i.e., replication and
transcription processes in domain Bacteria. We studied
529 number of bacterial sp., and 1707 number of amino
acid sequences for replication (Additional file 2; Table
S2) and 488 number of bacterial sp., and 1998 number
of amino acid sequences for transcription (Add-
itional file 3; Table S3). In the case of replication and
transcription, some of the proteins showed a narrow
range and others showed a wide range of pl value (Add-
itional file 2; Fig. S1 and Additional file 3; Fig. S3 re-
spectively) and molecular weight value (Additional file 2;
Fig. S2 and Additional file 3; Fig. S4 respectively) distri-
bution. Unlike translation factors, we found no specific
pattern of pI value distribution of the proteins involved
in the individual steps of the initiation, elongation, and
release in those two processes. So, in conclusion, the ob-
servation of our study of the precise pl value distribution
of the translation factors throughout the domain Bac-
teria indicates that the overall acidity or basicity of trans-
lation factors is an essential feature in the process of
translation. The proteins involved in the initiation event
of the process of translation i.e., initiation factors, were
basic, whereas in the cases of the elongation and release
events, i.e., elongation and release factors were strictly
acidic due to the high frequency of negatively charged
amino acids i.e., glutamic acids (Fig. 2). If we focus on
the mode of interaction of these factors with the
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Fig. 2 Amino acid frequency distribution of elongation and release factors. In each case of the elongation (EF-F, EF-G, EF-4, and EF-P) and release
factors (RF1, RF2, and RF3), we selected 60 amino acid sequences that correspond to 60 bacterial species to study the amino acid frequency
distribution. Each colour represented each randomly selected bacterial species

ribosome, we can categorize the facts i.e., initiation fac-  interact with the ribosome when the 50S ribosomal sub-
tors, IF1, IF2, and IF3 are involved in the formation of unit binds to the 30S initiation complex and all these
the 30S initiation complex, which is an open complex. three initiation factors eject from the initiation complex.
On the other hand, the elongation and release factors Both the elongation and release factors irrespective of
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Fig. 3 Surface charge distribution of the elongation and release
factors. On the left of every panel, the 70S ribosome (grey ribbons)
bound translation factor (inset, red ribbon) had been used as a
thumbnail to reveal the corresponding orientation of translation
factors shown next to it on the middle. The surface charges of the
translation factors are shown in the middle. At the right of every
panel surface charges of the translation factors had been displayed
in 180 degree rotated state along the horizontal plane: The red
dotted box (inset) indicated the location of the translation factors
bound with 70S ribosome; EF-Tu — 70S ribosome (PDB ID: 5AFI) [47],
EF-G - 70S ribosome (PDB ID: 3JAT1) [48], EF-4 — 70S ribosome (PDB
ID: 5J8B) [49], EF-P — 70S ribosome (PDB ID: 6ENJ) [50], RF1 - 70S
ribosome (PDB ID: 6DNC) [51], RF2 — 70S ribosome (PDB ID: 5MDV)
[52], and RF3 - 70S ribosome (PDB ID: 6GXM) [53]. The gray dotted
boxes showed the surface charge distribution of the elongation and
release factors [13-19]. All the domains of these factors were marked
on the right side and the left side of their structures. The calculated
electrostatic net charge of EF-Tu (PDB ID: 2FX3) was — 1.40e +01e,
EF-G (PDB ID: 3JOE) was — 1.50e +01e, EF-4 (PDB ID: 3DEG) was —
2.00e +01e, EF-P (PDB ID: 30YY) was — 8.00e +00e, RF1 (PDB ID:
4\/7P) was — 1.40e +01e, RF2 (PDB ID: 5SMGP) was — 2.60e +01e, RF3
(PDB ID: 4 V85) was — 7.00e +00e. Red and blue colour indicated
negative charge and positive charge respectively whereas white

colour indicates neutral charge

these proteins' different shapes, sizes, and functions
interact with the A site of the semi-enclosed inter-
subunit space of the translating 70S ribosome. Another
important fact needs to be noted that the process of ini-
tiation of translation takes some seconds [22-24] to as-
semble the ribosome on the mRNA with the accordance
of initiation factors but the elongation process happens
at a faster rate than initiation. Several amino acids are
incorporated within a second [22-24] and it continues
until the whole mRNA gets read and the stop codon
appears.

Based on our observation, if we focus our discus-
sion on the molecular details of the individual steps
of the process of translation, the importance of the
charge distribution of the factors for the proper elec-
trostatic interaction during this process will help to
understand the process in a more comprehensive de-
piction. In case of initiation, a detailed biochemical
and mutagenesis study on the interaction on IF1 and
30S ribosomal subunit showed that IF1 interacts with
the 530 loop and helix 44 of 16S rRNA [25], which
contains a highly negative charge. Thus the part of
that surface region of IF1 is responsible for the inter-
action, which has the positive surface potential [25].
In the case of IF3, studies showed that site-directed
mutagenesis of positively charged eight arginine resi-
dues, which are present in the IF3C domain, play an
important role in the interaction with the 30S riboso-
mal subunit [25, 26].

In the case of elongation and release factors, in
2004, Trylska et al. [27], measured the electrostatic
potential of the ribosomal A-site. They found a
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Table 2 PDB IDs of the translation factors, and translation factor and ribosome complex

Translation Factor PDB ID Translation Factor - Ribosome complex PDB ID
EF-Tu 2FX3 EF-Tu - 70S ribosome SAFI
EF-G 3JOE EF-G - 70S ribosome 3JAT
EF-4 3DEG EF-4 — 70S ribosome 5J8B
EF-P 30YY EF-P — 70S ribosome 6ENJ
RF1 4V7P RF1 — 70S ribosome 6DNC
RF2 5MGP RF2 - 70S ribosome 5MDV
RF3 4V85 RF3 - 70S ribosome 6GXM

positive potential area in the A-site of the 70S ribo-
some complex that was mainly contributed by S12,
L11, and S19 proteins. Biochemical and structural
studies have shown that elongation factors; EF-Tu
[28-30], EF-G [31-33], EF-4 [34], EF-P [35] interact
with L11 protein, which is found to have the positive
potential [27]. This positive potential contributed by
these proteins of the A-site may be necessary for the
interaction as it has been found that mutant lacking
L-11 is extremely compromised in E. coli [36]. EF-G
interacts with the S12 and S19 proteins as well [37].
This kind of interaction of the complementary elec-
trostatic potential of the translation factors and the
proteins of the A-site may help in the proper accom-
modation of these factors in the A-site. In this direc-
tion, a recent study [38], sheds light on the role of
electrostatic interactions on the accommodation of
cognate aa-tRNA in the A site, as well. In the next
step, the rotation of the 30S ribosomal subunit with
respect to the ratchet-like motion of the 50S riboso-
mal subunit causes the rearrangement of the electro-
static potential of the A-site i.e., a reduction of the
positive potentials around the A-site. Thus it pro-
motes the process of translocation [27] of tRNA from
A-site to P-site and then from P-site to E-site. In the
case of release factors, the positive potential of L11
causes the proper accommodation of the negative po-
tential containing release factors, RF1 and RF2. After
the RF3-induced ribosome rearrangements, the inter-
actions between RF1/RF2 and the L11 region break,
which causes the release of RF1/RF2 [39, 40]. On the
other hand, the wide range of plI value distribution of
IF2 and RRF reveals that the conservedness with re-
spect to the acidic and basic properties of this trans-
lation factor may not be as important as the other
translation factors in bacteria.

In this study, we took into account a wide range
of bacterial species that belong to the entire domain
of Bacteria on earth. For the sake of survival, bac-
teria evolve numerous mechanisms to adapt to that
environment. The habitat of these bacteria vary in a
wide range from the soil, water, food, industrial

waste, deep ocean, acidic hot springs, in symbiotic
and parasitic relationships with animals and plants,
and radioactive waste also [41]. The nature of these
bacteria are also different (i.e., acidophiles, alkali-
philes, aerobic, anaerobic, phototrophs, chemotrophs,
nitrogen-fixing Bacteria, nitrifying and denitrifying
bacteria, bioluminescent bacteria, free-living bacteria,
enteric bacteria, and obligate intracellular parasites)
[41]. Irrespective of the wide range of phylogeny,
habitat, and nature of these bacteria, our statistical
test showed that except IF2 and RRF, all the initi-
ation, elongation, and release factors are conserved
in terms of pI values all over the domain Bacteria.

Besides the elongation factors, the highly conserved
basic pl value distribution of the initiation factors,
IF1 and IF3, indicated that the pI values of these two
translation factors are also not affected by phylogeny,
nature, or habitat of the bacteria. The wide range of
pl value distribution of IF2 and RRF (Fig. 4a and Fig.
4b respectively) unveiled that different phyla of bac-
teria had different traits of pI value distribution.

Conclusions

We concluded our study with a pictorial description of
our findings in Fig. 5, where we depicted the mean pl
value distribution along with the standard deviation
values of all the translation factors in bacteria that
showed distinct translation event specificity.

Methods
Data collection
We studied the following translation factors viz., IF1,
IF2, 1IF3, EF-Tu, EF-G, EF-4, EF-P, RF1, RF2, RF3, and
RRF from bacteria that directly interact with ribosome.
Between the reviewed and unreviewed categories of the
protein sequences of the UniProt [42] database, we col-
lected the reviewed only for the accuracy of sample data.
We removed all the incomplete fragments and repeated
sequences as well to circumvent erroneous assumptions.
We calculated pl and MW values from 4262 reviewed
amino acid sequences (Additional file 1; Table S1) of the
bacterial translation factors, and those pl values, and
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to the basic and acidic pl values respectively

Fig. 4 Phylogenetic tree constructed using primary amino acid sequences of IF2 and RRF proteins. a Phylogenetic analysis of IF2 protein. b
Phylogenetic analysis of RRF protein. In both cases, a and b, we analyzed the evolutionary history using the Maximum Likelihood method based
on the JTT matrix-based model. We took 500 bootstrap replicates to build the phylogenetic tree. Numbers near the branches refer to the
bootstrap percentages (greater than 50% bootstrap replicates only shown here). The tree had been drawn to scale after eliminating all positions
containing gaps and missing data. The branch lengths were measured by the number of substitutions per site. Blue triangles and red circles refer

MW values, and the corresponding accession numbers
had been provided with the Additional file 1; Table S1.

Method of pl value and MW value calculation

We used the “Compute pI/MW tool” (http://web.
expasy.org/compute_pi/) of the ExPaSy-Bioinformatic
resource portal to calculate the pl value and MW
value. We chose this “Compute pI/MW tool” webser-
ver because it shows reasonable good agreements of
the calculated pI values with the experimentally deter-
mined pl values [6-8].

Statistical test

We performed the asymptotic test [11] for the transla-
tion proteins for 5% quantile and 95% quantile. We cal-
culated the p values corresponding to the null
hypotheses for 5% and 95% quantiles for the translation
proteins in MATLAB (R2019b) software (https://in.
mathworks.com/products/new_products/release2019b.
html). We generated all the graphs of this study in Ori-
ginPro 8.5 software (Origin (Pro), “Version 2019b”) [43].

Electrostatic potential calculation

We downloaded the following atomic coordinates, viz.,
2FX3 of EF-Tu, 3JOE of EF-G, 3DEG of EF-4, 30YY of
EF-P, 4V7P of RF1, 5MGP of RF2, and 4V85 of RF3
from the Protein Data Bank (PDB) database (www.rcsb.
org). We deleted all the ions, and solvents, and other
chemical modifications using Chimera software [44]
(https://www.rbviucsf.edu/chimera/). We calculated
charges of these factors in APBS-PDB2PQR software,
(https://server.poissonboltzmann.org/), that uses the
Poisson Boltzmann equation to calculate the charge of a
molecule. We used the output file to visualize the sur-
face charge of these factors in Chimera software.

Phylogenetic analysis

We used MEGA7 software [45, 46] to investigate the
distribution of the pI values of IF2 and RRF protein in
the bacterial taxonomy. We used primary amino acid se-
quences to construct the phylogenetic trees in both the
cases of IF2 and RRF protein. We used 500 bootstrap
replicates to analyze the phylogenetic tree, and we pre-
sented here the tree having the highest log-likelihood.
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Fig. 5 Summary of the study as a schematic representation. This figure showed translating intact 70S ribosome, initiation, elongation, release, and
recycling factors along with the mean pl values and standard deviation values. Red and blue colour referred to the acidic and basic mean pl
values, respectively. The dark grey colour of IF2 and RRF represented the mean pl values close to neutral with high standard deviation values
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