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Abstract

research of the role of microRNAs.

Background: MicroRNAs play an important role in many fundamental biological and pathological processes.
Defining the microRNAs profile underlying the processes by beneficial and detrimental lifestyles, including caloric
restriction (CR), exercise and high-fat diet (HF), is necessary for understanding both normal physiology and the
pathogenesis of metabolic disease. We used the microarray to detect microRNAs expression in livers from CR, EX
and HF mice models. After predicted potential target genes of differentially expressed microRNAs with four
algorithms, we applied GO and KEGG to analyze the function of predicted microRNA targets.

Results: We describe the overall microRNAs expression pattern, and identified 84 differentially expressed microRNAs
changed by one or two or even all the three lifestyle modifications. The common and different enriched categories
of gene function and main biochemical and signal transduction pathways were presented.

Conclusions: We provided for the first time a comprehensive and thorough comparison of microRNAs expression
profiles in liver among these lifestyle modifications. With this knowledge, our findings provide us with an overall
vision of microRNAs in the molecular impact of lifestyle on health as well as useful clues for future and thorough
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Background

Overweight and obesity have been recognized as risk
factors for many chronic diseases such as the metabolic
syndrome, diabetes, and cardiovascular diseases [1]. The
main driver for weight gain is considered to be the
medium or long term positive energy balance, usually
through consumption of a high-fat diet (HF) [2, 3].
Treatment of obesity therefore often consists of reducing
caloric intake or promoting energy utilization to
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diminish the surplus of energy in the system [3]. In con-
trast to the detrimental effects of overeating energy-
dense foods, caloric restriction (CR), restricting the in-
take of calories without causing malnutrition, has a wide
range of benefits, including promoting lifespan, decreas-
ing the incidence of age-related diseases and extending
health span as well [4]. On the other hand, physical ac-
tivity and exercise are key approaches of energy expend-
iture and therefore of energy balance [5]. Exercise (EX)
also confers multiple beneficial effects on health, such as
the prevention of several cardiac and metabolic diseases
[6]. CR, EX and HF converge on some common path-
ways, such as insulin signaling pathways and sirtl. Their
contributions are also profoundly heterogeneous. The
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underlying common or unique mechanisms of CR, EX
and HF have not yet been well understood. Identification
of factors involved in them brings a promise of translata-
bility to human health.

Genes (mRNA) involved in the process and interven-
tion of obesity have been studied. However, the role of
finer post-transcriptional gene regulatory mechanisms
has not been comprehensively explored. MicroRNAs are
a class of short non-coding RNAs which primarily inter-
act with 3" untranslated region (3'UTR) of mRNA, lead-
ing to either translational repression or mRNA
degradation [7]. These small molecules regulate approxi-
mate one third of the protein-coding genes, therefore
directly or indirectly involve in almost all cellular path-
ways [8]. The numerous roles of microRNAs have been
demonstrated in many life processes such as metabol-
ism, exercise and in general, physiological and patho-
logical states [9-11]. The liver is a fundamental organ
for diverse physiological processes, such as macronutri-
ent metabolism, glucose, lipid and cholesterol homeosta-
sis. Liver provides the energy needed to drive the
aforementioned processes by processing, partitioning,
and metabolism of macronutrients [12]. Defining the
microRNAs profile underlying the control of hepatic
functions and processes by CR, EX and HF is necessary
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for understanding both normal physiology and the
pathogenesis of metabolic disease.

Recent years, the number of microRNA profiling stud-
ies has increased rapidly. MicroRNAs profiles in several
different tissues were investigated after CR, EX or HF,
including adipose tissue, skeletal muscle, heart, especially
circulating microRNAs [13-16]. There are only few
microRNAs profiling studies in liver under these lifestyle
modification conditions. The aim of this study was to
compare the effects of these conditions on microRNAs
and identify the predominant microRNAs in mouse liver
involved in these lifestyles. We performed microRNA
analysis by microarray and validated the microRNA can-
didates by reverse transcription quantitative real-time
polymerase chain reaction (RT-qPCR). To elucidate
post-transcriptional regulation by these microRNAs, we
analyzed the in silico predicted targets of the micro-
RNAs by pathway enrichment analysis. Subsequently, we
performed RT-qPCR analysis of selected targets.

Results

Establishment of lifestyle modification mice models

After treatment for 3 months, the body weight (16.2 +
1.05g), visceral fat mass (2.18 £0.15g), total fat mass
(3.55+0.17 g) and total lean mass (11.86 + 0.67 g) in CR
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Fig. 1 The assessment of lifestyle modification mice model establishment. Body weight of different lifestyle groups at the beginning and the end
of the treatment (a). Visceral fat mass (b), total fat mass (c) and total lean mass (e) were detected by DEXA at the beginning and the end of the
treatment. Body fat percentage (d) and lean mass percentage (f) were calculated. The frozen-fixed mice skeletal muscle was cut into 20 um
sections and stained by Oil Red O (g). Black arrows indicated the ectopic lipid accumulations. Data are presented as Means + SE (n=7 in each
group). AL: ad libitum, CR: caloric restriction, EX: exercise, HF: high-fat diet. (**: p <0.01 vs AL)
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group are significantly lower than in AL group (30.8 £
1.77g, 643+1.16g, 891+1.50g and 18.26 + 1.54 g, re-
spectively) (p <0.01) (Fig. la-c, e). On the opposite, in
HF group, the body weight (44.3 +2.12 g), visceral fat
mass (16.43 +£2.31g) and total fat mass (21.51 +2.93 g)
are significantly heavier than in AL group (p < 0.01) (Fig.
la-c, e); total lean mass (18.81 + 1.2 g) has no significant
difference with AL group. While in EX group, the body
weight (27.8 + 1.84 g), visceral fat mass (6.03+0.50g),
total fat mass (8.33 + 0.20 g) and lean mass (18.01 + 1.39
g) all have no significant differences with AL group (Fig.
la-c, e). Body fat percentage has similar pattern as body
weight, visceral fat mass and total fat mass (Fig. 1d).
However, body lean mass percentage in CR group
(73.2 £ 2.4%) is higher than in AL group (59.3 +1.3%,
p<0.01), and in HF group it is lower (42.5 +3.7%, p <
0.01) than in AL group. In EX group (64.8 + 2.7%), it also
has no significant difference with AL group (Fig. 1f).
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Furthermore, there are obvious ectopic lipid accumula-
tions in skeletal muscle after high-fat diet feeding, while
the ectopic lipid accumulations decrease in CR and EX
group compared with AL mice (Fig. 1g). These results
indicated that these lifestyle modifications induced cor-
responding effects on mice and the models were estab-
lished successfully.

Comprehensive microRNA profiling in livers from lifestyle
modification mice models

To determine if microRNAs are involved in the process
and function of lifestyle modification in liver, we ana-
lyzed differential expressed (DE) microRNAs using
microarray technique. A total of 601 mature mouse
microRNAs were profiled from the livers. Among them,
328 microRNAs were accepted as expressed genes in
liver after filtering and were subjected to DE microRNAs
analysis (Fig. 2a and Fig. S1, as described in Methods).
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identified a subset of microRNAs that were differentially expressed. The intensity of green signal on the chip were calculated after background
subtraction and replicated spots on the same slide have been averaged by getting a median intensity. Median Normalization Method was used
to obtain “Normalized Data’, Normalized Data = (Foreground-Background)/median, the median is 50% quantile of microRNA intensity which is
larger than 50 in all samples after background correction. The low intensity differentially expressed microRNAs were filtered (Foreground-
Background intensities of which are all <50 in two compared samples) then we got accepted microRNAs. The threshold value used to screen Up
and Down regulated microRNAs is Fold Change> = 1.5 compared to AL group. AL: ad libitum, CR: caloric restriction, EX: exercise, HF: high-fat diet,
DE: differentially expressed
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There were least microRNAs accepted in AL and HF
groups, 283 and 289 microRNAs, respectively; and most
microRNAs accepted in EX group (316) (Fig. 2a). In all
the accepted microRNAs in CR group, there were only
8.7% (26 microRNAs) differentially expressed compared
to in AL group; there were larger proportion of DE
microRNAs in EX (12.0%, 38microRNAs) and HF group
(13.5%, 39microRNAs) than in CR group (Fig. 2b). Of all
the 328 accepted microRNAs, there were only 25.6% (84
microRNAs) expressed differentially after lifestyle modi-
fications in total (Fig. 2c): 31% (26 microRNAs) were
from CR group, 45.2% (48 microRNAs) were from EX
group and 46.4% (39 microRNAs) from HF group.
Among DE microRNAs in CR group, 80.8% were found
to be up-regulated and only 5 microRNAs were identi-
fied down-regulated; in EX group, only one microRNA
was down-regulated; however, in HF group, there were
almost equal up- and down-regulated microRNAs, 20
and 19 microRNAs respectively (Fig. 2d). These data
suggested that microRNAs indeed involved in lifestyle
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modifications, however only a subset microRNAs func-
tion in liver and only a small portion of microRNAs in-
volved in lifestyle modifications.

The DE microRNAs in each group were shown in
Fig. 3a-c and Fig. S1. Most of the DE microRNAs chan-
ged moderately. For the up-regulated microRNAs, only
4 out of 21, 14 out of 37 and 3 out of 20 genes were
more than 2 folds in CR, EX and HF group, respectively.
The range was only up to 2.28 folds in HF group; in CR
group, only one microRNA was over 5 folds (5.90); the
most changed microRNAs existed in EX group, in which
there were 2 microRNAs were over 10 folds. On the
other hand, for the down-regulated microRNAs, only 2
out of 5 and 6 out of 21 microRNAs were less than 0.5
folds in CR and HF group, respectively; the range was
only as low as 0.37 and 0.27 folds in CR and HF group,
respectively. Interestingly, there were several microRNAs
altered by more than one lifestyle modifications (Fig.
3d): mmu-miR-380-5p and mmu-miR-697 were up-
regulated by CR and EX and down-regulated by HF;
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seven microRNAs were up-regulated by both CR and
EX; six microRNAs were oppositely altered by EX and
HF and two by CR and HF. These results suggested that
the changes of microRNAs after lifestyle modifications
were fine-tuning in general and these lifestyle modifica-
tions impacted through both some common pathways
and different pathways as well.

After background correction and the very low
intensity microRNAs filtration as described in
Methods, in each group, the top 25% accepted micro-
RNAs were taken as high abundant microRNAs, the
bottom 25% as low abundant microRNAs and the mid-
dle 50% as medium abundant microRNAs. Those with
Foreground-Background intensities < 50 were taken as
very low abundant genes. In general, more than 50%
DE microRNAs are low abundant genes in all the
groups; only 4.8, 7.7, 2.6 and 15.4% DE microRNAs
are high abundant genes in AL, CR, EX and HF group,
respectively (Fig. 4a). 92.3% (24 of 26) DE microRNAs
changed after CR have only medium to low or even
very low abundance in both CR and AL groups, and
almost half (12 of 26) DE microRNAs have low or very
low abundance in both groups. Among them, 5 of 21
up-regulated microRNAs in CR have low abundance
in CR and very low in AL group, and 1 of 5 down-
regulated microRNAs after CR has low abundance in
AL and very low in CR group (Fig. 4b). Among the DE
microRNAs changed after EX, only 1 microRNA has
high abundance and 5 had medium abundance in both
EX and AL groups; almost half (18 of 37) up-regulated
microRNAs after EX are low abundant genes in EX
and very low in AL group (Fig. 4c). On the other hand,
almost half (18 of 39) DE microRNAs in HF have
medium to high abundance in both HF and AL
groups; 4 of 19 up-regulated microRNAs by HF have
low abundance in HF and very low in AL group; and 7
of 20 down-regulated microRNAs by HF have low
abundance in AL and very low in HF group (Fig. 4d).
The expression level distribution of DE microRNAs
suggested that microRNAs with low and medium
abundance were more susceptible to lifestyle modifica-
tions than those high abundant microRNAs.

Validation of selected differentially expressed microRNAs
via RT-qPCR

Representative microRNAs were validated in an inde-
pendent platform - RT-qPCR, including DE microRNAs
in all the three lifestyle modifications, such as such as
mmu-miR-34a-5p, mmu-miR-99a-5p, mmu-miR-200b-
5p, mmu-miR-96-5p and mmu-miR-802-5p in CR group
(Fig. 5a), mmu-miR-200b-5p, mmu-miR-380-5p, mmu-
miR-683 and mmu-miR-409-3p in EX group (Fig. 5b),
and mmu-miR-487b-3p, mmu-miR-380-5p, mmu-let-7e-
5p, mmu-miR-455-3p and mmu-miR-141-3p in HF
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group (Fig. 5¢). The RT-qPCR results showed similar
direction of expression change as observed in microarray
results.

Functional prediction of differentially expressed
microRNAs

To better understand the function of DE microRNAs in
livers after lifestyle modifications, it is essential to iden-
tify their target genes. In this study, as described in
Methods, we used four softwares to predict target genes
and the intersections of the output results of at least
three algorithms were used as prediction results for the
DE microRNAs. These in silico predicted targets in-
cluded mRNAs from liver and non-liver cell and tissue
types. Therefore, to further identify tissue-specific target
genes, the PaGenBase database was used to filter the
predicted targets. A total of 853 mRNAs were identified
as potential targets for the total 84 DE microRNAs from
the three treatments.

To determine the functions and connections of the DE
microRNAs in these lifestyle modification mice models,
we applied enrichment analyses to clarify the biological
function of microRNA integrated-signature via target
genes. Based on the distribution of the predicted target
genes in the Gene Ontology analysis [17], the number of
genes was statistically analyzed with significant enrich-
ment of each GO term to elucidate gene function in bio-
logical process (BP), cellular component (CC) and
molecular function (MF), and the results are shown in
Fig. 6a-c. KEGG consists of databases with information
about genomes, biological pathways, diseases, drugs, and
chemical substances [18]. The top 10 pathways enriched
by the candidate target genes are also displayed in histo-
grams (Fig. 6d-f). In the top 10 enriched GO terms and
KEGG pathways, the common and different enriched
GO terms and KEGG pathways in these lifestyle modifi-
cations were listed in Table 1. These most striking cat-
egories of gene function and main biochemical and
signal transduction pathways will point us in the direc-
tion of further research about DE microRNAs.

Validation of selected target mRNAs via RT-qPCR

Based on the target gene prediction and enrichment ana-
lyses, expression of representative predicted target
mRNAs of some of the validated microRNAs were de-
tected via RT-qPCR and these mRNAs are involved in
all the treatments, including Elovl2, Lamp2, Atp6vOal
and Wdrl8 in CR, Wdrl8 in EX and Atp6v0Oal and
Wdrl8 in HF (Fig. 7). The relationship between up-
stream microRNAs and the detected target mRNAs are
listed in Table 2. The directions of the expression
change detected by RT-qPCR were as expected.
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Discussion

It has been well known that lifestyle, such as caloric re-
striction, exercise and high-fat diet, has significant influ-
ence on health. Although there are many studies that
have attempted to clarify the molecular processes, it has
not been fully understand the underlying common or
unique mechanisms. Therefore, identifying the under-
lying mechanism is crucial to determine new targets,
personalize treatment methods and bring a promise of
translatability to human health. In the present study, this
is the first report that compares the microRNAs profile

in livers from these three lifestyle modification mice
models. In addition, we also predicted the potential
functions of DE microRNAs by GO and KEGG analysis.
With this knowledge, our findings provide us with an
overall vision of microRNAs in the molecular impact of
lifestyle on health as well as useful clues for future and
thorough research of the role of microRNAs.

The different energy intake and consumption status of
lifestyle modifications were presented in our prepared
mice models as reported previously [19, 20]. Among
lifestyle modifications, CR and endurance exercise can
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prevent or delay the onset of type 2 diabetes and meta-
bolic syndrome, while high-fat diet induces obesity that
leads to these diseases. The three lifestyle modification
models guaranteed the miRNAs profiling results.

Many researchers commonly used microarrays to
screen DE microRNAs in various pathophysiological
processes [21]. Although an increasing number of stud-
ies applied next-generation sequencing (NGS) to per-
form comprehensive analyses of microRNA expression
profiles, it has been demonstrated that NGS and micro-
array measurements give similar results [22]. In addition,
in this study, 4 ~ 6 DE microRNAs identified by micro-
array in each lifestyle treatment were verified via RT-
qPCR. These results confirmed the reliability of our data
and provided a credible base for further study.

Some studies have shown that microRNAs are in-
volved in the cellular and molecular mechanisms of life-
style modifications [14-16]. However, most of the
microRNA profiling studies of exercise focus on circulat-
ing microRNAs or microRNAs in skeletal muscle and
heart [9, 14, 16]. Although there are some studies on
microRNA profiling in liver of HF or CR [23-27], there
is little comprehensive information regarding the simi-
larities and differences of microRNAs profile in liver
between these beneficial and detrimental lifestyles.
Therefore, we examined the overall microRNAs expres-
sion in the liver of mice subjected to CR, EX and HF. In
general, about half microRNAs were detectable in liver
and the responses of microRNAs to these lifestyle modi-
fications were relatively mild. On one hand, only a small
portion were responded to lifestyle modifications; on the
other hand, most of the DE microRNAs changed within
a small range. Different from these results, in some dis-
eases or physiological process, such as Parkinson’s

Disease [28], fetal development [29], hepatocellular car-
cinoma [30], ischemia/reperfusion-induced acute kidney
injury [31] and hepatitis C virus infection [32], there are
more than one hundred DE microRNAs or the ranges of
DE microRNAs change can be up to tens or more than
one hundred folds. Among the three lifestyles, CR had
the mildest impact on microRNAs, DE microRNAs in
EX changed to the biggest range. Based on this result, to
get the beneficial effects to health, maybe CR is a gentler
choice. On the other side, most of the changes by the
beneficial lifestyles were up-regulation, while the number
of down- and up-regulated microRNAs by the detrimen-
tal lifestyle HF were about equal. More down-regulated
microRNAs imply more up-regulated mRNA. It’s a pos-
sible way that HF disturbs homeostasis. In addition, our
results showed some common DE microRNAs between
different lifestyle modifications. For example, we found
that miR-34a-5p was activated by HF and inhibited by
CR. It has been reported that miR-34a was aberrantly el-
evated by HF and functionally involved into hepatic lipid
metabolism [25, 33, 34]. In the brain of CR mice, there
is a decreased expression of mmu-miR-34a [35]. Another
example is mmu-miR-200b-5p, which was up-regulated
by both CR and EX in the present study. Consistent with
our findings, mmu-miR-200b-5p was also elevated in
salivary post-running [36]. These results are fundamen-
tal and we undertook a more thorough and comprehen-
sive analysis of potential microRNAs involved in the
effects on health by lifestyle modifications.

To predict the potential functions of the DE micro-
RNAs in present study, we performed GO and KEGG
analyses on the predicted targets. The ontology com-
prises three distinct aspects of gene function: biological
process (a biological objective to which the gene or gene
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Table 1 The top 10 enriched GO terms and KEGG pathways
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Group GO terms KEGG pathways
BP cC MF
Common in oxidation- intracellular membrane-  oxidoreductase activity; Metabolic pathways;
CR, EX and HF  reduction bounded organelle; catalytic activity; PPAR signaling
process; extracellular exosome; monooxygenase activity; pathway;
lipid metabolic ~ mitochondrion; flavin adenine dinucleotide binding; Fatty acid degradation;
process; endoplasmic reticulum; iron ion binding; Complement and
metabolic blood microparticle; oxidoreductase activity (acting on paired donors, with coagulation cascades;
process; peroxisome; incorporation or reduction of molecular oxygen) Biosynthesis of
fatty acid membrane; antibiotics;
metabolic extracellular region Retinol metabolism;
process; Chemical carcinogenesis
blood
coagulation;
hemostasis;
steroid
metabolic
process;
lipid homeostasis
Common in CR  triglyceride - - -
and EX metabolic
process

Common in CR
and HF

Common in EX
and HF

Only in CR

Only in EX

Only in HF

fatty acid beta-
oxidation

xenobiotic
metabolic
process

cholesterol

cytosol

mitochondrial inner
membrane

extracellular space

cytoplasm

transferase activity;
hydrolase activity

heme binding

fatty-acyl-CoA binding;
oxidoreductase activity (acting on the CH-CH group of
donors)

lyase activity;
metal ion binding;
pyridoxal phosphate binding

protein homodimerization activity

Tryptophan metabolism;
Valine, leucine and
isoleucine degradation

Ascorbate and aldarate
metabolism;

Butanoate metabolism;
Fatty acid metabolism

Steroid hormone
biosynthesis

Peroxisome

homeostasis,
steroid
biosynthetic
process

product contributes), cellular component (the location
in the cell where a gene product is active), and molecu-
lar function (the biochemical activity of a gene product
at the molecular level) [17, 37]. KEGG is for understand-
ing functional meanings of genes and genomes both at
the molecular and higher levels [38, 39]. The GO and
KEGG analysis showed that targets of the DE micro-
RNAs in these lifestyle modifications were enriched in
some common main functions, biochemical and signal
transduction pathways, such as oxidation-reduction
process and oxidoreductase activity, metabolic process
and metabolic pathways, fatty acid metabolic process
and fatty acid degradation, PPAR signaling pathway.
These gene functions and pathways of the targets were
also shown in some previous studies about lifestyle mod-
ifications. For example, exercise exerted profound
changes in metabolism-associated genes, which encode
proteins involved in oxidation, fatty acid transporter and
fatty acid synthase [40]. PPARS has also been observed

in response to exercise [41]. The changes of the path-
ways, such as lipid metabolism, fatty acid degradation
and metabolic pathways, have also been reported in CR
[42, 43]. Studies have reported that HF has an important
impact on the lipid metabolism process in rat liver [44].
The intake of a high-fat diet forces the body to maintain
physiological balance by inhibiting fatty acid synthesis,
promoting fatty acid oxidation, and accelerating fatty
acid degradation. PPAR signaling pathway is also change
significantly in rat liver after HF [45]. Besides, we also
presented that targets of DE microRNAs in different life-
style modification were also enriched in some different
functions or pathways. For an instance, we found that
CR altered expression of microRNAs implicated in regu-
lating fatty acid oxidation, which is consistent with pre-
vious reports [42, 46]. Interestingly, we validated the
expression change of a predicted target of mmu-miR-
802-5p and mmu-miR-96-5p, Elovl2, in CR. Elovl2 is re-
lated with fatty acyl-CoA biosynthesis [47], while GO-
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MF term fatty-acyl-CoA binding was enriched in CR
functions. Lamp2, another predicted target of mmu-
miR-802-5p and mmu-miR-96-5p, belongs to autoph-
agy—lysosome system and also reduces in liver of CR
mice. A similar down-regulation of Lamp2 was reported
by Junya Yamamoto and colleagues in mice livers after
fasting [48].

Although there are some limitations in our study,
such as a relatively small sample size, we confirmed
some of the DE microRNAs and predicted targets
with RT-qPCR. Differences of identified DE micro-
RNAs do exist between our study and previous stud-
ies [23-27]. One possible reason is the differences of
treatment, such as duration, age, diet ingredients; an-
other possibility is difference between detection
methods. Besides, although we observed inverse corre-
lations between several microRNAs and their targets,
direct evidences of repression by microRNAs on their
targets need to be provided, and these mechanisms
would have to be investigated further to gain more

Table 2 miRNA-target relationship of the detected mRNAs

Target gene Upstream miRNAs Predicted change

ElovI2 mmu-miR-802-5p, CR-Down
mmu-miR-96-5p

Lamp2 mmu-miR-802-5p, CR-Down
mmu-miR-96-5p

Atp6v0al mmu-let-7e-5p, CR-Up,
mmu-miR-34a-5p HF-Down

Wdr18 mmu-let-7e-5p, CR-Up,
mmu-miR-34a-5p, EX-Up,
mmu-miR-455-3p, HF-Down

mmu-miR-141-3p

insight into these potential miRNA-target relation-
ships. Cell culture experiments with overexpression or
knockdown of microRNAs would enable us to eluci-
date this.

Conclusions

In conclusion, this study provided for the first time a
comprehensive and thorough comparison of microRNAs
expression profiles in liver among beneficial and detri-
mental lifestyles, including CR, EX and HF. We pre-
sented similarity and differences of DE microRNAs
among them. Besides, the data revealed that, through
the interaction and regulation of related genes, DE
microRNAs participate in related specific biological pro-
cesses and pathways that may contribute to the effects
of these lifestyles. While our findings provide us with an
overall vision of microRNAs in the molecular impact of
lifestyles on health, further studies are required to de-
cipher the underlying molecular mechanisms of these
DE microRNAs.

Methods

Ethics statement

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The protocol was approved by the Biomedical Ethics
Committee of Beijing Hospital and Beijing Institute of
Geriatrics, Beijing, China. Staff veterinarians monitored
mice on a regular basis, finding no pathogens. All efforts
were made to minimize suffering.
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Animal models

Male C57BL/6 mice were purchased from the Vital River
(Charles River China) at two months of age. After a one-
week acclimation, all mice were randomly assigned to
the following groups and treated for 3 months (n =7 in
each group): ad libitum, normal-fat diet group (AL); ad
libitum, high-fat diet group (HF) [19, 20]; normal-fat diet
and 30 ~ 35% caloric restriction as in AL group (CR) [46,
49, 50]; and ad libitum, normal-fat diet with exercise
(EX). The mice were exercised on a motorized treadmill
from EHSY (Shanghai, CN) for 30 min/day at 14 m/min,
5° incline, and 5 days/week for 3 months. Intensity of ex-
ercise is moderate and corresponds to 70 ~ 75% of max-
imal oxygen uptake [19, 51]. All the animals were
housed at 21 °C in a 12-h light/12-h dark cycle (lights on
at 7:00 am). We recorded the body weight and food in-
take once a week during the study. Body composition
was measured by dual energy X-ray absorptiometry
(DEXA, Discovery, HOLOGIC Com., MA, USA).
Anesthesia of the mice was performed with isoflurane
before their euthanasia by cervical dislocation. The livers
were removed, weighed, frozen in liquid nitrogen and
stored at — 80 °C.

RNA extraction

Livers were isolated, snap frozen in liquid nitrogen,
ground into powder with mortar and pestle in liquid ni-
trogen and then stored at — 80°C. Total RNA was iso-
lated from 20 to 30mg liver using TRIzol® reagent
(Invitrogen Life Technologies, USA) and RNasey Mini
Kit (Qiagen, Germany) following the manufacturer’s in-
structions. The residual DNA was removed by TURBO
DNA free kit (Ambion Inc., UK). Yield and purity of
RNA were determined by NanoDrop ND-1000 spectro-
photometer (Nanodrop technologies, USA). RNA integ-
rity and genomic DNA contamination were tested by
denaturing agarose gel electrophoresis.

Microarray

MicroRNA expression levels were assessed using a
microRNA microarray (miRCURY LNA™ microRNA
Array (v.11.0), Exiqon, Vedbeek, Denmark), based on the
method of locked nucleic acid [52]. All chips were pre-
pared according to the manufacturer’s instructions at
KangChen Bio-tech (Shanghai, China). All probes with
four calls were selected for assessing differential expres-
sion between groups. For each group, total RNAs from 3
mice were pooled with equal quantity to get one sample
for microarray detection. The RNA samples were labeled
using the miRCURY™ Hy3™/Hy5™ Power labeling kit and
hybridized on the chip. Scanning was performed with
the Axon GenePix 4000B microarray scanner. GenePix
pro V6.0 was used to read the raw intensity of the image.
The intensity of green signal on the chip was calculated
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after background subtraction and replicated spots on the
same slide had been averaged by getting a median inten-
sity. We used Median Normalization Method to obtain
“Normalized Data”, Normalized Data = (Foreground-
Background) /median, the median is 50% quantile of
microRNA intensity which is larger than 50 in all sam-
ples after background correction. The low intensity dif-
ferentially expressed (DE) microRNAs are filtered (which
Foreground-Background intensities are all <50 in two
compared samples). The threshold value we used to
screen Up and Down regulated microRNAs is Fold
Change > = 1.5 compared to AL group.

cDNA synthesis and real-time PCR

Validity of the microRNAs expression array was con-
firmed by RT-qPCR. A Mir-X microRNA First-Strand
Synthesis Kit (Clontech Laboratories, Inc. CA, USA) was
used to synthesize first-strand ¢cDNA according to the
manufacturer’s instructions. QPCRs of microRNAs were
then conducted in iQ5 Real-Time PCR system (Bio-Rad
Laboratories, Inc., CA, USA) using a Mir-X microRNA
qRT-PCR SYBR Kit (Clontech Laboratories, Inc. CA,
USA) (n=5 in each group). The amplification program
was as follows: 95°C for 10s, 40 cycles at 95°C for 55
and 60 °C for 20s, with a final melting curve at 95 °C for
60s, 55°C for 30s, and 95°Cfor 30s. A U6 snRNA, de-
tected with primers supplied with the kit, was used as an
internal control to calculate the relative expression of
microRNAs using the 27#*“* method.

Candidate predicted target mRNAs were also con-
firmed by RT-qPCR. First-strand cDNA was synthesized
from total RNA using a 20 pl reverse transcription sys-
tem (New England Biolabs, USA). QPCRs were con-
ducted using a TB Green® Premix Ex Taq™ II Kit
(Takara Bio Inc., Japan) (n =5 in each group). The amp-
lification program was as follows: 95 °C for 30s, 40 cycles
at 95°C for 5s and 60 °C for 30s. After amplification, a
thermal denaturing cycle was added as above. Hmbs was
used as an internal control [50] to calculate the relative
expression of target mRNAs using the 27**Ct method.

The primers were listed in Table 3 and were ordered
from Life Technologies (Beijing, China) with their certi-
ficates of analysis.

Target predictions for differentially expressed microRNAs
Target prediction for the DE microRNAs was performed
using Targetscan Mouse release 7.1, miRanda, miRDB
and miRWalk2.0 [53-56]. To improve the accuracy of
target gene prediction and reduce the rate of false posi-
tives, the intersections of the output results of at least
three algorithms were used as prediction results for the
DE microRNAs. We filtered the vast list of potential tar-
gets by employing the PaGenBase database to identify
tissue-specific gene (mRNA) targets [57].
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Table 3 Primers for gRT-PCR validation of candidate miRNAs

and mRNAs
Gene Primer

miRNA mmu-miR-141-3p CGCTAACACTGTCTGGTAAAGATGG
mmu-miR-200b-5p CATCTTACTGGGCAGCATTGGA
mmu-miR-34a-5p TGGCAGTGTCTTAGCTGGTTG
mmu-miR-380-5p CGATGGTTGACCATAGAACATGCG
mmu-miR-409-3p CCGAATGTTGCTCGGTGAACC

GCAGTCCACGGGCATATACAC
CAATCGTACAGGGTCATCCACTT

mmu-miR-455-3p
mmu-miR-487b-3p

mmu-miR-683 CCTGCTGTAAGCTGTGTCCTC
mmu-miR-802-5p GGCCTCAGTAACAAAGATTCATCCTT
mmu-miR-96-5p GTTTGGCACTAGCACA GCT

CAACCCGTAGATCCGATCTTGTG
CGCTGAGGTAGGAGGTTGTATAGT

mmu-miR-99a-5p

mmu-let7e-5p

mMRNA Atpév0al F: CCGAGGACGAAGTGTTTGACT

R: ATCAGCAGGATAGCCACGGT
ElovI2 F: CCTGCTCTCGATATGGCTGG

R: AAGAAGTGTGATTGCGAGGTTAT
Lamp2 F: TGTATTTGGCTAATGGCTCAGC

R: TATGGGCACAAGGAAGTTGTC
Wdr18 F: TGGTGTGGGAGCTTCATTCG

R: CCCAGGCGCAGATGTAGTTC
Hmbs F: ATGAGGGTGATTCGAGTGGG

R: TTGTCTCCCGTGGTGGACATA

Target gene annotation, enrichment and pathway
analysis

The predicted targets of DE microRNAs of each
group were separately submitted to DAVID for an-
notation and enrichment analyses. The main compo-
nents of annotation in Gene Ontology (GO) mainly
provided the cellular locations and biological func-
tions of validated microRNA targets [17]. The GO-
biological processes, GO-molecular function and
GO-cellular component analyses were performed
using Fisher’s exact test and the x* test, where both
the Expression Analysis Systematic Explorer and the
False Discovery Ratio (FDR) were calculated to cor-
rect the p value. Only terms with both a p value and
an FDR<0.05 were considered to be significant.
Pathway analysis was based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) data-
base [18]; similarly, we used Fisher’s exact test and
the x” test to identify significant pathways, and terms
with both a p value and an FDR<0.05 were
considered to be significant.

Statistical analysis

Data are expressed as group mean + standard error (SE).
SPSS software (version 17.0) was used for statistical ana-
lysis. Means of two groups were compared and analyzed
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using the Student’s t-test. One-way analysis of variance
(ANOVA) was used to estimate difference among
groups, followed by Tukey’s post-hoc test. Differences
were reported as statistically significant when p < 0.05.
GraphPad Prism 6 (GraphPad Software, USA) was used
for graph plotting.
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